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Abstract. The tropical cyclone (TC) track and intensity pre-

dictions over Bay of Bengal (BOB) using the Advanced

Research Weather Research and Forecasting (ARW) model

are evaluated for a number of data assimilation experi-

ments using various types of data. Eight cyclones that made

landfall along the east coast of India during 2008–2013

were simulated. Numerical experiments included a control

run (CTL) using the National Centers for Environmental

Prediction (NCEP) 3-hourly 0.5× 0.5◦ resolution Global

Forecasting System (GFS) analysis as the initial condition,

and a series of cycling mode variational assimilation ex-

periments with Weather Research and Forecasting (WRF)

data assimilation (WRFDA) system using NCEP global

PrepBUFR observations (VARPREP), Atmospheric Motion

Vectors (VARAMV), Advanced Microwave Sounding Unit

(AMSU) A and B radiances (VARRAD) and a combination

of PrepBUFR and RAD (VARPREP+RAD). The impact of

different observations is investigated in detail in a case of

the strongest TC, Phailin, for intensity, track and structure

parameters, and finally also on a larger set of cyclones. The

results show that the assimilation of AMSU radiances and

Atmospheric Motion Vectors (AMV) improved the intensity

and track predictions to a certain extent and the use of op-

erationally available NCEP PrepBUFR data which contains

both conventional and satellite observations produced larger

impacts leading to improvements in track and intensity fore-

casts. The forecast improvements are found to be associated

with changes in pressure, wind, temperature and humidity

distributions in the initial conditions after data assimilation.

The assimilation of mass (radiance) and wind (AMV) data

showed different impacts. While the motion vectors mainly

influenced the track predictions, the radiance data merely

influenced forecast intensity. Of various experiments, the

VARPREP produced the largest impact with mean errors (In-

dia Meteorological Department (IMD) observations less the

model values) of 78, 129, 166, 210 km in the vector track

position, 10.3, 5.8, 4.8, 9.0 hPa deeper than IMD data in cen-

tral sea level pressure (CSLP) and 10.8, 3.9, −0.2, 2.3 m s−1

stronger than IMD data in maximum surface winds (MSW)

for 24, 48, 72, 96 h forecasts respectively. An improvement of

about 3–36 % in track, 6–63 % in CSLP, 26–103 % in MSW

and 11–223 % in the radius of maximum winds in 24–96 h

lead time forecasts are found with VARPREP over CTL, sug-

gesting the advantages of assimilation of operationally avail-

able PrepBUFR data for cyclone predictions. The better pre-

dictions with PrepBUFR could be due to quality-controlled

observations in addition to containing different types of data

(conventional, satellite) covering an effectively larger area.

The performance degradation of VARPREP+RAD with the

assimilation of all available observations over the domain af-

ter 72 h could be due to poor area coverage and bias in the

radiance data.

Keywords. Meteorology and atmospheric dynamics (Gen-

eral circulation; mesoscale meteorology; Tropical meteorol-

ogy)

1 Introduction

Tropical cyclones (TC) are highly disastrous weather phe-

nomena occurring in the tropical maritime environment. TCs

form over warm tropical oceans, move towards land un-
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der the action of steering forces (Anthes, 1982; Gray, 2000,

1968) and cause damage from their extreme winds, heavy

precipitation and storm surges. About 15 % of global tropical

cyclones occur in the North Indian Ocean (NIO), mainly dis-

tributed in the pre-monsoon (April–May) and post-monsoon

(October–November) seasons (Asnani, 1994; Pattanaik and

Rama Rao, 2009). Thermodynamic factors such as high sea

surface temperature (SST), the presence of initial distur-

bances, the availability of mid-tropospheric humidity and

weak vertical wind shear favour the development of cyclones

in the NIO. The NIO is also the birthplace of the deadli-

est storms that have affected India and Bangladesh (WMO,

2011). Simulation studies of tropical cyclones, particularly

those in the NIO basin are important as the coastal area

surrounding the basin is heavily populated and often suf-

fers huge losses of life and physical infrastructure from such

storms. The movement of the TCs over the NIO is greatly

variable due to the highly variable air–sea conditions (Ragha-

van and Sensarma, 2000). Advanced dynamic models have

been increasingly used in addition to the synoptic and satel-

lite surveillance techniques especially for guidance during

changing environmental conditions in operational cyclone

forecasting. Accurate numerical prediction of tropical cy-

clones is highly dependent on the representation of precise

initial state, resolving the various scales of motion and the

accurate representation of various physical processes. The

models are also dependent on accurate specification of lower

boundary conditions such as SST for realistically simulating

the ocean–atmosphere interaction through air–sea fluxes on

cyclone evolution (Jiang et al., 2008). While large-scale pro-

cesses influence the motion of cyclones, the inner-core dy-

namics and its interaction with the environment determine

the intensity of the system (Marks and Shay, 1998). With

the advent of high-performance computing, advanced high-

resolution mesoscale models are employed to simulate the

above processes for better prediction of tropical cyclones

(e.g. Chen et al., 1995; Liu et al., 1997; Kurihara et al., 1998;

Aberson, 2001; Wang, 2001; Krishnamurti, 2005; Braun et

al., 2006; Fierro et al., 2009; Smith and Thomsen, 2010;

Nolan et al., 2009; Gentry and Lackmann, 2010; among oth-

ers).

The errors in tropical cyclone track prediction have

steadily decreased over the past several decades due to the

use of increasing horizontal and vertical model resolution,

improvements in model physics and advanced data assimila-

tion (Rogers et al., 2003; Gentry and Lackmann, 2010). Sev-

eral model performance evaluation studies have been con-

ducted for TC predictions in recent times (e.g. Prasad and

Rama Rao, 2006; Davis et al., 2008; McNoldy et al., 2010;

Yeh et al., 2012; Zhang et al., 2011; Gopalakrishnan et al.,

2012; Srinivas et al., 2013; Krishna et al., 2012 among oth-

ers) over different regions. In the USA, the Geophysical

Fluid Dynamics Laboratory (GFDL) hurricane model and

the Hurricane Weather Research and Forecasting (HWRF)

model (Tallapragada et al., 2014) are widely used for opera-

tional hurricane predictions. McNoldy et al. (2010) reported

the HWRF model prediction errors for 2009 over Atlantic

region to range from 92 km at 24 h to 518 km at 120 h for

track forecasts and from 7 m s−1 at 24 h to 12 m s−1 at 120 h

for intensity forecasts. Yeh et al. (2012), using an advanced

version of HWRF, reported average track errors for the 2008

hurricane season with two domains (27 and 9 km horizon-

tal resolution) to range from 42.6 km at 12 h to 260.9 km at

120 h forecasts and the corresponding mean intensity errors

as 4.5 m s−1 at 12 h to 12.7 m s−1 at 120 h. In all the above

studies, the HWRF was run with a data assimilation system.

The performance of the Advanced Research WRF (ARW)

model for hurricanes in the Atlantic Basin was evaluated

by Davis et al. (2008). The ARW predictions were shown

to be generally competitive with and occasionally superior

to the operational forecasts with GFDL, NOGAPS, UKMO,

AVNO and other models. The India Meteorological Depart-

ment (IMD) presently uses the models HWRF and ARW,

in addition to the National Centers for Environmental Pre-

diction (NCEP) quasi-Lagrangian model (QLM) for tropical

cyclone predictions over the NIO region. The mean forecast

errors for operational IMD QLM have been reported as 152,

235 and 375 km for 24, 48 and 72 h forecasts respectively

(Prasad and Rama Rao, 2006; Tyagi et al., 2010; Rama Rao

et al., 2010). Srinivas et al. (2013a) assessed the performance

of the ARW model for 21 cases of cyclones that formed be-

tween 2000 and 2011 with a horizontal resolution (27, 9 km)

similar to operational configuration of IMD WRF and NCEP

HWRF for TC predictions over Bay of Bengal (BOB). The

mean forecast errors were reported as −2–15 hPa for cen-

tral sea level pressure (CSLP), 1–22 m s−1 for maximum sur-

face winds (MSW) and 170–250 km for vector track posi-

tions corresponding to 24–72 h predictions. In another re-

cent study, Raju et al. (2012) examined the performance of

WRF considering four cyclones during 2007–2010 and re-

ported the mean landfall position error as about 98 km. Das

et al. (2014) studied the performance of HWRF over the NIO

region considering nine major cyclones over the NIO and re-

ported the average track errors as 83 km at 12 h to 319 km

at 72 h and improvements of 7–15 % in 36–72 h predictions

over the IMD operational forecasts. The above studies show

good potential in the WRF model for TC predictions over

the NIO region. However, due to large uncertainties in the

movement prediction of cyclonic storms just before the land-

fall, especially in the BOB, there is a growing demand for

further improvement in the operational forecasts.

In the numerical simulation of TCs, precise specification

of initial conditions (location, radius, central pressure and

tangential and vertical winds) is very important as their ini-

tial errors grow with integration and ultimately influence the

model forecasts. The current operational global model analy-

ses, which serve as the initial conditions for regional models,

are available at 0.25 and 0.5◦ horizontal resolutions and may

not be adequate to resolve the initial cyclone position, vor-

tex and 3-D structure in the regional models. The uncertainty
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can be reduced using observational assimilation (Wu et al.,

2007; Park et al., 2008; Pu, 2009; Kim et al., 2010). There has

been a considerable increase in the number of observations,

both from conventional (surface and upper air) and satellite

(cloud motion vectors, scatterometer winds, radiances sensi-

tive to temperature or humidity profile) sources over the NIO

region in the recent times. The increase in observational den-

sity allows operational centres and researchers to use high-

resolution grid over the specified region for improving the

predictions.

The IMD presently runs the triple nested domain WRF

(ARW) with three-dimensional variational assimilation (3D-

Var) with a horizontal resolution of 27, 9 and 3 km twice

daily (00:00 and 12:00 UTC) using the initial and bound-

ary conditions taken from IMD Global Forecasting System

(GFS) 574/L64 and with a single assimilation cycle (Roy

Bhowmik, 2013). The impact of data assimilation on sim-

ulation of TCs over the NIO has been studied by several au-

thors in the last decade (e.g. Singh et al., 2008, 2011, 2012a;

Xiao et al., 2009; Krishna et al., 2010, 2012; Srinivas et al.,

2010; Prashant et al., 2012; among others). However, most of

these were individual case studies using various model con-

figurations and with significant differences in the results due

to the use of various data sources (satellite, radar, conven-

tional, etc.) and due to not describing the quantitative im-

provements statistically. A few recent works on the NIO (e.g.

Srinivas et al., 2012; Yesubabu et al., 2013, 2014) have quan-

tified the relative impacts of conventional and satellite obser-

vations using the WRF Data Assimilation system (WRFDA)

on the improvements of cyclone track and intensity predic-

tions using a single assimilation cycle (cold-starting mode).

The variational data assimilation technique would be effec-

tive when the distance between the model first guess and the

observations is large and the cost function is iteratively min-

imized (Ide et al., 1997; Barker et al., 2004). Since most of

the observations collected over the NIO region are already

assimilated in GFS, using them again in the WRFDA for the

same analysis time may lead to over-tuning of analysis to-

wards observations. Even though various types of observa-

tions are available use of all the data may not result in im-

provement of the analysis. This raises an important question

as to which type of observation (surface, ship, buoys, radar,

upper air and satellite) provides major improvements in pre-

dictions. In connection with this, a few recent works (Srini-

vas et al., 2010, 2012, 2013b) indicate the satellite microwave

remote-sensing-based scatterometer winds and MODIS tem-

perature and humidity profiles provide larger impacts relative

to the conventional data in assimilation. However, the sur-

face observations may also be useful when combined with

other 3-D data assimilation systems such as 3D-Var (Yesub-

abu et al., 2013; Singh et al., 2013). Recent studies on direct

assimilation of satellite radiance observations (Singh et al.,

2012b) on atmospheric parameters (temperature, humidity)

have been shown to improve the intensity and track predic-

tions through altering the large-scale thermodynamic struc-

ture of the atmosphere. One of the advantages of 3D-Var

is direct assimilation of satellite-measured radiances with-

out the need to convert to model variables. While most of

the global operational centres use radiance observations like

Advanced Microwave Sounding Unit (AMSU) A and B for

assimilation in their regional models, its use is still in the ini-

tial stage in India (Roy Bhowmik, 2013). Though it is rare

to assimilate only Atmospheric Motion Vectors (AMV) and

radiances (RAD) in operational forecasting, it is required to

understand their relative impact on the predictions for op-

erational benefits. Presently, weather prediction centres use

quality-screened observations (both conventional and satel-

lite data) for operational predictions. The preceding review

shows that there is a need for an assessment of WRF with

cyclic mode assimilation (warm start) for a large number

of cyclones using various types of observations to describe

the quantitative skill for TC predictions over the NIO re-

gion. Some of the interesting scientific issues in this context

are (i) whether observation assimilation always leads to im-

provements over simple downscaling of global model fore-

casts; (ii) whether combining the special observations like

satellite radiances with commonly available quality-screened

observations leads to additional positive impact; and (iii) how

mass/wind observations impact different properties of TCs

(track, wind speed, rainfall, etc.). The objective of this study

is to assess the skill of the ARW model with observation

assimilation in cyclic mode for cyclone track and intensity

predictions over the BOB of NIO region and to address the

above aspects by selecting suitable data for assimilation. To-

wards this objective, data assimilation experiments are con-

ducted for a set of eight cyclones using different sources of

data, i.e. AMV, satellite-measured radiances and the oper-

ationally processed PrepBUFR observations which contain

several types of data (surface, ship, buoys, upper air, AMV,

scatterometer winds, etc.). The results are statistically evalu-

ated for different storm parameters to assess the model skill.

Section 2 provides a brief description of the storms selected

for the study, details of the model, configuration and numeri-

cal experiments and it describes the data used and the model

initialization. Section 3 provides detailed results for recent

very severe cyclone Phailin (2013) followed by quantitative

track and intensity errors for all eight cyclones.

2 Methodology

2.1 Overview of selected tropical cyclones

In the present study, eight cyclones (Khaimuk, Laila, Jal,

Thane, Nilam, Phailin, Lehar and Madi) originated in the

BOB in the period 2008–2013 (Table 1) are considered to

assess the ARW performance using variational data assimi-

lation in cyclic mode. Among the eight cases, Phailin, Lehar,

Madi and Thane are very severe cyclones, Jal and Laila are

severe cyclones and Nilam and Khaimuk are cyclonic storms.

www.ann-geophys.net/33/805/2015/ Ann. Geophys., 33, 805–828, 2015
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Figure 1. Modelling domains used in ARW for cyclone simulations.

The shading gives the terrain height in metres. Numbers 1–4 de-

note locations. 1: northern Tamil Nadu, 2: northern coastal Andhra

Pradesh, 3: southern coastal Orissa, and 4: West Bengal.

The duration of cyclonic activity, landfall position and cate-

gory of each cyclone have been listed in Table 1. Among

these eight cyclones, Khaimuk, Laila and Thane originated

in the south-eastern BOB, Jal formed over the southern BOB,

Nilam originated over central BOB, Madi formed in the

south-western BOB, Phailin formed over the eastern cen-

tral BOB and Lehar over the Andaman Sea from a rem-

nant cyclonic circulation over the South China Sea. The de-

tailed description of each cyclone is given in the bulletins of

Regional Specialized Meteorological Centre (RSMC) Tropi-

cal Cyclones, New Delhi (India Meteorological Department,

2009–2014).

2.2 Numerical experiments

The National Centre for Atmospheric Research (NCAR)

non-hydrostatic primitive equation mesoscale atmospheric

model ARW v3.4 model is used for cyclone predictions in

this study. The ARW is based on Eulerian mass dynamical

core with accurate numerics and advanced physics. It uses

terrain-following vertical coordinates and an Arakawa C-

type staggered horizontal grid. The model has several options

for spatial discretization, diffusion, nesting, lateral bound-

ary conditions, data assimilation and physics (Skamarock et

al., 2008). The ARW for tropical cyclone prediction over

the NIO region was customized by simulating 21 past cy-

clones (Srinivas et al., 2013a) with two nested domains and

with physics sensitivity tests. The same domain and physics

configuration is adopted for TC predictions over BOB in
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the present study. Two interactive nested domains are used

(Fig. 1) with coarse domain covering a larger region of NIO

with 27 km grid spacing and the inner domain covering the

BOB and its neighbourhood region with 9 km grid spac-

ing. A total of 35 vertical levels are used with the model

top at 100 hPa. The model topography such as terrain ele-

vation, land-use and soil types for the 27 and 9 km resolu-

tion domains are derived from the USGS data at arc 5′ and

2′ resolutions. The model physics options for both 27 and

9 km domains consisted of Lin mixed phase scheme (Lin et

al., 1983) for cloud microphysics, a rapid radiation trans-

fer model (RRTM) for long-wave radiation (Mlawer et al.,

1997), Dudhia scheme (Dudhia, 1989) for shortwave radi-

ation, MM5 similarity theory for surface layer, the Yonsei

University non-local diffusion (Hong et al., 2006) for bound-

ary layer turbulence, the new Kain–Fritsch mass flux scheme

(Kain, 2004) for convection and the NOAH scheme for land

surface processes (Chen and Dudhia, 2001). Simulations for

each cyclone are performed with initial conditions corre-

sponding to depression stage, and the model is integrated up

to a period of attaining the weakening phase subsequent to

landfall. The model initialization time for various cyclones

for an integration period of 96 h (4 days) is provided in Ta-

ble 1. For each cyclone, two sets of experiments are con-

ducted: one without assimilation and the other with assimila-

tion using 3D-Var.

2.3 Brief description of the assimilation system

The three-dimensional variational assimilation (3D-Var) in-

corporated into WRF (Barker et al., 2011) is used in this

study. With 3D-Var, many types of observations including

satellite radiances can be assimilated (Liu and Barker, 2006).

In 3D-Var, an “optimal” estimate of the atmospheric state is

obtained for a given analysis time by iteratively minimizing

the solution of a cost function (Ide et al., 1997; Barker et al.,

2004, 2011; Courtier et al., 1998; Kalnay, 2003):

J (x)=J b
+ J 0

=
1

2

(
x− xb

)T
B−1

(
x− xb

)
(1)

+
1

2

(
y− y0

)T
(E+F)−1

(
y− yo

)
.

Here, J (x) is scalar cost function, x is the model state vec-

tor and represents a state vector describing the atmospheric

and surface variables, xb is a background vector that is usu-

ally obtained from a previous forecast, yo is observation data,

B is background error covariance matrix, E is observation

error covariance matrix and F is the representivity error co-

variance matrix. The solution of the Eq. (1) represents a min-

imum variance estimate of the true state of the atmosphere.

The representivity error which is the inaccuracies introduced

in the observation operator, H , is defined by y=Hx. Here,

H transforms model variables to observation quantities y.

For radiance data assimilation, H uses a fast radiation trans-

fer model (RTM) that calculates radiances from inputs of at-

mospheric state x. The analysed model state, x, is thus pro-

duced by combining observations, model forecasts, their re-

spective errors and physical laws. The quality of the varia-

tional assimilation system also depends on the accuracy of

the prescribed model errors (Rakesh et al., 2010; Routray et

al., 2014). B is estimated using the standard National Meteo-

rological Center (NMC) method (Parrish and Derber, 1992),

wherein the forecast error covariances are approximated us-

ing forecast differences that are valid for the same time. Fol-

lowing this method, B can be written as

B= εεT ∼=X′X′
T ∼=

(
x2
t − x1

t

)(
x2
t − x1

t

)T
, (2)

whereX′ is estimated as the difference between two forecasts

(x2
t = 24 h, x1

t = 12 h forecasts, i.e. T + 24 minus T + 12)

and the overbar denotes an average over time and geograph-

ical area. In this method, it is assumed that background error

is statistically well represented by a model state perturba-

tion X′. The calculation of B included 60 forecast samples,

i.e. 12 h forecasts throughout November, 2007. These month-

long series of 24 h minus 12 h forecasts were used as model

perturbations to generate B using NMC method for the study

domain configuration.

2.4 Data and model initialization

In the control run (CTL) of each cyclone, the model is initial-

ized with NCEP GFS 0.5◦× 0.5◦ analysis. The time-varying

lateral boundary conditions for the outer domain as well as

lower boundary SST data are defined at every 3 h interval

from the GFS forecasts. The data used for the 3D-Var ex-

periments are the first guess or background field (WRF 6 h

forecast) background error covariance matrix estimated us-

ing NMC method and various observation sources. The time

window allowed for gathering observations is ± 3 h. Yesub-

abu et al. (2014) conducted 3D-Var cold-starting mode as-

similation experiments for a set of cyclones in the BOB us-

ing NCEP PrepBUFR data and GFS analysis as background

and reported marginal improvements in track and intensity

predictions over CTLs. The reason for meager improvements

in predictions using 3D-Var cold-starting mode experiments

could be the re-use of same observations in mesoscale model

leading to over-tuning the analysis towards observations.

Hence in this study, to avoid the over-tuning issue, WRF ini-

tialized in 3D-Var experiments at 00:00 UTC using the GFS

analysis is first integrated for 6 h to provide a first guess

field at 06:00 UTC for the 3D-Var data assimilation. Then,

observations are assimilated in two forecast cycles (06:00,

12:00 UTC) and WRF is integrated from 12:00 UTC to pro-

duce 84 h forecasts for the five cyclones Laila, Jal, Thane,

Phailin and Madi, 60 h forecasts for Khaimuk and Nilam and

108 h for Lehar. Recent studies (Kuni et al., 2010; Singh et

al., 2012a; Hsiao et al., 2012) considered 12 h duration of as-

similation as sufficient enough for the mesoscale model to

warm up, i.e. develop its own small-scale features for cy-

clone prediction. Kuni et al. (2010) studied the impact of
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Figure 2. Spatial distribution of different observations used in assimilation experiment VARPREP+RAD for Phailin at 12:00 UTC 9 October

2013.

12 and 24 h data assimilation period on the simulation of

tropical cyclone Nargis in the BOB. It has been shown that

the cycling technique alone cannot ensure improvement, but

data availability is the major factor which decides the be-

haviour of the assimilation system. It has been pointed out

that the 24 h cycle cannot give much improvement com-

pared to the 12 h cycle because of less satellite data cover-

age, which is the main source of data over the oceans. Hsiao

et al. (2012) considered a two-cycle 12 h assimilation dura-

tion as a warm-up period for reducing the model imbalance

and derive better initial condition for cyclone predictions. A

6 h warm-up period is used at NCAR (http://www.dtcenter.

org/config/v3.6.1/ARW_PS4.4.4.91.2.1.1/index.php) for op-

erational mesoscale model predictions. Based on the above

studies, a total duration of 12 h (2× 6 h cycles) is considered

for local assimilation cycle in the present study.

Data used for assimilation include operationally available

PrepBUFR global observations from the NCEP Atmospheric

Data Project (ADP) archives and Advanced Microwave

Sounding Units (AMSU) radiances (A and B) influenced

by atmospheric temperature and humidity profiles. AMSU-A

and AMSU-B are multi-channel radiometers on the National

Oceanic and Atmospheric Administration (NOAA) polar or-

biting series of satellites of 15 and 5 channels respectively.

The AMSU-A radiometer has nominal spatial resolution at

nadir of 48 km with an instantaneous field of view (IFOV)

of 3.3◦. The antenna provides a cross-track scan, scanning

± 48.3◦ from nadir with a total of 30 Earth fields of view

per scan line. This instrument completes one scan every 8 s.

The instrument AMSU-B is a continuous line scanning, total

power microwave radiometer. The instrument has an IFOV

of 1.1◦ with nominal spatial resolution at nadir of 16 km. The

antenna provides a cross-track scan, scanning ± 48.95◦ from

nadir with a total of 90 Earth fields of view per scan line. It

completes one scan every 8/3 s. For the present study the ra-

diance observations from NOAA 15, 16, 17 and 18 are used.

After the quality screening, only observations from NOAA

15 AMSU-A, NOAA 16 AMSU-A, NOAA 16 AMSU-B and

NOAA 18 AMSU-A are used. The PrepBUFR data com-

prise land surface (SYNOP, METAR), marine surface (buoy,

ships), radiosonde, pilot-balloon and aircraft reports from the

Global Telecommunications System (GTS), AMV from geo-

stationary satellites, profiler- and radar-derived winds, Spe-

cial Sensor Microwave Imager (SSM/I) oceanic winds and

satellite wind data from National Environmental Satellite,

Data, and Information Service (NESDIS) which are opera-

tionally collected by the NCEP. Details about the data are

available at http://rda.ucar.edu/datasets/ds337.0.

The PrepBUFR data contain quality-screened (filtering of

observations based on the error limit as well as background

and duplication) data set prepared by NCEP based on the

majority of conventional and satellite observational data for

assimilation into the various NCEP analyses (Keyser, 2010).

The distribution of observations varied for each cyclone case

depending on the satellite pass and availability of upper-air

observations, etc. The spatial distribution of the locations

where different types of observations are available for assim-

ilation is presented in Fig. 2 for Phailin at 12:00 UTC 9 Oc-

tober 2013 as an example. The community radiative transfer

model (CRTM) available in 3D-Var (Han et al., 2006; Liu et

al., 2006) is used for direct ingestion of AMSU radiance data

in the model. The CRTM can simulate channel-specific ra-

diances for infrared and microwave sensors. It also permits

the computation of radiance gradients (Jacobians), with re-
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spect to the temperature and moisture variables, as required

for assimilation of radiance in numerical weather prediction

(NWP) models. The radiance biases can be expressed as the

linear combination of predictors which leads to a modified

forward operator

H̃ (x,β)=H(x)+β0+

Np∑
i=1

βipi, (3)

where β0 is a constant component of total bias, and pi and βi
are the ith ofNp predictors and corresponding bias correction

coefficients respectively (Liu et al., 2012). The bias correc-

tion coefficients of β are channel dependent and can be es-

timated offline (Harris and Kelly, 2001) or updated by using

a variational bias correction scheme (Derber and Wu, 1998).

In the present study, bias correction is carried out using the

inbuilt bias correction coefficients for the first cycle. In the

subsequent cycles, the bias correction coefficients from the

previous cycle are used. Also, the lateral and lower boundary

conditions are updated using the output from the previous

cycle and observations used for each cycle. Five sets of ex-

periments are conducted for each cyclone case. The first one

is a CTL and the rest are assimilation experiments named as

VARAMV, VARRAD, VARPREP and VARPREP+RAD us-

ing AMV, AMSU radiances, all PrepBUFR observations and

PrepBUFR observations along with AMSU radiances respec-

tively designed to assess the impact of various observation

sources.

For validation of simulated track and intensity parameters,

the IMD best track parameters are used. The azimuthally av-

eraged temperature anomaly, tangential winds and the radius

of maximum wind (RMW) from the model are compared

with the data from Cooperative Institute for Research in the

Atmosphere (CIRA). The CIRA data also provides maxi-

mum sustained wind (MSW) and CSLP and gives a quan-

titative structure of cyclones from Multi-Platform Tropical

Cyclone Analysis products (Knaff et al., 2011) created by

NOAA/NESDIS/STAR. The CIRA wind products for TCs

are derived based on AMSU winds, cloud-drift/IR/WV (wa-

ter vapour) winds, IR proxy winds and Quick Scatterom-

eter/Advanced Scatterometer (QuikSCAT/ASCAT) winds.

The structure of the convective rain bands is compared with

reflectivity measured by Doppler weather radar (DWR) and

the spatial rainfall distribution is compared with Tropical

Rainfall Measuring Mission (TRMM) 3B42 V7 data sets

(Huffman et al., 2007). Simulated maximum reflectivity from

all experiments is compared with reflectivity images of IMD

DWR.

3 Results and discussion

The results of simulations are discussed by illustrating qual-

itative improvements for intensity and track parameters for

the case of Phailin followed by the quantitative analysis of

errors for all eight cyclones. Phailin is chosen for showing

qualitative comparisons as it was the strongest TC of the

eight cyclones of this study. All the results are analysed from

high- resolution (9 km) model domain. The analysis incre-

ment obtained using data assimilation in the wind field, tem-

perature and relative humidity in both horizontal and vertical

planes is discussed below. The improvement with data assim-

ilation from CTL runs is described in terms of error in CSLP,

MSW, RMW, track positions, structure and rainfall predic-

tion with respect to error reduction in the initial conditions.

3.1 Results for Phailin

A detailed analysis on the scatter of observations with re-

spect to background/analysis after assimilation, differences

in initial conditions and prediction errors in CTL and 3D-Var

experiments, improvements in structure parameters are pre-

sented below for the Phailin.

3.1.1 Fit of various observations to the analysis and

first guess

To illustrate how much the different sources’ assimilated ob-

servations modified the first guess fields, two scatter plots

are drawn for each source (Fig. 3). The first scatter plot com-

pares the assimilated observations with the model first guess

(shown in blue) and the second scatter plot after 3D-Var anal-

ysis for the case of VARPREP+RAD (shown in red) for the

thermodynamic and dynamic parameters (water vapour (Qv),

temperature (T ), and wind components (U and V )) from the

model first domain. Successful assimilation reduces the de-

partures of analysis from observations (O−A) relative to the

departures of first guess from observations (O−B), thereby

bringing the analysis towards observations. The plots show

less scatter after assimilation indicating significant reduction

of departures after 3D-Var analysis (VARPREP+RAD) com-

pared to the first guess, i.e. decrease of O−A with respect to

O−B. With assimilation of the surface synoptic data, the

mean departures in the 2 m temperature are reduced from

−0.349 to 0.013 K in the first-guess fit to the analysis fit.

With assimilation of METAR data, the mean departures in

surface temperature are reduced from −0.458 to −0.186 K

and the root mean square error (RMSE) is reduced from

2.101 to 1.610 K in the first-guess fit to the analysis fit, sug-

gesting analysis improvement of ∼ 25 %. From the assimi-

lation of surface observations, no remarkable changes were

observed in the wind and water vapour fields (not shown).

Since the conventional in situ observations over the ocean are

scarce, satellite observations are the only source that can be

depended upon. The assimilation of AMV substantially de-

creased the wind departures and the reductions in the zonal

and meridional wind departures are 0.55 and 0.5 m s−1 in

terms of bias and RMSE, respectively indicating an improve-

ment of 15 % in analysis, at all model levels. Thus, it is ob-

vious that inclusion of AMV has made significant changes
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Figure 3. Scatter plot of observations versus first guess (in blue) and 3D-Var analysis (in red) for temperature and wind for VARPREP+RAD

corresponding to the analysis time 12:00 UTC 9 October 2013.

in the wind field over the ocean, which has a great impact

on TC simulations. With assimilation of profile observations

(radiosonde) the RMSE of departures reduced from the first-

guess fit to the analysis fit by 0.80–1.0 m s−1, 0.06 K and

0.06 g kg−1 for U and V components, temperature and wa-

ter vapour mixing ratio respectively at all levels (the scatter

plots for temperature and water vapour are not shown). While

assimilating AMSU-A and AMSU-B, major differences are

found for channels 5 and 6 of NOAA 18 AMSU-A, with

RMSE reductions of 0.63 and 0.1 K and bias reductions of

0.51 and 0.25 K respectively in temperature, from the first-

guess fit to the analysis fit. The reduction of O−A for all

these parameters indicates that observations are given sensi-

ble weights in the analysis.

3.1.2 Differences in the initial conditions in CTL and

VAR experiments

To assess the extent of structural changes and incremental

improvement in the model fields after assimilation, the spa-

tial distribution of initial temperature, moisture, sea level

pressure and wind field from the CTL and the difference

field VAR−CTL are analysed at the end of the second cy-

cle of assimilation (12:00 UTC 9 October 2013). Figure 4

shows the differences between CTL, each of 3D-Var exper-

iments in sea level pressure, and wind at 10 m. The CTL

(Fig. 4a) indicates a low pressure vortex located in the east-

ern central BOB south-west of Myanmar at about 14◦ N,

92.5◦ E with a CSLP of 994 hPa and a maximum wind of

20 m s−1. Analysis differences (VAR−CTL) show an in-

crease in the anticlockwise winds in the region of the cy-

clone. A dipole appears due to the changes in the central

location of the TC in the VAR experiments. The negative

side of the dipole (−ve CSLP changes) indicates the po-

sition of the cyclone in 3D-Var experiments and the pos-

itive side (+ve CSLP change) shows the position in CTL

experiment. The large wind increments (∼ 5–10 m s−1) in

VARPREP and VARPREP+RAD indicate a stronger cy-

clonic vortex in these cases relative to VARAMV and VAR-

RAD. The changes in winds and pressure distribution in

VARPREP and VARPREP+RAD could be attributed to the
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Figure 4. Field of (a) initial sea level pressure (shaded), surface (10 m level) wind flow pattern in CTL and analysis difference (VAR−CTL)

in (b) VARAMV, (c) VARPREP, (d) VARRAD and (e) VARPREP+RAD for Phailin at 12:00 UTC 9 October 2013.

assimilation of surface synoptic, scatterometer-based ocean

surface winds and in VARAMV due to the assimilation of

atmospheric motion vectors. In Sect. 3.1.1, the fit of ob-

servations with analysis has shown considerable reduction

of O−A departures in wind, temperature and humidity pa-

rameters leading to improvement in initial condition due to

the assimilation of observations. The assimilation of wind

data over the ocean region around the cyclone in the cases

VARPREP and VARPREP+RAD would lead to mass adjust-

ments which would lead to wind and pressure changes. The

meager changes in wind and pressure for VARRAD could be

due to not using wind data in the assimilation. Among vari-

ous experiments, VARPREP+RAD gives the most intensive

cyclone vortex (1p ∼ 5 hPa; 1u∼ 10 m s−1) of all the ex-

periments due to the assimilation of all types of wind data in

addition to using temperature and humidity information from

satellite radiances.

The impact of various observations on the analysis of

wind, temperature and moisture for Phailin are analysed in

the lower troposphere at 850 hPa and upper troposphere at

200 hPa (Figs. 5 and 6). The temperature and specific humid-

ity in the lower troposphere at 850 hPa from CTL and the cor-

responding differences for all assimilation experiments are

presented in Fig. 5. In assimilation experiments, the pattern

of temperature distribution at 850 hPa level suggests the oc-

currence of a widespread cooling of the atmosphere in the

lower levels by about ∼ 1 K in the region around the cy-

clone, in the north-west BOB and over the peninsular re-

gion, and warming by ∼ 1 K especially in an isolated region

around the core of the cyclone. The temperature changes are

more predominant in VARRAD and VARPREP+RAD rel-
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Figure 5. Spatial distribution of (a) initial temperature (shaded) and specific humidity (contours with interval of 1 g kg−1) at 850 hPa in CTL

and analysis difference (VAR−CTL) in (b) VARAMV, (c) VARPREP, (d) VARRAD and (e) VARPREP+RAD for Phailin at 12:00 UTC

9 October 2013.

Figure 6. Spatial distribution of (a) initial temperature (shaded) and specific humidity (contours with interval 0.01 g kg−1) at 200 hPa in CTL

and analysis difference (VAR−CTL) in (b) VARAMV, (c) VARPREP, (d) VARRAD and (e) VARPREP+RAD for Phailin at 12:00 UTC

9 October 2013.

ative to VARPREP. The analysis differences show higher

environmental cooling in the cyclone region with assimi-

lation, and maximum cooling is found in VARRAD and

VARPREP+RAD (1T ∼−2 K), which also shows a warm-

ing of the central region by 1.0 and 1.5 K respectively. In

CTL, the core region of the cyclone has a higher specific hu-

midity (15 g kg−1) compared to the large-scale environment.

Humidity differences at 850 hPa (Fig. 5) also suggest en-

hancement in specific humidity of about 1–3 g kg−1 in the

outer-core region of the cyclone in VARRAD, VARPREP

and VARPREP+RAD experiments. The largest analysis in-

crements in humidity (∼ 3 g kg−1) are found in VARRAD

followed by VARPREP+RAD and VARPREP. In the upper

troposphere at 200 hPa level (Fig. 6), a warm core of ∼ 222–

224 K is seen in the region of the cyclone in all cases. How-

ever, temperature differences at 200 hPa level indicate in-
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Figure 7. Vertical section of differences (VAR−CTL) in the distribution of temperature (shaded), humidity (contours; g kg−1) and wind

(vectors; m s−1) patterns in (a) VARAMV, (b) VARPREP, (c) VARRAD and (d) VARPREP+RAD for Phailin at 12:00 UTC 9 October 2013.

The arrow on the horizontal axis of each panel indicates the longitude position of cyclone for the corresponding experiment.

crease of temperature in the warm core by∼ 0.5–1.5 K which

covers wider areas in the VARPREP and VARPREP+RAD

experiments. In all VAR experiments, the enhancement of

humidity by ∼ 0.02 g kg−1 around the cyclone region is

noted in the upper (200 hPa) atmosphere (Fig. 6).

The relatively large changes in temperature and humid-

ity in VARRAD and VARPREP+RAD could be attributed

to the assimilation of temperature and humidity profiles

in these cases. Considerable reduction of errors in tem-

perature and humidity parameters are found in Sect. 3.1.1

in VARPREP+RAD leading to improvement in the ini-

tial conditions. The assimilation of temperature/humidity

data in these two cases (VARRAD and VARPREP+RAD)

would lead to improvements in thermodynamics. The ini-

tial differences in temperature, relative humidity and tan-

gential wind for Phailin are analysed in a vertical sec-

tion extending from 1000 to 100 hPa over a horizontal ex-

tension of 89–95◦ E around the cyclone along the latitu-

dinal plane corresponding to the cyclone centre for each

experiment (Fig. 7). The latitudinal planes are selected at

13.8087, 13.6386, 13.8087 and 13.5647◦ N as per the lo-

cation of the cyclone in VARAMV, VARPREP, VARRAD

and VARPREP+RAD respectively. The analysis differences

in the vertical plane reveal progressively stronger tangential

circulation associated with the initial vortex in VARAMV,

VARRAD, VARPREP and VARPREP+RAD relative to the

CTL experiment. In all the cases except VARAMV, warm-

ing of the atmosphere (∼ 1.5–2.5 K) from 700–300 hPa layer

is found. In VARPREP+RAD and VARPREP the warm-

ing is more prominent in the eastern side of the cyclone

centre. In the western side, the temperature is colder than

that of CTL in all experiments except VARRAD. The de-

velopment of a convective cell (indicated by arrows) with

warming (1T ∼ 2.5 K) in upper atmosphere and cooling

(1T ∼−1 K) in lower levels are seen particularly in ex-

periments using radiance data (VARPREP+RAD and VAR-

RAD). The stronger tangential winds in these experiments

(VARPREP+RAD and VARRAD) enhance the low-level

convergence leading to a stronger vortex. The above results

suggest that the surface level vortex is stronger in VARPREP

and VARPREP+RAD when all conventional and satellite

observations are used in assimilation.

3.1.3 Domain-wide analysis differences

The analyses obtained from various data assimilation exper-

iments are compared with the NCEP analysis used in CTL

valid at 12:00 UTC 9 October 2013 by computing RMSE be-

tween the two as given below

RMSEVAR
=

√√√√1

n

(∑
n

(VarNCEP
−VarVAR

)2

, (4)
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Figure 8. Vertical profile of domain-averaged RMSE for (a, b) tem-

perature (K), (c, d) relative humidity (%) and (e, f) wind speed

(m s−1) relative to CTL. The left panels (a, c, e) are differences

at initial time for 12:00 UTC 9 October and right panels (b, d, f) are

differences for 3-day forecasts for 12:00 UTC 12 October.

where RMSEVAR is the root mean square error between

NCEP (VarNCEP) and 3D-Var (VarVAR) analysis of temper-

ature, moisture and wind. The vertical profile of domain-

averaged (i.e. average is calculated over the inner domain)

RMSE between NCEP analysis and the analysis for tem-

perature, moisture and wind from the 3D-Var experiments

is shown in Fig. 8. The RMSE profiles from various 3D-

Var experiments show differences from the NCEP analy-

sis for various parameters. The temperature analysis indi-

cates increments of 0.175 K with the assimilation of Prep-

BUFR and AMSU radiances, 0.223 K with the assimila-

tion of motion vectors, 0.135 K with the assimilation of

the PrepBUFR data and 0.118 K with the assimilation of

AMSU radiances in the lower atmosphere (850–1000 hPa).

The temperature increments are larger in the upper layers

500–100 hPa in VARPREP and VARRAD and in the up-

per troposphere (200–100 hPa) in VARPREP+RAD. The

humidity increments are predominant (2–3 %) throughout

the atmosphere in VARPREP+RAD and VARRAD. Also,

it is found that the humidity distribution in VARPREP and

VARAMV are similar in the 300–600 hPa layer after sec-

ond cycle of the assimilation. There are marginal wind incre-

ments of about 1 m s−1 in VARPREP and VARPREP+RAD

in the lower atmosphere, about 0.8 m s−1 in VARAMV and

VARRAD in the middle atmosphere and large wind incre-

ments in the upper atmosphere in VARAMV and VARRAD.

Overall, the RMSE analysis suggests domain-wide incre-

ments in temperature, humidity and wind in 3D-Var exper-

iments, with higher increments of temperature in VARAMV,

VARPREP+RAD and VARPREP of humidity in VAR-

RAD and VARPREP+RAD and of upper atmospheric winds

in VARRAD and VARAMV. The VARPREP+RAD has

brought out clear changes in all the parameters. The impact

of differences or increments in the environmental parame-

ters is analysed from the RMSE of model forecast param-

eters between CTL and 3D-Var experiments. The domain-

wide analysis increments are propagated with model integra-

tion. Vertical variation of domain-averaged RMSE between

CTL and 3D-Var experiments (Fig. 8) shows large differ-

ences in VARPREP+RAD, VARPREP and VARRAD for

temperature, VARRAD and VARPREP+RAD for humidity

and VARPREP, VARRAD and VARPREP+RAD for winds

at the end of 72 h of model integration over the CTL. The pro-

files on the right panels of Fig. 8 show clear decrease/increase

from analysis time to 3-day forecast. The differences are dis-

cernible from 900 hPa upwards for temperature with VAR-

RAD and VARPREP+RAD, 850 hPa upwards for humidity

with VARRAD and 1000 hPa upwards for winds with VAR-

RAD and VARPREP+RAD. Also, a remarkable decrease in

the RMSE of temperature in VARAMV in lower troposphere

and in VARPREP+RAD above 300 hPa and of wind speed in

VARAMV and VARPREP are noticed. The impact of these

domain-wide differences in temperature, humidity and wind

on the evolution of the intensity and track parameters are

analysed below from different experiments.
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Figure 9. Time variation of (a) CSLP (hPa), (b) MSW (m s−1), (c) RMW (km) and (d) vector track errors (km) of Phailin in CTL and

3D-Var experiments (time in UTC). The CSLP and MSW of the operational IMD forecasts and RMW of CIRA data are also plotted.

3.1.4 Intensity and track errors in CTL and VAR

experiments

The intensity of Phailin is analysed from the time evolution

of CSLP and MSW (Fig. 9). In both CTL and assimilation

experiments the CSLP is underestimated, MSW is overes-

timated up to cyclone stage, i.e. up to 12:00 UTC 10 Oc-

tober 2013, indicating overestimation of intensity.during

the deepening/developing phase. In the peak intensifica-

tion phase (12:00 UTC 11 October 2013 to 12:00 UTC

12 October 2013), though all simulations underestimated

the winds compared to IMD data, the VARPREP, VARRAD

and VARPREP+RAD have simulated stronger surface winds

(by 5–10 %) compared to CTL. During this period, VAR-

RAD, followed by CTL, shows an increased pressure drop

with respect to IMD and VARAMV, whereas VARPREP and

VARPREP+RAD simulated the CSLP with a smaller error

compared to other experiments. The lowest CSLP and high-

est MSW during the peak intensification of Phailin are found

in VARPREP+RAD (Fig. 9a, b). All the experiments show

similar timing of deepening as in IMD data (about 30 h from

00:00 UTC 10 October 2013). The above results show that

the experiments VARPREP and VARPREP+RAD produced

5–10 % smaller errors in CSLP and MSW over CTL and in-

dicate a better simulation of storm intensity. As per the CIRA

observations, the radius of maximum winds in the life cycle

of the storm ranges from 15 to 55 km (Fig. 9c). The RMW

simulated in all model experiments are similar to observa-

tions for the first 36 h. Subsequently, they deviated from ob-

servations. The CTL shows large deviation from the CIRA

observations with time indicating a larger cyclone size than

observations. Comparable results are shown by VARRAD,

which has 10–15 % smaller deviation of RMW values from

CIRA observations than other experiments.

The time series of errors in vector track positions for

Phailin, from CTL and 3D-Var experiments, are presented

in Fig. 9d. The simulated track is deviated to the north-

east of the observed track and largest errors are simulated

by VARRAD, VARPREP+RAD and VARAMV relative to

the CTL. The initial track error varied as 20–50 km in all

experiments. While the track errors progressively increased

throughout the storm life cycle in VARAMV and VARRAD,

the error increased initially until 00:00 UTC on 11 October

and then decreased temporarily and then they increased again

in CTL, VARPREP and VARPREP+RAD. Radiances and

motion vectors seem to produce meager impacts on track

predictions as seen in large track errors with VARRAD and

VARAMV at almost all forecast times (Fig. 9d). The results

suggest VARPREP produced the least track errors (10, 40,

135, 60, 80 km at 12, 24, 48, 72 and 96 h) followed by CTL,
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Figure 10. Comparison of wind flow around Phailin at 18:00 UTC 12 October 2013 from experiments (a) CTL, (b) VARAMV, (c) VARRAD,

(d) VARPREP and (e) VARPREP+RAD with (f) CIRA multi-satellite observations. The contours represent the strength of the horizontal

winds in knots.

VARPREP+RAD, VARRAD and VARAMV. The track er-

rors are reduced by 10–40 % from 24–84 h of simulation

in VARPREP. The landfall position errors are also lowest

in VARPREP (∼ 80 km), followed by VARPREP+RAD and

CTL (∼ 150 km). As per IMD reports, the landfall occurred

at 16:00 UTC of 12 October. The VARPREP simulates an

early landfall, 4 h before the actual landfall. Though a slight

improvement in intensity predictions is found using assimi-

lation of radiances and motion vectors, their impact on the

track is meager. The negative impact of radiance and motion

vector observations on track positions could be due to the

poor area coverage of the above data sets for Phailin.

3.1.5 Structure prediction

Surface wind field

The surface wind flow pattern simulated by different ex-

periments is compared with corresponding CIRA winds

(Fig. 10) for the Phailin case just after landfall (at 18:00 UTC

12 October 2013). The CIRA wind data indicates an in-

tense cyclonic storm with maximum winds of up to 80 knots

(∼ 41 m s−1) located along the coast near Gopalpur (near

19.26◦ N, 84.9◦ E) in Orissa where the storm had crossed

the land. The corresponding wind field from different exper-

iments shows that the simulated cyclone is less intensive in

the CTL and 3D-Var experiments (VARAMV, VARPREP)

and the distribution of the wind field from VARRAD and

VARPREP+RAD agrees well with CIRA data. The strongest

winds are mainly distributed in the forward right sector, and

are well simulated in the experiments VARRAD, VARPREP

and VARPREP+RAD. The simulated storm is located about

80 km north, 100 km north-north-east, 125 km north-east,

50 km north and 50 km east of the actual storm in the

experiments CTL, VARAMV, VARRAD, VARPREP and

VARPREP+RAD respectively. The location and intensity of

the cyclone are best simulated in the VARPREP+RAD ex-

periment.

Reflectivity

The maximum reflectivity from ARW simulations is com-

pared with DWR reflectivity image of IMD, Visakhapatnam

(Fig. 11), corresponding to the highest intensification stage

of the storm, i.e. 12:00 UTC 12 October 2013. The DWR ob-

servation covers an area of 14.250–21◦ N, 80–86◦ E. Since

the model-simulated reflectivity covers a wider area ( 14.25–

22◦ N, 80–88◦ E), the same has been chosen for compar-

ison with the observation. The actual landfall position is

shown by the cyclone symbol in maroon. The actual land-

fall occurred at 16:00 UTC of 12 October near 19.26◦ N,

84.9◦ E. The early landfall of the cyclone in the experiments

CTL, VARAMV, VARPREP could be identified in this fig-

ure. Since reflectivity indicates the areas of deep convec-

tion, distribution of the clouds and areas of intense rainfall,

it can be used as an indicator of the strength of cyclone.

The reflectivity from all simulations and DWR data shows

well-organized convective cloud bands around the storm in

a comma structure indicating a severe cyclonic storm. The

DWR reflectivity data indicates a less intense storm than the

simulated cyclone in various experiments supporting our pre-

vious discussions. While all simulations indicate a circular

symmetry of the cloud structure, VARPREP+RAD better

simulated the structure with a well-defined central eye re-
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Figure 11. Comparison of simulated maximum reflectivity (dBZ) of hydrometeors for Phailin at 12:00 UTC 12 October 2013 from (a) CTL,

(b) VARAMV, (c) VARRAD, (d) VARPREP, (e) VARPREP+RAD and (f) IMD DWR image. The cyclone symbol in maroon indicates the

actual landfall of the cyclone.

Figure 12. Depiction of the azimuthally averaged radius–height cross-section of temperature anomaly (K) for Phailin from experiments

(a) CTL, (b) VARAMV, (c) VARRAD, (d) VARPREP, (e) VARPREP+RAD and (f) CIRA multi-satellite data at mature stage of the cyclone

corresponding to 06:00 UTC 12 October 2013. Here, r is the radius from the centre of the cyclone and z is the height.

gion and with eastward and northward extension of cloud

bands as in the DWR data. The asymmetric distribution of

rain/cloud bands, the spread of rainfall activity in the north-

ern and south-western land areas and southern ocean sectors

of the cyclone are well simulated in VARPREP+RAD.

Vertical temperature structure

Cyclones are associated with warming in the upper tropo-

sphere due to adiabatic warming by the subsidence of air in

the eye of the cyclone. At the lower levels, cooling takes

place due to evaporation of precipitation and downdrafts.

Warming is measured by temperature anomaly which is the

difference between the temperature of the large-scale envi-

ronment and the core region of cyclone. The radius–height

cross-section of azimuthally averaged temperature anomaly

for Phailin at its mature stage (06:00 UTC on 12 October

2013) from CTL and 3D-Var simulations, along with CIRA

observations, is presented in Fig. 12. A temperature anomaly

due to cyclone is computed as the difference in temperature
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Figure 13. Depiction of the azimuthally averaged radius–height cross-section of tangential winds for Phailin from experiments (a) CTL,

(b) VARAMV, (c) VARRAD, (d) VARPREP, (e) VARPREP+RAD and (f) CIRA multi-satellite data at mature stage of the cyclone corre-

sponding to 06:00 UTC 12 October 2013. Here, r is the radius from the centre of the cyclone and z is the height.

at the intense stage of the cyclone at each grid point and at

each level in the model from the temperature before the for-

mation of the cyclone. All the 3D-Var experiments simulated

higher warming than CIRA data. CIRA data indicates the

convective warming is confined to 8–16 km with a maximum

warming of 8 K at about 12 km, suggesting the formation of

deep convective layer due to the cyclone. CIRA data also in-

dicates a cooling of −0.5 to −2.0 K in the 0–2 km layer of

lower troposphere. While CIRA data shows cooling in the

lower regions (vertically up to 8 km), all the simulations indi-

cate cooling from 50 to 150 km from the centre of the cyclone

with a vertical extension up to 2 km. However the upper-level

warming in the simulations matches with the CIRA data. The

CTL, VARAMV and VARRAD (Fig. 12 a, b and c) indicate

overestimation of core warming and also simulate high ver-

tical velocities of the order of 90–180 cm s−1 in the core re-

gion (not shown). The experiment VARPREP shows more

vertical warming (∼ 11 K) at the 5–8.5 km layer confined to

a region of 0–25 km from the centre of the cyclone, whereas

in VARPREP+RAD the warm core is seen in the 6–7.5 km

layer and horizontally in the region 0–15 km from the cy-

clone centre. Thus, it is evident that among all the experi-

ments, VARPREP+RAD simulated the horizontal and verti-

cal extension of upper-level warming and lower-level cooling

around the core region better in comparison with CIRA data.

The radius–height cross-section of azimuthally averaged

tangential winds around cyclone from various experiments

for the Phailin case at its mature stage (06:00 UTC on 12 Oc-

tober 2013) along with CIRA observations are presented in

Fig. 13. Observations indicate maximum winds of > 55 m s−1

prevailing from the surface up to 10 km and thereupon winds

reduced gradually upwards. While the CIRA data shows the

maximum winds to be confined in a range of 110 to 190 km,

all the experiments except VARPREP show prevalence of

maximum winds in a radius of 50–100 km from the eye of

the storm. Maximum tangential winds simulated in various

experiments are of the order of 60–70 m s−1 around the cy-

clone, indicating overestimation of the strength of the cy-

clone as noted in the previous discussions. However, the

azimuthal distribution of tangential winds is simulated dif-

ferently in different experiments. Though all the simula-

tions bring out the vertical variation of horizontal winds,

the horizontal extension of maximum winds is better sim-

ulated by the 3D-Var experiments VARPREP, VARRAD and

VARPREP+RAD.

Rainfall

The spatial distribution of simulated 24 h cumulative rain-

fall for Phailin ending on 00:00 UTC 13 October 2013 from

different experiments is compared with TRMM 3B42 rain-

fall (http://mirador.gsfc.nasa.gov/collections/TRMM_3B42_

daily__007.shtml) estimates (Fig. 14). The cyclone positions

on 00:00 UTC 12 October and 00:00 UTC 13 October are in-

dicated by cyclone symbols in red and the direction of move-

ment is shown by an arrow (sky blue) in each panel. The

distribution and location of maximum rainfall slightly var-

ied in various experiments according to the simulated land-

fall positions in each case. The TRMM data show a near

circular distribution of rainfall but slightly elongated in the

north–south direction. It shows a heavy rainfall band (22–

24 cm day−1) at the border of northern Andhra Pradesh and

southern Orissa near Paradeep, with radially decreasing rain-

fall away from the storm centre, and with outer rainfall bands

extending over central and southern BOB. This suggests

that the rainfall over land portion was mainly distributed in

Orissa, northern coastal Andhra Pradesh and southern parts

of West Bengal and Bihar. The assimilation of radiance and
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Figure 14. Comparison of simulated cumulative 24 h rainfall for Phailin on 12 October 2013 from (a) CTL, (b) VARAMV, (c) VARRAD,

(d) VARPREP, (e) VARPREP+RAD and (f) TRMM observation. The cyclone symbols in red indicates the initial and final position of

the cyclone during this day (from 00:00 UTC 12 October to 00:00 UTC 13 October 2013) and the arrow (sky blue) shows the direction of

movement of the cyclone.

motion vector observations improved the rainfall simulation

in terms of distribution. In all the experiments, the rain-

fall is overestimated by about 40 % in the core region of

the cyclone. The 3D-Var experiment VARRAD, followed by

VARPREP+RAD, simulated the rainfall characteristics of

quantity, location and distribution in the outer-core region in

better agreement with TRMM data. The maximum convec-

tive available potential energy (CAPE) values averaged for a

3× 3◦ area around Phailin are calculated. The CAPE values

are 1490.8, 1493.5, 1511.6, 1504.7, 1576.7 J kg−1 in CTL,

VARAMV, VARRAD, VARPREP and VARPREP+RAD re-

spectively at the end of 36 h of model integration. The CAPE

values indicate stronger convective conditions simulated with

VARPREP+RAD followed by VARRAD and VARPREP.

The same trends in CAPE are maintained throughout the sim-

ulations. The improvements in rainfall predication in VAR-

RAD and VARPREP+RAD could be due to stronger convec-

tive conditions associated with changes in model thermody-

namics through domain-wide temperature and humidity in-

crements (Fig. 8).

3.2 Results of track and intensity prediction for all

cyclones

3.2.1 Tracks of the simulated storms

Among various predicted parameters, the movement of the

cyclone (or track) is more important as the final landfall po-

sition is often given more attention than the storm intensity in

disaster mitigation. The predicted tracks from control and as-

similation experiments, along with best track data from IMD,

in different cyclone cases are presented in Fig. 15. The simu-

lated tracks are seen to be closer to IMD best tracks in the ex-

periments VARPREP for Phailin, Laila and Madi; VARAMV

for Thane, Khaimuk and Lehar; and VARPREP+RAD for

Nilam and Jal. The track simulations indicate different im-

pacts from the assimilation of different observation sources.

It has been noted that VARRAD produced a negative impact

on track predictions in many cases and the errors are larger

than in the CTL experiments.

3.2.2 Quantitative track and intensity errors

The general uncertainty in cyclone numerical predictions can

be analysed from a statistical error distribution of parame-

ters like track positions, MSW and CSLP considering a large

number of cyclones. In this study, the errors in the model

predictions are calculated using IMD best track data as a ref-

erence. Mean error (ME) and standard deviation (SD) are

computed for track positions, MSW, CSLP and RMW for

all eight cyclones (Table 2). The ME is the average of errors

of all cyclones at a given forecast time. The SD represents

the error distribution around the mean error. Model perfor-

mance can be assessed from the error scatter with respect to

time using ME+SD and ME−SD as thresholds. The time

series of percentage improvement in predictions for various

parameters are shown in Fig. 16. The errors in track positions

from CTL indicate a wide scatter, and maximum errors are
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Figure 15. Simulated vector track positions along with IMD best

track from CTL and 3D-Var experiments for eight tropical cyclones

over the BOB (a) Khaimuk, (b) Laila, (c) Jal, (d) Thane, (e) Nilam,

(f) Phailin, (g) Lehar and (h) Madi.

associated with Nilam (584.9 km) and minimum with Lehar

(12.6 km). In all experiments track errors increased continu-

ously. Track errors in CTL run during the first 18 h of integra-

tion are in the range of the error threshold except Khaimuk.

From 18 to 48 h error build-up is observed. It has been found

that during the first 2 days of simulation the model gives bet-

ter track prediction in CTL for the cyclones Nilam, Phailin

and Thane. Secondly the control simulations for the cyclones

Phailin and Jal produce lower errors than the mean error of

the entire sample of selected cyclones. The mean track error

of all CTL ranges from 99 to 319 km for 24 to 96 h forecasts.

A drastic reduction in track errors can be found in VARAMV

and VARPREP (Fig. 16a) with a small scatter of errors about

Table 2. Mean error (ME) and standard deviation (SD) in vec-

tor track position, CSLP, MSW and the radius of maximum winds

(RMW) in different experiments for all eight selected tropical cy-

clones.

Forecast Track Error in Error in Error in

period error central sea max. radius of

(h) position level winds max. winds

(km) pressure (hPa) (ms−1) (km)

ME SD ME SD ME SD ME SD

CTL

24 99.1 99.8 13.5 10.5 −9.8 7.8 −2.1 19.3

48 152.1 88.2 14.0 14.5 −6.7 10.8 −14.4 21.9

72 246.7 112.9 12.8 14.6 −5.6 11.2 −7.9 23.2

96 319.0 106.8 9.6 4.4 −3.1 10.1 −24.5 44.4

VARAMV

24 93.5 93.9 12.0 10.4 −10.2 7.8 −0.4 26.9

48 129.8 91.9 9.5 12.8 −6.9 10.1 −8.0 25.2

72 202.4 87.6 7.1 15.0 0.1 11.5 −10.6 25.8

96 322.6 117.4 8.0 7.9 −2.1 9.5 4.1 37.7

VARPREP

24 77.8 76.1 10.3 8.4 −10.8 7.5 2.6 22.2

48 128.7 92.3 5.8 11.7 −3.9 9.8 −16.8 32.7

72 165.6 84.9 4.8 14.2 0.2 10.2 −37.9 64.7

96 209.6 131.7 9.0 12.9 −2.3 10.7 −21.9 39.6

VARRAD

24 134.4 87.6 12.4 6.6 −9.6 5.2 5.7 12.0

48 184.3 100.8 12.4 14.7 −6.3 10.8 −4.8 14.1

72 257.3 106.6 5.9 15.8 −3.6 10.3 −27.0 59.7

96 413.6 140.9 11.2 5.8 −4.5 6.8 21.7 34.3

VARPREP+RAD

24 95.6 69.5 10.1 7.5 −9.2 7.2 −2.9 27.7

48 178 99.3 6.8 14.8 −3.2 10.3 −9.3 22.4

72 244.7 87.7 6.4 17.3 −0.6 13 −56.8 58.8

96 361.3 193 17.8 12.2 −8.8 5.9 19.7 51.0

the mean from 24 h of integration. The VARPREP produced

the lowest track errors (78–210 km for 24–96 h forecasts)

which are considerably lower than the mean track errors ob-

tained in our earlier study (Srinivas et al., 2013) using simple

downscaling approach for 21 cyclones. Except for Khaimuk,

track errors were reduced with data assimilation for all other

cyclone cases considered. An improvement of 15.4–34.3 %

is found in track errors with VARPREP for 24–96 h forecasts

over control experiments (Fig. 16). This is a very encourag-

ing result for operational track predictions using WRF over

the NIO region given the uncertainties in vortex specification.

The experiment VARPREP+RAD deteriorated the track pre-

dictions with errors amplification.

For the majority of the cyclones the error in central pres-

sure (IMD estimate less the simulated CSLP) is positive,

suggesting an underestimation of central pressure thereby

simulating stronger storms. The ME for CSLP in CTL

ranges from 9.6 to 14.0 hPa for 24–96 h forecasts (Ta-

ble 2). Based on the CSLP simulation, Nilam and Madi

are the best-simulated cyclones and Thane and Laila are

simulated very poorly in CTL experiments. The experi-
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Figure 16. Error change in (a) track positions, (b) CSLP, (c) MSW and (d) RMW in 3D-Var experiments over control runs for all eight

selected tropical cyclones. Positive values indicate improvement in simulation, i.e. errors are less with respect to CTL.

ment VARPREP produced large improvements in CSLP fol-

lowed by VARPREP+RAD and VARRAD up to 72 fore-

cast hours. The mean CSLP error in VARPREP ranges from

4.8 to 10.3 hPa showing an improvement of 6–63 % for 24–

96 h forecasts. This indicates assimilation of PrepBUFR data

along with satellite-derived radiance observations provide

best intensity estimates through the life cycle of the storms.

The error in the MSW indicates that the ME (IMD estimate

less the model value) of the selected cyclones is negative, in-

dicating that the model tendency to simulate stronger winds

than observations and hence more intense cyclones. Based

on the error in MSW, the intensity is better simulated in

the cases of Nilam, Khaimuk, Lehar and Laila. The cyclone

Jal is poorly simulated up to a forecast range of 42 h, after-

wards the winds are more realistically simulated. The simu-

lation VARPREP produced large improvements in MSW fol-

lowed by VARAMV, VARPREP+RAD and VARRAD. The

mean wind errors in VARPREP vary from 0.2 to−10.8 m s−1

leading to improvements of 26–103 % for 24–96 h forecasts.

Though CSLP and wind errors in VARPREP+RAD are rel-

atively small up to 72 h compared to VARPREP, the former

shows relatively large errors from 72 h onwards, indicating

rapid and unrealistic weakening during landfall. The RMW

gives a measure of the size of the cyclone. The average er-

ror found in RMW for all eight selected tropical cyclones

indicates that almost all the 3D-Var experiments overesti-

mate the size of the cyclone. Of all simulations, VARRAD

produced the least RMW errors, i.e. −27.0–21.7 km corre-

sponding to 24–96 h forecasts (Fig. 16). The time series of

average errors of all eight cyclones clearly demonstrate that

the assimilation of most commonly available observations in

ARW model produces significant improvements in both cy-

clone track and intensity predictions.

The landfall errors of cyclones from different experiments

are presented in Table 3. It has been found that the land-

fall position and timing errors for most cyclones are minimal

in the VARPREP followed by VARPREP+RAD and maxi-

mum errors are noted with CTL followed by VARRAD and

VARAMV. Landfall position errors are maximum for Madi,

Phailin, Laila and Khaimuk in VARPREP+RAD, and CTL

exhibited the maximum landfall position errors for Thane.

The mean landfall position error is about 128.44 km from

VARPREP and 183.51 km from VARRAD. The mean land-

fall time error (Table 3) is about −4 h from VARRAD and

−9.3 h from CTL which indicate an early strike of the cy-

clones at the coast in simulations. Along-track deviation is

the main factor in simulated landfall errors. Based on mean

errors, VARPREP is seen to be the best simulation among

the five experiments with mean landfall position error of

128.44 km and landfall time error of −7.6 h. As far as rain-

fall prediction is concerned, considering all eight tropical cy-

clones, rainfall is better simulated in VARAMV, followed

by VARPREP, with relatively higher correlations and lower

RMSE (Table 4). The mean error in rainfall has been calcu-

lated from the area-averaged rainfall deviations from TRMM
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Table 3. Errors in landfall position and landfall timing from various experiments. The negative time errors indicate early landfall and positive

errors show late landfall.

Error in landfall position (km) Error in time of landfall (h)

Name of CTL VARPREP VARAMV VARRAD VARPREP CTL VARPREP VARAMV VARRAD VARPREP

Cyclone +RAD +RAD

Madi 145 86.5 159.8 159.8 215.5 −25.5 −13.5 −13.5 5.5 5.5

Lehar 138.8 352 84.8 398.6 256.1 −14.5 -8.5 −14.5 −2.5 −14.5

Phailin 146.8 48.9 244.1 142 244.2 −5 −5 −5 1 1

Nilam 9.6 149.5 85.2 58.8 32.6 −16 −16 −16 −10 −10

Thane 189.5 84.4 16.9 102.2 82.5 −1 −7 −7 −7 11

Laila 334.5 56.6 321 376.4 646.8 7 13 13 1 13

Jal 121.2 121.2 141 46.8 112.3 −10 −16 −16 −16 −16

Khaimuk 35.6 10.5 59.7 −10 −10 16

Mean error 140.13 128.44 132.91 183.51 206.21 −9.3 −7.57 −8.63 −4 0.75

Table 4. Mean error (ME) and RMSE in simulated rainfall for all

eight selected tropical cyclones.

Experiment ME (mm) RMSE (mm)

CTL 1.15 48.30

VARAMV 5.18 32.99

VARRAD −4.52 45.52

VARPREP −8.06 43.8

VARPREP+RAD −9.91 65.49

rainfall during the landfall for each cyclone cases in each ex-

periment.

4 Conclusions

Forecasting cyclonic storms is highly important for disas-

ter management in tropical maritime countries and is highly

challenging. At the present time, high-resolution mesoscale

atmospheric models are used to generate forecasts for TCs

in tropical maritime countries. The weather prediction is an

initial-boundary value problem. Tropical cyclones in par-

ticular are challenging phenomena for meteorological com-

munity as sufficient accuracy in initial conditions is rare

to obtain due to the scarcity of data over oceanic regions.

As the science has advanced, the extraction of a better ini-

tial state through data assimilation using all available ob-

servation sources has become possible. In this work, we

employed the most commonly available surface, upper-air

and a few satellite-based observations to study their impact

on TC forecasts in WRF using 3D-Var over the BOB of

the NIO. Detailed analysis of a recent cyclone, Phailin, re-

veals that VARPREP improves the track predictions by 5–

40 % in the 24–96 h forecast range over the CTL using sim-

ple downscaling of global model forecasts. This experiment

also simulated minimal landfall position and time errors as

80 km and 4 h respectively. The intensity predictions are im-

proved in VARPREP and VARPREP+RAD. The representa-

tion of structural features is improved in VARPREP+RAD

as revealed by comparisons of wind field, azimuthal av-

erages of temperature anomaly and tangential winds from

CIRA data and maximum reflectivity from IMD DWR data

during landfall. The quantity and spatial distribution of

rainfall for Phailin are well simulated by VARRAD and

VARPREP+RAD.

The results of all eight recent cyclones in the NIO indi-

cated that local data assimilation using 3D-Var with cyclic

mode is superior to the simple approach of downscaling the

global model forecasts as seen from substantial improve-

ments in track and intensity estimates for a majority of the

cases. However, the success of this method is subject to the

availability of quality observations as seen in the case of

Laila where the lack of observations created more noise and

deteriorated the predictions.

The results of assimilation of mass (radiance) and winds

(AMV) have shown different impacts on the TC properties.

The assimilation of AMV mainly influenced the track pre-

dictions and the intensity predictions are influenced by both

motion vectors and radiances. It has been found that the as-

similation of AMV substantially improved the track predic-

tions for a few cyclones (Lehar, Madi, Thane and Khaimuk).

This could be due to the assimilation of wind information

leading to improvements in the representation of the wind

field and initial vortex in these cases. However, the improve-

ments are subject to the average coverage of data as seen in

the meager impact in predictions for a few cyclone cases.

The meager impact on the intensity predictions by motion

vectors is obvious from the small changes in model thermo-

dynamics. Experiments with assimilation of AMSU-A and B

satellite radiance data pertaining to temperature and moisture

profiles have shown a greater impact on the intensity esti-

mates compared to the track forecasts. The improvements in

intensity with radiance data (temperature and moisture) are

evident due to improvements in the model thermodynamics.

Earlier studies (Kalnay et al., 1985; Cress and Wergen, 2001;

Horanyi et al., 2014) have reported the importance of wind
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observations compared to mass observations in the tropics in

assimilation and forecast systems. The present results show

higher impacts of motion vectors relative to radiances in TC

predictions.

Experiments with assimilation of PrepBUFR data show

substantial improvements in track prediction for a major-

ity of the cases in addition to improving intensity due to

changes in both the vortex and thermodynamics of the at-

mosphere. Cyclic mode data assimilation with 3D-Var us-

ing various observation sources showed best predictions

with VARPREP, followed by VARAMV for track posi-

tions, VARPREP+RAD for intensity and VARAMV and

VARPREP for rainfall. The results of all the experiments

clearly show that the PrepBUFR observations which also

contain the AMV always have better predictions of both in-

tensity and track relative to those using radiance data, the

latter shows an impact only on intensity. Of the eight re-

cent cyclone cases tested, six have shown improvements in

both track and intensity with the assimilation of PrepBUFR

data. Overall, an improvement of about 3–36 % in track, 6–

63 % in central pressure, 26–103 % in maximum tangential

winds and 11–223 % in the radius of maximum winds for 24–

96 h lead time forecasts are noted with assimilation of Prep-

BUFR observations. The forecast improvements are found

to be associated with clear changes in the state variables of

pressure, wind distribution, temperature and humidity in the

initial conditions after data assimilation leading to changes

in both dynamics and thermodynamics of the model atmo-

sphere. The better model performance with PrepBUFR ob-

servations is due to a combination of various conventional

(surface, upper air) and satellite-based observations (motion

vectors, ocean surface winds), with a larger effective area

coverage than each of constituent observation sources, ev-

ident in earlier studies (Srinivas et al., 2010; Yesubabu et

al., 2013, 2014). The performance of VARPREP+RAD with

the use of all observations (radiance data along with Prep-

BUFR) is not as good as expected and the errors increased

considerably after 72 h. This could be due to the biases in

channel-specific radiance data and the inefficiency of current

WRF data assimilation system etc., which are ongoing re-

search topics, and the uncertainties are still high (Xu et al.,

2013). Another reason for better predictions with assimila-

tion of PrepBUFR data could be the better quality-control

procedures in the preparation of PrepBUFR. If PrepBUFR

observations are combined with radiance data with bias or

noise, the model fields will be tuned towards the biased ra-

diance, which may result in the reduction of the quality of

the initial condition. Secondly, while assimilating radiance

data, the availability of satellite observations (satellite pass

and density of observations) have high priority. The substan-

tial reduction of track errors with the assimilation of opera-

tionally available PrepBUFR observations in ARW over the

CTLs in the present study is a very encouraging result for

operational predictions.
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