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Abstract. The equation for the diffusion velocity in the

mesosphere and the lower thermosphere (MLT) includes the

terms for molecular and eddy diffusion. These terms are

very similar. For the first time, we show that, by using the

similarity theory, the same formula can be obtained for the

eddy diffusion coefficient as the commonly used formula de-

rived by Weinstock (1981). The latter was obtained by tak-

ing, as a basis, the integral function for diffusion derived

by Taylor (1921) and the three-dimensional Kolmogorov ki-

netic energy spectrum. The exact identity of both formulas

means that the eddy diffusion and heat transport coefficients

used in the equations, both for diffusion and thermal con-

ductivity, must meet a criterion that restricts the outer eddy

scale to being much less than the scale height of the atmo-

sphere. This requirement is the same as the requirement that

the free path of molecules must be much smaller than the

scale height of the atmosphere. A further result of this cri-

terion is that the eddy diffusion coefficients Ked, inferred

from measurements of energy dissipation rates, cannot ex-

ceed the maximum value of 3.2× 106 cm2 s−1 for the maxi-

mum value of the energy dissipation rate of 2 W kg−1 mea-

sured in the mesosphere and the lower thermosphere (MLT).

This means that eddy diffusion coefficients larger than the

maximum value correspond to eddies with outer scales so

large that it is impossible to use these coefficients in eddy

diffusion and eddy heat transport equations. The application

of this criterion to the different experimental data shows that

some reported eddy diffusion coefficients do not meet this

criterion. For example, the large values of these coefficients

(1× 107 cm2 s−1) estimated in the Turbulent Oxygen Mixing

Experiment (TOMEX) do not correspond to this criterion.

The Ked values inferred at high latitudes by Lübken (1997)

meet this criterion for summer and winter polar data, but the

Ked values for summer at low latitudes are larger than the

Ked maximum value corresponding to the criterion. Analysis

of the experimental data on meteor train observations shows

that energy dissipation with a small rate of about 0.2 W kg−1

sometimes can induce turbulence with eddy scales very close

to the scale height of the atmosphere. Our results also ex-

plain the discrepancy between the large cooling rates cal-

culated by Vlasov and Kelley (2014) and the temperatures

given by the MSIS-E-90 model because, in these cases, the

measured eddy diffusion coefficients used in calculating the

cooling rates are larger than the maximum value presented

above.

Keywords. Atmospheric composition and structure (middle

atmosphere – composition and chemistry) – meteorology and

atmospheric dynamics (middle atmosphere dynamics; turbu-

lence)

1 Introduction

Problems exist in estimating the eddy diffusion and heat

transport coefficients, Ked and Keh, from experimental data.

These problems are due to uncertainty in experimentally de-

termining the turbulent energy dissipation rate and to the un-

certainty of these coefficients’ dependence on the energy dis-

sipation rate ε, which is a key parameter in determining these

coefficients from experimental data. Usually, the spectrum of

density fluctuations inferred from experimental data and ap-

proximated using the theoretical model of Heisenberg (1948)

facilitates determining the inner-scale l0. This parameter is

related to the Kolmogorov microscale, η, through the relation

l0 = 9.9 η (Lübken, 1993). The Kolmogorov microscale is a

rough estimate of the size of the smallest eddies that can pro-

vide turbulent energy dissipation with viscosity ν. Then the

ε value can be calculated using the formula ε = ν3η−4. Ac-
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cording to this formula, the ε value strongly depends on the

η value, which is estimated by a rough approximation. For

example, let us estimate the impact of η values on the energy

dissipation rate using the l0 values inferred from the experi-

mental data by Kelley et al. (2003). The l0 values vary from

156 to 222 m and the ε value can change from 0.14 W kg−1

to 0.58 W kg−1. Thus, the 40 % increase in the η value results

in an ε increase by a factor of 4.14.

Additional uncertainty is caused by dependence of the

eddy diffusion coefficient on the energy dissipation rate. The

linear dependence Ked = bε/ω
2
B with b = 0.8 and ωB, the

buoyancy frequency derived by Weinstock (1978), is com-

monly used to infer the Ked values from ε-measured values.

However, the relation b = Ri/(P −Ri), where P and Ri are

the Prandtl and Richardson numbers, respectively, can be ob-

tained in the steady state using the stationary equation for the

turbulent energy balance between the rate of energy trans-

ferred from the mean motion to the fluctuations on one side,

and the rates of turbulent energy dissipation due to viscos-

ity and the buoyancy force on the other side (Chandra, 1980;

Gordiets et al., 1982). This balance assumes that the fluc-

tuations are stationary, homogeneous, and isotropic. Wein-

stock’s formula is also derived for the same conditions. How-

ever, Weinstock assumes that turbulence obtained in a region

of dynamic instability (Ri ≤ 0.25) will be transported by tur-

bulent flux into regions of larger Ri, and the Ri mean value

may then be 0.44, corresponding to b = 0.8 for P = 1. Note

that if this transport is not possible, the b value cannot exceed

0.3. There is no evidence that either formula is better, but the

latter has the problem of Ri determination.

In a previous paper (Vlasov and Kelley, 2014), we con-

sidered a set of eddy diffusion coefficients inferred from dif-

ferent experimental data. The difference between these eddy

diffusion coefficients exceeded an order of magnitude. Also,

a strong contradiction exists between the higher experimental

coefficients and coefficients used in the typical modeling re-

sults (Hecht et al., 2004) because using large eddy diffusion

coefficients generates unrealistic model results. Vlasov and

Kelley (2014) showed that, by comparing the cooling rates

calculated by the equation with the turbulent energy dissipa-

tion rate and eddy heat transport terms with cooling rates cor-

responding to temperatures given by the MSIS-E-90 model,

it is possible to obtain the criterion for analyzing experimen-

tal data on the eddy heat transport coefficient. The coeffi-

cients that meet this criterion are found to be significantly

less than a set of the coefficients inferred from experimental

data using the well-known formula Ked = 0.8ε/ω2
B.

To our knowledge, published papers on estimating the

eddy diffusion coefficient do not take into account the re-

quirements corresponding to using this coefficient in diffu-

sion and thermal conductivity equations. The diffusion equa-

tion includes the terms of molecular and eddy diffusion.

These terms are very similar. In this paper, for the first time,

the similarity theory is applied to infer the dependence of

Ked on the energy dissipation rate and to determine the upper

limit of the eddy diffusion coefficients. The latter is based on

criteria for eddy scales corresponding to the diffusion equa-

tion usually used in models. The new criterion is applied to

the analysis of some published experimental data.

2 Application of the similarity theory for the eddy

diffusion coefficient

The commonly used equation for velocity induced by molec-

ular and eddy diffusion in the upper atmosphere is given in

the form of (Banks and Kockarts, 1973)

w =−Dm

[
1

ni

∂ni

∂z
+

1

Hi
+ (1+αT )

1

T

∂T

∂z

]
(1)

−Ked

[
1
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∂z
+

1

H
+

1

T

∂T

∂z

]
,

where the molecular diffusion coefficient is given by the

equation

Dm = (1/3)V
2
th/ν (2)

V 2
th = 8kbT

/
(πm)= 8Eth/π (3)

where Eth = kbT m
−1 is the thermal energy per unit of mass,

H and Hi are the respective scale heights of the mixing gas

and the i-th component of the gas, Vth is the mean thermal

velocity, kb is the Boltzmann constant, T is the temperature,

αT is dimensionless quantity for the thermal diffusion coeffi-

cient, m is mass, and ν is the collision frequency. According

to Eq. (1), Ked and Dm have the same dimension. According

to the similarity theory, two physical phenomena, processes,

or systems are similar if, at corresponding moments of time

at corresponding points in space, the values of the variable

quantities that characterize the state of one system are pro-

portional to the corresponding quantities of the second sys-

tem. The proportionality factor for each of the quantities is

called the similarity factor. Following the similarity theory,

the eddy diffusion coefficient Ked can be given by an equa-

tion similar to Eq. (2)

Ked = ξ1(1/3)W
2
turb/ωB, (4)

where ξ1 is the similarity factor, Wturb is the mean turbulent

velocity, and ωB is the buoyancy frequency. Usually, the en-

ergy dissipation rate, ε, is measured in units of energy per

unit of mass and per second. ε = EturbωB is used to deter-

mine the eddy diffusion coefficient and WturbEturb can be

considered the analog of Eth. Using the similarity of Vth and

Wturb and Eq. (3), it is possible to obtain the equation

W 2
turb = ξ2 · 8Eturb/π = ξ2 · 8ε/(π ·ωB) (5)

and

ε = ζ2(π/8)W
2
turbωB. (6)
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Figure 1. The Ked maximum value vs. the energy dissipation rate

calculated by Eq. (12) with b = 0.8 and LB = 600 and 700 m (thick

solid and thick dashed-dotted curves, respectively), b = 0.3 (P = 1,

Ri = 0.25), and LB = 600 (thin solid curves).

Eq. (6) is the same as the equation

ε = C0σ
2
wωB (7)

obtained by Weinstock (1981), where σw =Wturb is the

mean turbulent velocity. This formula is derived by Wein-

stock (1981) using the three-dimensional Kolmogorov ki-

netic energy spectrum, which is valid when the eddy scales

do not exceed the outer scale of turbulence.

LB = 2π ·Wturb/ωB (8)

The main problem is in determining the dimensionless con-

stant C0 or ξ2 (π/8). Weinstock (1981) estimated C0 = 0.4−

5.0 and finally concluded that C0 = 0.4 is more appropriate.

In this case, C0 is equal to ξ2π/8= 0.4 for the similarity fac-

tor ξ2 = 1. Therefore, there is excellent agreement between

the formula derived by Weinstock and the formula derived

using the approach based on the similarity theory. Substitut-

ing Wturb, given by Eq. (5), with ξ2 = 1 into Eq. (4), it is

possible to obtain

Ked = 0.84ε/ω2
B (9)

for ξ1 = 1. This equation is in excellent agreement with

Keh = bε/ω
2
B = 0.8ε/ω2

B (10)

obtained by Weinstock (1978) and commonly used to esti-

mate the coefficient of heat transport due to eddy turbulence

Keh. For uniform turbulence, the coefficient Keh is equal to

coefficient Ked.

This result confirms application of the similarity theory. If

we try to determine Ked corresponding to diffusion Eq. (1),

the condition LB < <H must be met, and LB ≤ 0.6 km be-

cause H ≤ 6 km in the upper mesosphere. This criterion is

similar to criterion λ< <H for molecular diffusion. Addi-

tionally, the smallest size of eddies η must be much larger

than the free path of molecules, and the Wturb value must be

much less than thermal velocity Vth ≈ 3.5× 104 cm s−1. The

Wturb maximum value can be found to be 4.8× 104 cm s−1

by using Eq. (8) for LB < <H and the ωB maximum value

of 5× 10−2 s−1. The latter value can be estimated using

the relation ω2
B = Ri S2

max for Ri ≤ 0.25 and the max-

imum wind shear, Smax = 100 m s−1 km−1 (Larsen, 2002).

Also, according to Eq. (8), the Wturb value cannot exceed

4.8× 104 cm s−1 for LB < <H . Thus, the eddy diffusion ve-

locity is much less than the thermal velocity. Note that our

results show that the formula derived by Weinstock (1981)

can be only applied for eddy diffusion; this formula cannot

be used for turbulence with large-scale eddies.

According to experimental data (Lübken, 1997; Bishop et

al., 2004; Szewczyk et al., 2013), the energy dissipation rate

can range from 0.1 to 2 W kg−1. According to Eq. (8), the

mean turbulent velocity can be given by the relation

Wturb = LB ·ωB/(2π). (11)

Substituting this relation into Eq. (4) and using Eq. (10) to

determine ωB, it is possible to obtain the equation

Ked =
L

4/3
B (bε)1/3

24/3(8π)2/3
. (12)

As can be seen from the Keh value dependencies on

the energy dissipation rate calculated by this formula and

shown in Fig. 1, the Ked maximum value does not exceed

3.2× 106 cm2 s−1 for the maximum value of the energy dis-

sipation rate of 2 W kg−1 and LB = 0.6 km. This result is in

good agreement with the Ked permissible limit correspond-

ing to the criterion (Vlasov and Kelley, 2014) based on com-

paring the cooling rates produced by eddy turbulence with

the normal cooling rates corresponding to the temperature

given by the MSIS-E-90 model.

3 The Ked upper limit and Ked values inferred from

experimental data

Using the Turbulent Oxygen Mixing Experiment (TOMEX)

experimental data on the energy dissipation rate given in

Table 1 and the Ked values given in Table 2 in Bishop et

al. (2004), it is possible to estimate the ωB value correspond-

ing to Eq. (10) used by Bishop et al. (2004). Combining

Eq. (5) with ξ2 = 1 and Eq. (8), the LB values can be cal-

culated by the equation

LB = 2

√
8πbε

ω3
B

. (13)
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Figure 2. (a) The outer scale calculated by Eq. (14) with the ε andKed values given in Table 3 (summer) in Lübken (1997) and approximated,

as can be seen from Figs. A1 and A2 in Appendix A. (b) The same as in Fig. 2a but using the ε and Ked values in winter given in Table 4 in

Lübken (1997).

TheLB value can be found to be 3.8 km for ε = 0.41 W kg−1,

as given in Table 1 in Bishop et al. (2004) at 102 km al-

titude. Using the temperature height profile measured dur-

ing TOMEX at the time of Bishop’s experiment as shown in

Fig. 1 in Hecht et al. (2004), the ω2
B value can be found to

be 1.52× 10−4 s−2 at 93 km, and the LB value can be found

to be 1.9 km for ε = 0.09 W kg−1, as given by Model 1 in

Table 1 in Bishop et al. (2004). The LB value estimated for

other models and altitudes in Table 1 can also be found to be

larger than 1 km. This means that the eddy diffusion coeffi-

cients inferred from these energy dissipation rates and given

in Table 2 in Bishop et al. (2004) cannot be used in the dif-

fusion equation because these coefficients correspond to tur-

bulence with an outer eddy scale that is too large. Note that

the TOMEX results are based on observation of the chemical

tracer released by a rocket.

Rocket measurements of neutral density fluctuations were

used by Lübken (1997) to infer the eddy diffusion coefficient.

The ε, Wturb, and Ked mean values obtained in these experi-

ments during summer are given in Table 3 in Lübken (1997).

Using these parameters, Eqs. (10) and (5) with ξ2 = 1, it is

possible to estimate the ωB value. However, the ωB value cor-

responding to theKed mean value at 90 km altitude is equal to

0.026 s−1, but the ωB value corresponding to the Wturb mean

value is equal to 0.047 s−1 at the same altitude. Perhaps this

disagreement is a result of the averaging. The LB values cal-

culated with the Wturb mean value and ωB = 0.047 s−1 can

be found to be 382 m. The LB height distribution calculated

by the equation

LB = 10.59K
3/4

ed /ε
1/4, (14)

obtained from Eq. (13) is shown in Fig. 2a. The approxima-

tions of the data on the ε and Ked height distributions pre-

sented in Table 3 in Lübken (1997) are used in these cal-

culations. A comparison of the approximations and data is

shown in Figs. A1 and A2 in Appendix A. As can be seen
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Figure 3. The height profiles of the outer scales of eddies LB
in January (dashed curve) and September (solid curve) calculated

using the data on ε and Ked shown in Fig. 1 in Sasi and Vi-

jayan (2001): ε0 = 31.6 erg/(gs) and Ked0 = 1× 105 cm2 s−1 for

January and ε0 = 75 erg/(gs) and Ked0 = 3.16× 105 cm2 s−1 for

September.

from the LB height profiles shown in Fig. 2a and b, there is

no significant difference between the outer scales calculated

with Lübken’s summer and winter data. In general, the Ked

inferred by Lübken (1997) meets the criterion for the Ked

maximum value given in Eq. (12) and shown in Fig. 1 for

use in the diffusion equation.

Data on the turbulent energy dissipation rates were ob-

tained by the Indian mesosphere–stratosphere–troposphere

(MST) radar located at Gadanki (13.5◦ N, 79.2◦ E) during a

3-year period. The eddy diffusion coefficients have been es-

timated using Eq. (10) (Sasi and Vijayan, 2001). The height

distributions of the ε and Ked mean values for the differ-

Ann. Geophys., 33, 857–864, 2015 www.ann-geophys.net/33/857/2015/
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Figure 4. The power spectra of the relative Na density fluctuations

calculated by Eq. (18) withN = 5× 10−7 s−1,A= 0.216, ν = 16.6

m2 s−1, and k0 = 0.0084 m−1 and 0.0094 m−1 (solid and dashed

curves, respectively).

ent months were approximated by exponential functions, as

can be seen from Fig. 1 in Sasi and Vijayan (2001). Using

these distributions and Eq. (14), it is possible to calculate the

height distributions of the LB values shown in Fig. 3. These

results show that the criterion LB < <H is met at all alti-

tudes in winter but this criterion is only met at altitudes above

80 km in summer at lower latitudes. Note that LB values at

high latitude calculated with the ε and Ked values given by

Lübken (1997) do not show significant seasonal variations.

Kelley et al. (2003, hereafter referred to as K03) presented

additional experimental data. The time evolution of persis-

tent meteor trains was used to determine the eddy diffusion

coefficient in the upper mesosphere. The sodium density in

the train was sufficient to use it as a passive scalar tracer

of turbulence. The simultaneous measurements of the power

spectrum of relative Na density fluctuations, the neutral tem-

perature, and wind are presented within the altitude range

of 83.5–100 km. Also, they estimated the ω2
B and Ri values

corresponding to the measured temperature and wind. In our

analysis, we use the averaged spectra shown in Fig. 7 in K03.

This spectrum can be approximated by the equation

P(k)=
0(5/3)sin(π/3)α2N

2πν(9.9k0)4/3
×

k−5/3[
1+ (k/k0)8/3

]2 , (15)

obtained by substituting the relation

ε = ν3(9.9k0)
4 (16)

into the theoretical turbulent spectrum presented by Heisen-

berg (1948):

P(k)=
0(5/3)sin(π/3)α2N

2πε1/3
×

k−5/3[
1+ (k/k0)8/3

]2 , (17)

where ν is the kinematic viscosity,
0(5/3)sin(π/3)α2

2π
=

0.216= A is the constant coefficient (see Lübken, 1993), k0

is the wave number corresponding to the inner scale of ed-

dies lH0 , and N represents the amount of inhomogeneity that

disappears per unit time due to molecular diffusion (Lübken,

1997). These latter two parameters can be used as the fit coef-

ficients. The averaged altitude corresponding to the averaged

spectrum can be found to be 98 km, according to the height

profiles of the Na density shown in Fig. 6 in K03. The kine-

matic viscosity can be found to be 1.66× 105 cm2 s−1 using

the formulas ν = µ/ρ and µ= 3.43× 10−6T 0.69 g (cm× s)

(Banks and Kockarts, 1973), and ρ = 8.1× 10−10 g cm−3 is

the density at 98 km, according to the MSIS-E-90 model.

The power spectra calculated by Eq. (15) are shown in

Fig. 4. The spectrum calculated with k0 = 0.0084 m−1 and

N = 5× 10−7 s−1 provides the best fit to the averaged ex-

perimental spectrum shown in Fig. 7 in K03. In this case,

the energy dissipation rate can be found to be 0.22 W kg−1

according to Eq. (16). The eddy diffusion coefficient calcu-

lated by Eq. (10) with ω2
B = 1× 10−4s−2 given at 98 km in

Fig. 8c in K03 can be found to be 1.76× 107 cm2 s−1. How-

ever, using the temperature height profile given in Fig. 8a, the

ω2
B value can be found to be 1.7× 10−4 s−2 (T = 170 K, and

∂T /∂z= 6.6 K km−1) and Ked = 1.04× 107 cm2 s−1 in this

case. However, this coefficient calculated by Eq. (10) with

b = Ri/P −Ri) instead of b = 0.8 with P = 1 and Ri = 0.2

given in Fig. 8d in K03 can be found to be 3.2× 106 cm2 s−1.

This coefficient is larger than the maximum value corre-

sponding to Fig. 1 for ε = 0.22 W kg−1, and the LB value

calculated by Eq. (13) for ε = 0.22 W kg−1 and ω2
B =

1.7× 10−4 s−2 is equaled to 1.6 km. This value is compara-

ble with the atmospheric-scale height, which means that ed-

dies with large scales must occur and that the eddy diffusion

coefficient inferred from these experimental data cannot be

used in the diffusion and heat conductivity equations. Note in

this case that turbulent fluctuations may be inhomogeneous,

non-isotropic, and stationary. This can be seen from the color

figures presented in K03. Recently, Kelley et al. (2009) sug-

gested that the MLT is characterized by two-dimensional tur-

bulence, which is in agreement with the current results.

4 Conclusions

For the first time, using similarity theory, the formulas for

the eddy diffusion coefficient and the turbulent energy dis-

sipation rate have been obtained, and these formulas coin-

cide with the commonly used formulas derived by Wein-

stock (1978, 1981). The latter formula was derived using the

integral function for diffusion derived by Taylor (1921) and

the three-dimensional Kolmogorov kinetic energy spectrum.

This result means that the eddy diffusion and heat transport

coefficients used in the equations for diffusion and thermal

conductivity must meet all of the following criteria:

www.ann-geophys.net/33/857/2015/ Ann. Geophys., 33, 857–864, 2015
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1. the minimum eddy scale is much larger than the mean

free path of molecules,

2. the outer eddy scale is much less than the scale height

of atmospheric gas,

3. the mean turbulent velocity Wturb must be much less

than the thermal velocity.

Using criterion (2) and the dependencies of the eddy diffu-

sion coefficient on energy dissipation rate ε and the outer-

scale LB , it is shown that Ked maximum values cannot

exceed 3.2× 106 cm2 s−1 for the ε maximum value of

2 W kg−1. The dependence of theKed maximum value on the

energy dissipation rate is shown in Fig. 1. This result means

that the eddy heat transport and eddy diffusion coefficients

inferred from measurements of the energy dissipation rates,

which exceed the maximum value, cannot be used in the ther-

mal balance and diffusion equations because the eddies have

unreasonably large vertical scales. These Ked maximum val-

ues are in excellent agreement with the values estimated by

Vlasov and Kelley (2014) using the cooling rates induced

by eddy heat transport. For example, the Ked large values of

(5÷ 20)× 106 cm2 s−1 inferred by Bishop et al. (2004) from

observations of chemical tracers released by a rocket during

the TOMEX do not meet criterion Eq. (2) because of the very

large eddy scales (LB > 3 km). At the same time, the cooling

rates calculated with these coefficients are much higher than

normal cooling rates corresponding to the temperature given

by the MSIS-E-90 model. This result was shown by Vlasov

and Kelley (2014).

Analysis of the experimental data (Lübken, 1997) shows

that the eddy diffusion coefficients inferred from rocket mea-

surements of density fluctuations at high latitudes correspond

to the criteria described above and that the LB values do not

show significant seasonal variations in the polar region. How-

ever, a very significant difference between the LB summer

and winter values estimated from the MST radar data (Sasi

and Vijayan, 2001) was found at low latitudes.

Our analysis of the Kelley at al. (2003) results, based

on observations of the time evolution of persistent meteor

trains (Kelley at al., 2003), shows that eddies with very large

scales may occur despite the fact that a very small energy

dissipation rate was found. Due to the large scales, the

eddy diffusion coefficient inferred from these data does not

meet the criterion corresponding to the diffusion equation.

Also, our results support the notion that two-dimensional

turbulence is a characteristic of the MLT (Kelley et al., 2009).

The topical editor A. J. Kavanagh thanks C. Gardner and one

anonymous referee for help in evaluating this paper.
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Figure A1. The eddy diffusion coefficient inferred by Lübken

(1997) in polar summer (solid curve) and approximated by

Eqs. (A1) and (A2) (dashed curve).

The eddy diffusion coefficient inferred by Lübken (1997)

from measurements of the turbulent energy dissipation rate

in the summer polar mesosphere can be approximated by for-

mulas suggested by Shimazaki (1971):

Ked =K
0
ed exp[S1 (z− zm)] (A1)

+

(
Km

ed−K
0
ed

)
exp

[
−S2(z− zm)

2
]

z≤ zm,
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Figure A2. The height profiles of the energy dissipation rate

measured by Lübken (1997) (dashed curve) and approximated by

Eqs. (A1) and (A2) suggested by Shimazaki (1971) (solid curve)

with εm = 13.5 K day−1 instead of Km
ed

and S1 = 0.01 km−1,

S2= 0.06 km−2, and S3 = 0.1 km2.

Ked =K
m
ed exp

[
−S3(z− zm)

2
]

z> zm, (A2)

where Km
ed = 1.83× 106 cm2 s−1 is the maximum of these

coefficients, zm = 90 km, S1 = 0.05 km−1, S2 = 0.03 km−2,

and S3 = 0.1 km−2 (see Fig. A1). This approximation can

also be used for the energy dissipation rate (see Fig. A2).
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