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Abstract. Slant-integrated water vapor (SIWV) data derived

from GPS STDs (slant total delays), which provide the spa-

tial information on tropospheric water vapor, have a high po-

tential for assimilation to weather models or for nowcasting

or reconstruction of the 3-D humidity field with tomographic

techniques. Therefore, the accuracy of GPS STD is impor-

tant, and independent observations are needed to estimate the

quality of GPS STD. In 2012 the GFZ (German Research

Centre for Geosciences) started to operate a microwave ra-

diometer in the vicinity of the Potsdam GPS station. The wa-

ter vapor content along the line of sight between a ground

station and a GPS satellite can be derived from GPS data

and directly measured by a water vapor radiometer (WVR)

at the same time. In this study we present the validation re-

sults of SIWV observed by a ground-based GPS receiver

and a WVR. The validation covers 184 days of data with

dry and wet humidity conditions. SIWV data from GPS and

WVR generally show good agreement with a mean bias of

−0.4 kgm−2 and an rms (root mean square) of 3.15 kgm−2.

The differences in SIWV show an elevation dependent on

an rms of 7.13 kgm−2 below 15◦ but of 1.76 kgm−2 above

15◦. Nevertheless, this elevation dependence is not observed

regarding relative deviations. The relation between the dif-

ferences and possible influencing factors (elevation angles,

pressure, temperature and relative humidity) are analyzed in

this study. Besides the elevation, dependencies between the

atmospheric humidity conditions, temperature and the differ-

ences in SIWV are found.

Keywords. History of geophysics (geodesy) – meteorology

and atmospheric dynamics (instruments and techniques) – ra-

dio science (remote sensing)

1 Introduction

Atmospheric water vapor is the most important greenhouse

gas, which transports energy and affects physical processes

in the troposphere. Thus, precise knowledge of the water va-

por distribution in the atmosphere is important for weather

prediction and climate research. However, the temporal and

spatial water vapor distribution has a strong variability. The

GFZ (German Research Centre for Geosciences) uses ob-

servations from a ground-based GPS network to investigate

variations in the atmospheric water vapor over Germany,

which are available with a high temporal and spatial resolu-

tion under all weather conditions. Global Positioning System

(GPS) water vapor products (zenith total delay (ZTD) and

STD) in near real time are provided at the GFZ. GPS data at

the GFZ are processed using the Earth Parameter and Orbit

determination System (EPOS) software (Gendt et al., 1998),

which is based on the least squares adjustment of undiffer-

enced observations. The derived ZTDs have an accuracy of

6–13 mm and are estimated every 15 min (Gendt et al., 2004).

Many studies (e.g., Bevis et al., 1992; Emardson et al.,

1998; Gendt et al., 2004) have shown that integrated water

vapor (IWV) can be determined with an accuracy better than

2 kgm−2 using GPS observations. Many countries in differ-

ent continents (e.g., the United States, countries in Europe,
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Japan) have developed their own regional or national ground-

based GPS networks to provide IWV (Wolfe and Gutman,

2000; Gendt et al., 2004; Shoji, 2009). Monitoring IWV tem-

poral and spatial variability on a local scale plays an impor-

tant role in operational weather forecasts, since the GPS IWV

data have been included in weather forecast models (Gut-

man et al., 2004; Smith et al., 2007; Bennitt and Jupp, 2012).

However, IWV estimations do not provide any information

on the vertical distribution of water vapor, which can be de-

rived from slant-integrated water vapor (SIWV) (Ware et al.,

1997). On the other hand, the accuracy of GPS SIWVs is dif-

ficult to estimate due to the complex processing. Important

applications of the slant measurements are the assimilation

of weather models, nowcasting and reconstruction of 3-D hu-

midity fields by means of tomographic techniques (Bender

et al., 2011; Shangguan, 2014).

To study the accuracy of GPS SIWV many studies were

carried out in different regions and at different times (e.g.,

Braun et al., 2003; Bender et al., 2008; Deng et al., 2011).

These investigations are mainly restricted to a few days

or months. Recently Shangguan (2014) used 3 months

(October–December) of water vapor radiometer (WVR) data

in the Black Forest for validation with GPS STDs, but the

water vapor amounts were relatively low in this time period.

Furthermore, in all these studies temporal and spatial inter-

polation had to be used because there were too few WVR ob-

servations at the same time and in the same direction as the

GPS observations. The water vapor distribution varies with

the latitude, the season and the topographical features. Fur-

ther studies with longer data sets, especially during various

weather conditions, are required to analyze all possible influ-

ential factors for the accuracy of GPS SIWV.

For this purpose the GFZ will be starting to operate a WVR

in the vicinity of the Potsdam GPS station to make a long-

term study under different atmospheric conditions. In this

study we use WVR data from the GFZ’s microwave radiome-

ter, which can be operated in a dedicated satellite tracking

mode providing SIWV observations along the line of sight

for all visible GPS satellites. The main focus is to test de-

pendences between the possible influential factors and SIWV

observations on seasonal and semiannual timescales.

In Sect. 2 we describe the WVR and GPS data used as well

as the method to derive SIWV from GPS STDs. The results

of their comparison and the relationship of these results to

possible influential factors are discussed in Sect. 3. In the

final section the conclusions and future work are outlined.

2 Data sources

The 6-channel microwave radiometer HATPRO (Humidity

and Temperature Profiler) from Radiometer Physics (www.

radiometer-physics.de) is deployed in the vicinity of the GPS

station Potsdam (52.38◦ N, 13.07◦ E; 103.679 m above sea

level) (∼ 10 m distance). The accuracy of IWV measured by

the HATPRO is about 0.7 kgm−2 (Rose et al., 2005; Kneifel

et al., 2009). For this study WVR observations are com-

pared with GPS SIWV observations covering the time period

from 1 January to 4 July 2013. Within this period rather dry

(∼ 1 kgm−2) and wet (∼ 45 kgm−2) weather conditions can

be studied. Both the GPS and WVR data used in this study

are described in the following sections.

2.1 GPS data processing

GPS STDs, i.e. the signal delays along each single signal

path, have been derived from the EPOS software (Gendt

et al., 1998) using a time resolution of 2.5 min and an ele-

vation cutoff angle of 7◦. In EPOS the precise point position-

ing (PPP) (Zumberge et al., 1997) based on the undifferenced

phase and code observations with proper weights scaled ac-

cording to elevation angles is implemented. In PPP mode,

the precise orbits and clocks of all GPS satellites required by

the PPP analysis are determined by further refining the IGS

(International GNSS Service) routine products (Gendt et al.,

2011). Each station is processed independently by PPP and

the processing of a large number of stations can be easily

parallelized in near real time. ZTDs are processed using a

12 h sliding window shifted each hour, and STDs are recon-

structed every 150 s. Tropospheric delays are estimated using

the Saastamoinen model of the ZHD (zenith hydrostatic de-

lay) and the global mapping function (GMF) (Boehm et al.,

2006b). The remaining tropospheric impact is parameterized

in zenith delays with 15 min resolution, and the gradients are

estimated every hour. Then STDs are retrieved as a combi-

nation of different estimates (Bender et al., 2011; Shangguan

et al., 2013):

STD=mh ·ZHD+mw · (ZWD+D)+ δ (1)

D = cotε(GN cosα+GE sinα), (2)

where ZHD and ZWD are the hydrostatic and the wet zenith

delay, mh and mw are the hydrostatic and the wet mapping

function, GN and GE are the delay gradient parameters in

the northern and eastern direction, ε is the elevation angle, α

is the azimuth angle and δ is the postfit phase residual.

As described above, STDs can be obtained by GPS data

processing techniques, but WVR provides IWV along a

given line of sight. Therefore, GPS STDs are converted into

SIWV for the validation. The STD delay can be divided into

a hydrostatic and a wet component. The hydrostatic part can

be calculated with the Saastamoinen ZHD model using the

surface pressure (P0) at the station (Davis et al., 1985; Bevis

et al., 1992):

ZHD=
0.0022768P0

1− 0.0026cos(2φ)− 0.00028h
, (3)

where h is the height above geoid in km, P0 is the surface

pressure in hPa and φ is the geodetic latitude of the observing

site. ZHD can be mapped onto the individual slant path by
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using the hydrostatic global mapping function mh:

SHD=mh ·ZHD. (4)

Secondly, the slant wet delay (SWD) or the zenith wet de-

lay can be separated from the STD/ZTD by the estimated

hydrostatic delay (SHD/ZHD):

ZWD= ZTD−ZHD (5)

SWD= STD−SHD. (6)

Then the ZWD/SWD is converted into the IWV/SIWV using

a relationship based on the surface temperature (Bevis et al.,

1994):

IWV=5 ·ZWD (7)

SIWV=5 ·SWD, (8)

where 5 is a temperature dependent factor:

5=
106

ρRv(
C1

Tm
+C2)

, (9)

where C1 = 373 900 K2 hPa−1 and C2 = 22.1 KhPa−1 are

the refractivity coefficient, ρ is the mass density of liquid

water, Rv is the gas constant for water vapor, and Tm is a

weighted temperature of the atmosphere:

Tm =

∫
e
T

dh∫
e

T 2 dh
≈ 70.2+ 0.72T0, (10)

where T0 is the surface temperature in K and e is the water

vapor pressure. This approximation is accurate to 2 % for all

weather conditions (Bevis et al., 1994).

2.2 WVR data

The GFZ HATPRO WVR exploits the microwave spectrum

emitted by atmospheric water molecules at different wave-

lengths to derive information on atmospheric liquid water

and IWV. It can clearly identify the spatial and temporal

distribution of clouds and IWV by measuring the absorp-

tion lines of atmospheric water vapor at frequencies between

22.24 and 27.84 GHz and a window channel at 31.4 GHz

for the liquid water. The HATPRO can measure the SIWV

directly in satellite direction by applying the GPS tracking

mode. For the tracking, GPS ephemeris data derived via

HATPRO’s built-in GPS receiver are used to determine the

satellite positions. Then, the radiometer can periodically scan

a number of visible GPS satellites. This allows a comparison

of the measured WVR SIWVs with the GPS SIWVs without

interpolation.

The rain-flagged data are excluded. In addition, only WVR

data observations with atmospheric liquid water (ALW) be-

low 1 kgm−2 were used for the comparison. If the ALW is

too large, ALW can distort the measurement of the brightness

Figure 1. Histogram of the SIWV observations (top) from 1 January

to 4 July 2013; scatterplot of SIWV observations from GPS and

WVR (bottom).

temperature. As a consequence, the measured WVR SIWVs

can be extremely high.

There were differences between elevation and azimuth an-

gles of the GPS and WVR data due to small time differences

(∼ 1.25 min). The derived GPS SIWVs were matched to the

nearest WVR measurements where a maximum deviation in

the intersection angle of 2◦ was accepted. The zenith-mapped

SIWVs were calculated with the following formula:

IWVz = SIWV/mw. (11)

3 Results and discussion

For the validation the differences in SIWV and zenith-

mapped SIWV (IWVz) were calculated:

1SIWV = SIWVGPS−SIWVWVR (12)

1IWVz = IWVz,GPS− IWVz,WVR. (13)

Table 1 shows the statistical result of the validation. The

mean difference in SIWV is 0.4 kgm−2, with a standard de-
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Table 1. Statistical data of the comparison between GPS and WVR data. 1SIWV: differences in slant-integrated water vapor (SIWV)

GPS−WVR; 1IWVz : differences in zenith-mapped SIWV; SD: standard deviation; rms: root mean square; N : number of compared ob-

servations.

Differences 1SIWV 1SIWV 1SIWV 1IWVz 1IWVz

Elevation > 7◦ < 15◦ > 15◦ > 7◦ > 15◦

N 446 934 62 114 384 820 446 934 384 820

Mean [kgm−2] 0.40 0.51 0.38 0.28 0.28

SD [kgm−2] 3.12 7.13 1.76 0.96 0.95

rms [kgm−2] 3.15 7.15 1.80 1.00 0.99
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Figure 2. Hourly mean of SIWV observations derived from GPS

(blue), WVR (red) and their differences (cyan) from 1 January to

4 July 2013; 1SIWV is the difference in SIWV (GPS−WVR).

viation (SD) of 3.12 kgm−2. Weather conditions during this

time were variable, with IWVs ranging from 1 to 45 kgm−2.

This broad range was captured in this data set of 446 934

observations over 6 months. These characteristics indicate

that this analysis is a much more robust comparison than

the data set reported in Shangguan (2014), in which the

maximal zenith-mapped water vapor amounts were smaller

than 35 kgm−2. The root mean square (rms) of 1SIWV is

3.15 kgm−2, with a cutoff elevation angle of 7◦, in which

most large differences are located at a low elevation. With

a cutoff elevation angle of 15◦, the rms of 1SIWV is only

1.80 kgm−2. In contrast, the rms of 1IWVz is almost same

for different cutoff elevation angles. Regarding the assum-

able measurement accuracy, GPS and WVR SIWVs are com-

parable to each other.

Figure 1 (bottom) shows the scatterplot of all observations.

It indicates the good agreement between GPS and WVR data.

The distribution of observations can be seen in Fig. 1 (top).

Most of the compared SIWV observations are smaller than

50 kgm−2. Figure 2 shows time series of the hourly mean

SIWV from GPS and WVR and their differences. There are

some gaps (up to 36 h) in the WVR data due to rain events

Figure 3. Relation between 1SIWV and elevation angles. Blue

points are all validation values. Black points are means of every 500

observations along the x axis, and the red line is their corresponding

SD.

and high ALW during the 184 days. For each hour the mean

values of SIWVs were calculated to get a good overview of

the change in the SIWVs. The overall impression of the vali-

dation is that GPS SIWVs are consistent with WVR observa-

tions on average. However, the SIWV differences vary sig-

nificantly with the time. The SIWV bias between GPS and

WVR varies from positive to negative values. To study these

variations, attempts are made to correlate the SIWV differ-

ences with atmospheric parameters, which usually vary with

periods of hours, days or weeks. The relation between the

SIWV differences and possible influential factors (elevation

angles and meteorological conditions) are studied in the fol-

lowing sections.

3.1 Dependency of the bias on the elevation angle

The elevation angle plays an important role in data process-

ing. The mapping function error is large on the low elevation

angle (Boehm et al., 2006a), and the scattering and multipath

effects on the GPS signal are typical problems at low ele-

vation angles in the GPS data processing (Ning et al., 2011).

Ann. Geophys., 33, 55–61, 2015 www.ann-geophys.net/33/55/2015/



M. Shangguan et al.: Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode 59

Figure 4. Relation between 1IWVz and elevation angles. Blue

points are all validation values. Black points are means of every

500 values along the x axis, and the red line is their corresponding

SD.

Also, WVR data at low elevation angles can be influenced by

ground radiation sources. Therefore, it is necessary to study

the dependency of the GPS−WVR variations on the eleva-

tion. The SD of1SIWV strongly increases with decreasing el-

evation angles (Fig. 3). The data with elevation angles below

15◦ have obviously larger biases with a larger SD, but, above

about 30◦, the bias and SD of1SIWV show no significant de-

pendence on elevation. In contrast, the variations in 1IWVz

and also relative 1SIWV (not shown here) have a low depen-

dence on elevation for the whole elevation range (Fig. 4).

1IWVz are mainly in the range of [−4 kgm−2, 4 kgm−2],

while 1SIWV show a strong variability at low elevation an-

gles.

3.2 Dependency of validation results on atmospheric

humidity conditions

Furthermore, the relation between 1SIWV and humidity con-

ditions is studied. Typically, the amount of IWV shows

strong variations with time. To classify the humidity condi-

tions, within this study we used WVR IWVs measured within

time periods close to each other. About 203 202 observations

have corresponding WVR IWVs within a time interval of

± 3 min. It was checked whether the bias and SD of 1SIWV

depend on atmospheric humidity.

As shown in Fig. 5 (top), the SD of 1SIWV increases

slightly with increasing WVR IWVs. For WVR IWVs above

25 kgm−2, the biases of 1SIWV drift slightly towards neg-

ative values, while rather positive values are observed be-

low 10 kgm−2. The variations in 1SIWV generally increase

at higher WVR IWVs, and GPS SIWVs are increasingly

smaller than WVR SIWVs. Regarding the bias tendency, a

similar behavior can be seen for relative 1SIWV (Fig. 5, bot-

Figure 5. Relation between 1SIWV and WVR IWVs measured in

zenith direction (top); relation between relative 1SIWV and WVR

IWVs measured in zenith direction (bottom). Blue points are all

validation values. Black points are means of every 150 values along

the axis, and the red line is their corresponding SD.

Figure 6. Relation between 1IWVz and WVR IWVs measured in

zenith direction. Blue points are all validation values. Black points

are means of every 150 values, and the red line is their correspond-

ing SD.

tom), while the SD shows the opposite behavior to the abso-

lute comparisons as it decreases with increasing WVR IWVs.

Due to observation values near the expected measurement

accuracy, relative bias and SD reach large values at very dry

conditions (WVR IWV below 3 kgm−2). Instead of the rel-

ative 1SIWV, the relation between 1IWVz and WVR IWV is

shown in Fig. 6. The same tendency is observed with the bias

and SD of 1IWVz . A linear tendency of the differences from

positive values to negative values is observed in the figures.

www.ann-geophys.net/33/55/2015/ Ann. Geophys., 33, 55–61, 2015
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Figure 7. Relation between the mean (green) and SD (red) of

1SIWV (left column), 1IWVz (middle column) and 1IWV (right

column) and relative humidity (RH) (top row), pressure (P ) (mid-

dle row) and temperature (T ) (bottom row).

3.3 Dependency of the bias on ground weather

conditions

Pressure (P ), temperature (T ) and relative humidity (RH)

were measured by the meteo sensor of the type Vaisala

PTU200 near the POTS station with high accuracy. Pressure

and temperature were used to calculate the GPS SIWV and

have an effect on the estimated SIWV. Therefore, pressure

and temperature may also influence the comparison results.

The comparisons between RH, T , P and the differences

are shown in Fig. 7. 1IWV is the difference between the

WVR-measured IWV in zenith direction and the GPS-ZTD-

derived IWV. The GPS IWV has a temporal resolution of

15 min. Due to the WVR measurements periodically switch-

ing between GPS satellite tracking and zenith IWV observa-

tion mode every 5 min, only about 14 132 GPS IWVs have

the corresponding WVR IWVs within the time interval of

±3 min. In Fig. 7 (middle), the biases of 1SIWV, 1IWVz and

1IWV change considerably with the variation in pressure.

It is difficult to find the dependency between pressure and

the differences because of the strong variability. Similarly to

pressure, no clear relation between the relative humidity and

differences is found (Fig. 7, top). In contrast, the biases of

1SIWV, 1IWVz and 1IWV decrease with increasing temper-

ature, and the corresponding SDs increase at the same time

(Fig. 7, bottom). A similar tendency is observed between the

differences and WVR IWVs (see Figs. 5, 6). The relation

between the IWV and temperature is shown in Fig. 8. The

amount of water vapor increases with temperature, showing

the temperature effect on the atmospheric water-holding ca-

Figure 8. Relation between the measured IWV and temperature:

scatterplots of GPS and WVR IWV observations.

pacity. In Fig. 8, the water vapor amount of GPS observa-

tions at high temperatures is smaller than the measured WVR

IWVs.

4 Conclusions

The validation of the GPS slant delay data with WVR pro-

vides evidence of good agreement between the compared

data. The bias between GPS and WVR data is−0.40 kgm−2,

with an rms of 3.15 kgm−2, which is dominated by the large

differences at low elevation angles. With the cutoff elevation

of 15◦, the rms of difference in SIWV is only 1.80 kgm−2.

The GPS SIWV has an accuracy comparable to that of the

WVR data.

In this study the relations between1SIWV,1IWVz and five

possible influential factors are tested. It indicates a relative

dependency between 1SIWV and elevation angles. However,

1IWVz are almost as good at different elevation angles. It

indicates that the relative error of GPS SIWV is almost con-

stant at different elevation angles.

Both biases of 1SIWV and 1IWVz show a weak depen-

dence on atmospheric humidity, changing from slightly posi-

tive values at low IWV conditions to slightly negative values

at high IWV. Similar effects are observed with the relation

to temperature, which can be explained by the temperature

dependence of the atmospheric water-holding capacity. GPS

estimates are smaller than WVR SIWVs in most cases at high

temperature or when there are large water vapor amounts.

The study shows that the ground weather condition has some

influence on the difference in SIWV, especially the tempera-

ture or humidity condition.

These differences (negative biases at high temperatures or

very humid conditions) can be caused by the errors in both

GPS and WVR data. Further studies are planned with GPS

Ann. Geophys., 33, 55–61, 2015 www.ann-geophys.net/33/55/2015/
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data and WVR data in satellite tracking mode. Furthermore,

the adjustments to GPS data processing parameters with the

help of WVR data would be investigated, which may con-

tribute to improvements of GPS product quality.
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