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Abstract. Multi-input single-output (MISO) nonlinear

autoregressive moving average with exogenous inputs

(NARMAX) models have been derived to forecast the >

0.8 MeV and > 2 MeV electron fluxes at geostationary Earth

orbit (GEO). The NARMAX algorithm is able to identify

mathematical model for a wide class of nonlinear systems

from input–output data. The models employ solar wind pa-

rameters as inputs to provide an estimate of the average elec-

tron flux for the following day, i.e. the 1-day forecast. The

identified models are shown to provide a reliable forecast

for both > 0.8 and > 2 MeV electron fluxes and are capable

of providing real-time warnings of when the electron fluxes

will be dangerously high for satellite systems. These models,

named SNB3GEO> 0.8 and > 2 MeV electron flux models,

have been implemented online at http://www.ssg.group.shef.

ac.uk/USSW/UOSSW.html.

Keywords. Magnetospheric physics (energetic particles

trapped; solar wind–magnetosphere interactions)

1 Introduction

The configuration of the magnetic field in the region of the

terrestrial radiation belts allows for charged particles to be

trapped. As such, the radiation belts contain energetic elec-

tron from tens of keV to several MeV. The population of the

energetic electrons can vary by large amounts in very short

timescales (Blake et al., 1992; Reeves, 1998). High fluxes of

the energetic electrons can cause problems for modern tech-

nological systems and can be hazards for humans in space.

Satellites in both low Earth orbit and geostationary Earth or-

bit (GEO) have an increased probability of suffering onboard

satellite system malfunctioning, which can result in perma-

nent hardware damage (Reagan et al., 1983; Baker et al.,

1987). By powering down certain systems that are at risk, the

effects of the energetic particles can be mitigated. However,

this will require prior knowledge of high energetic electron

populations that are dangerous to satellites. Therefore, mod-

els are needed to forecast when large fluxes of highly ener-

getic electrons will occur.

Although the radiation belts were discovered more than

half a century ago (Van Allen, 1959), during the very first

in situ space measurements, there still lacks a comprehen-

sive physical model of the solar wind interaction with the

terrestrial magnetosphere and the dynamics of the radia-

tion belts. Reeves (1998) investigated the relationship be-

tween the disturbances within the magnetosphere and radi-

ation belts, which was found to be very complex. About half

of the magnetic storms led to a significant increase in electron

fluxes, a quarter resulted in a decrease while the final quar-

ter of the disturbances had no effect on the electron fluxes.

A similar study, performed by Kataoka and Miyoshi (2006),

showed that while a southward interplanetary magnetic field

(IMF) gave rise to 49 CME magnetospheric disturbances,

only 21 of these resulted in increases of energetic electrons.

Although, in stream interaction regions associated with dis-

turbances, they recorded an 83 % probability of an electron

flux increase.

Despite the complexity of the particle acceleration within

the radiation belts, there are a number of proposed models

that explain the dynamics (Friedel et al., 2002; O’Brien et al.,

2003). Some models assume that a combination of radial dif-

fusion and low-altitude ULF waves lead to a recirculation

effect, repeatedly accelerating the particles (Fujimoto and

Nishida, 1990; Liu et al., 1999; Boscher et al., 2000). The

diffusion of trapped energetic electrons from the cusp into

radiation belts has been suggested by Sheldon et al. (1998).

Temerin et al. (1994), Li et al. (1997) and Summers et al.

(1998) all advocate electron cyclotron heating by whistler

waves. An enhanced earthward transport from the tail to

GEO by repetitive substorm injections was put forward by

Ingraham et al. (2001). Baker et al. (1979) proposed the more
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exotic explanation of the Jovian shock increasing the elec-

tron population in the Earth’s radiation belts. The review by

Friedel et al. (2002) includes all these mechanisms for accel-

eration. The main candidates are based on either local diffu-

sion due to particle interactions with waves (Temerin et al.,

1994; Shprits et al., 2008; Reeves et al., 2009; Omura et al.,

2007; Horne et al., 2005; Summers and Thorne, 2003; Sum-

mers et al., 1998, 2002, 2004; Albert, 2003, 2005) or radial

diffusion (Falthammar, 1968; Schulz and Lanzerotti, 1974;

Hilmer et al., 2000; Ingraham et al., 2001; McAdams et al.,

2001).

An alternative approach to developing a model based on

first principles is to deduce a forecasting model for the ra-

diation belt electron fluxes directly from data (Baker et al.,

1990; Freeman et al., 1998; Wei et al., 2011). Baker et al.

(1990) employed linear prediction filters (LPFs) to charac-

terize and to predict the 3–40 MeV electron measurements

using solar wind velocity and geomagnetic indices such as

Kp and AE as inputs. The use of LPFs allowed the authors to

analyse how the inputs influence the output, reporting a 27-

day periodicity and a peak lag at 2–3 days. Since this study,

most of the data analysis research into energetic electrons

has been accomplished by neural networks (NNs). The in-

puts to the NNs are often the geomagnetic indices such as

the Dst index and the daily sum of the global geomagnetic

index, Kp (Freeman et al., 1998; Ling et al., 2010; Koons

and Gorney, 1991). NNs have provided results that are sig-

nificantly more accurate than those from LPFs; however, the

NNs are much more difficult to interpret than the LPFs. They

result in a complex array of neurons, each with an activation

function, linked through a maze of other neurons by a set of

weights. This makes the relationship between the input and

output very hard to understand.

Nonlinear autoregressive moving average with exogenous

inputs (NARMAX) models have the advantage of providing

accurate results and at the same time are very easy to inter-

pret. The NARMAX algorithm was initially developed for

complex engineering and biological systems but has since

been employed in many other fields, such as space weather.

In solar–terrestrial physics, the NARMAX methodology was

first employed to develop forecasting models for the Dst in-

dex using solar wind inputs (Balikhin et al., 2001; Boaghe

et al., 2001). NARMAX has also been used to model the

electron fluxes at GEO (Wei et al., 2011). Recently, the

NARMAX approach has been used to identify the inputs of a

natural dynamical system for cases when there is an absence

of knowledge. The error reduction ratio (ERR), which is the

basis of the NARMAX model structure selection, was used

by Boynton et al. (2011b) to analyse how the previously pro-

posed coupling functions influence the Dst index. This study

produced a new coupling function that was then used as an

input to model the Dst index in a following paper (Boynton

et al., 2011a). This technique has recently been applied to

various energies of the electron flux ranging from 24.1 keV to

3.5 MeV, obtaining some unexpected results (Boynton et al.,

2013; Balikhin et al., 2011). Balikhin et al. (2011) found that

for 1.8–3.5 MeV electrons, the solar wind density had the

most influence. The following study by Boynton et al. (2013)

reported an increasing influence in density from ∼ 1 until

1.8 MeV, above which it became the most important control

parameter for the electron fluxes at GEO. They also identi-

fied a quantitative timescale of the electron flux enhancement

as a function of energy that allowed Balikhin et al. (2012) to

argue that local diffusion is not dominant at GEO. Since there

are time delays between the solar wind velocity increases and

the electron flux enhancements at GEO, it is possible to quan-

titatively estimate the 1-day-ahead electron fluxes from solar

wind parameters. The work by Boynton et al. (2013) indi-

cates that this is possible for energies above 270 keV, where

they report that the velocity of the previous day is the param-

eter that has the most influence on the fluxes.

The main aim of this study was to develop two NARMAX

models for the> 0.8 and> 2 MeV electron fluxes, measured

at GEO by the GOES spacecraft, which are able to provide

an accurate online forecast for 1 day ahead. One of the best

online forecast models was implemented by the National

Oceanic and Atmospheric Administration’s Space Weather

Prediction Center (NOAA-SWPC); however, even this fore-

cast is very far from perfect. As such, one of the goals of this

paper was to produce a model that would give a more ac-

curate estimate than the model by NOAA-SWPC. This was

achieved by validating the model on an interval of data, in

other words, to see how the model forecasts would have per-

formed during this interval.

2 Methodology

2.1 NARMAX model

The NARMAX approach, first developed by Leontaritis and

Billings (1985a, b), is one of the most advanced data-based

modelling techniques. It is a black box methodology that can

automatically derive a model from solely input–output data.

A multi-input single-output (MISO) NARMAX model was

used to represent the dynamics of the electron fluxes at GEO.

The general MISO NARMAX model can be represented by

Eq. (1) (Billings et al., 1989; Billings and Tsang, 1989; Wei

et al., 2004b):

y(t) = F [y(t − 1), . . .,y(t − ny),

u1(t − 1), . . .,u1(t − nu1
), . . .,

um(t − 1), . . .,um(t − num), . . .,

e(t − 1), . . .,e(t − ne)] + e(t), (1)

where y, u and e are the output, input and noise respec-

tively, m is the number of inputs to the system and ny ,

nu1
, ... ,num are the maximum time lags of the output and

the m inputs respectively. F [·] is some nonlinear function

and can be expanded in terms of polynomials, rational func-

tions, B-Splines, radial basis functions etc. The noise terms
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of the NARMAX model allow the capture of noise entering

the nonlinear system internally, resulting in coloured noise,

rather than just an additive white noise (Billings et al., 1989;

Chen et al., 1989; Billings and Chen, 1998)

There are three stages to identify a NARMAX model. The

first stage, model structure detection, is to identify the most

significant model terms by evaluating all the possible combi-

nations of the past inputs, past outputs and past noise values

with the use of the ERR. An advantage of the ERR in select-

ing input terms is that ERR is independent of the possible

nonlinear and correlated noise (Billings, 2013). The second

stage is parameter estimation, where the coefficients are cal-

culated for each of the selected model terms in the structure

detection stage. The inclusion of the noise terms can elim-

inate bias in estimating the coefficients. The final stage is

model validation, using methods such as the correlation tests

(Billings and Voon, 1986; Billings and Zhu, 1989) or model

performance analysis. The full description of the NARMAX

algorithm is very complex and, as such, it is beyond the scope

of this paper. A complete description of the NARMAX algo-

rithm can be found in the study of Billings et al. (1989).

The NARMAX algorithm requires both input and out-

put data for the system to deduce a model. In this study,

the output for each of the two models is the daily averaged

> 0.8 MeV electron flux and the> 2 MeV electron flux. Both

of these measurements are taken from the Geostationary Op-

erational Environmental Satellite (GOES) at GEO and are

supplied by the National Oceanic and Atmospheric Admin-

istration (NOAA) National Weather Service (NWS) Space

Weather Prediction Center.

As discussed in the Introduction, previous data-based

models have used geomagnetic indices and the solar wind ve-

locity to forecast the electron fluxes at GEO. The recent study

by Boynton et al. (2013) analysed the solar wind control pa-

rameters for a range of electron flux energies. They found

that for energies < 1.8 MeV, the solar wind velocity was the

most important solar wind parameter. However, the ERR re-

sults show that other solar wind parameters also play a minor

role, such as density, and the z component of the magnetic

field in GSM coordinates. For higher energies (> 1.8 MeV)

the solar wind density is reported to have the most control

of the electron fluxes but with the velocity still playing an

important role. As such, the solar wind velocity v, density

n, z component of the IMF Bz and Dst index were consid-

ered inputs for the models. Along with these parameters, the

fraction of time that the solar wind remains southward within

each day, τBs , was also included. This parameter was calcu-

lated from the 1 min Bz by finding the time within each 24 h

period that the IMF was southward and dividing it by the to-

tal time within the day. These data were from the Advanced

Composition Explorer (ACE) spacecraft positioned at the L1

Lagrange and supplied by the OMNI website for training the

model.

2.2 Model training

The NARMAX algorithm was then employed to obtain the

two models for both the > 0.8 MeV electron flux and the

> 2 MeV electron flux. This was achieved using sections of

the data to train the models. These sections had to contain

continuous equally sampled data, i.e. no data gaps within the

interval for both input and output data.

The > 0.8 MeV electron channel was used for the first

time on the GOES 13, which only became operational on

14 April 2010. Therefore, there were not many data to train

the model on, and the training data for the > 0.8 MeV model

were chosen to start on 10 April 2010 and end on 31 Decem-

ber 2010.

The > 2 MeV electron channel has been in use since

GOES 6, and data are available from the late 1980s. There-

fore, there were many more choices for the > 2 MeV model

training interval. This was chosen to start on 11 July 2004

and end on 11 October 2005.

The final models for both energies only included terms of

past output, v, n and τBs , implying that both the Dst index

and Bz have a negligible influence on the electron fluxes.

The models were then validated on separate validation data,

which will be discussed in Sect. 3.

3 Model performance analysis

Model performance analysis was used to validate the model

and test whether the model would be accurate enough for

real-time online forecasts of the 1-day-ahead electron flux at

GEO. This was achieved using past data intervals to investi-

gate how accurate the 1-day forecasts would have been com-

pared to the electron flux observed by the GOES spacecraft.

Electron flux data from GOES 13 were used to evaluate

the performance of the model. GOES 13 became the primary

GOES satellite for the Energetic Proton Electron and Alpha

Detector (EPEAD) on 14 April 2010. Thus, the period of

data to analyse the > 2 MeV electron flux model was from

14 April 2010 to 30 June 2012.

The previous GOES satellites measured the channel for

> 2 MeV electrons but not > 0.8 MeV electrons; therefore,

the> 0.8 MeV electron channel was used for the first time on

GOES 13. As mentioned above, the > 0.8 MeV electron flux

model was trained on data up to 31 December 2010, while the

> 2 MeV model was trained on data from 2005. Employing

the data from 14 April 2010 to 31 December 2010 to evalu-

ate the > 0.8 MeV model would be bad practice. Therefore,

the period of data to analyse the > 0.8 MeV model could not

be the same as the > 2 MeV model and was instead from

1 January 2011 to 30 June 2012. Therefore, both models had

different training and validation data.

The 1-day forecasts were calculated using the> 0.8 and>

2 MeV models on the validation intervals mentioned above.

Figure 1 depicts the measured (blue) and the model 1-day

www.ann-geophys.net/33/405/2015/ Ann. Geophys., 33, 405–411, 2015
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Figure 1. Model forecast showing measured electron flux in blue and the model estimate in red for (a)> 0.8 MeV electron flux, (b)> 2 MeV

electron flux from 1 January 2011 to 31 May 2011.

forecast (red) for the period between 1 January 2011 and

31 May 2011. Figure 1a shows the > 0.8 MeV model and

Fig. 1b the > 2 MeV model. The > 2 MeV model has a

visibly better performance than the > 0.8 MeV model; the

> 0.8 MeV model tends to overshoot when an increase in

flux occurs. An issue with both these models (and other elec-

tron flux models) is that the model has a tendency to lag the

measured flux. An example of this can be seen in Fig. 1 on

2 March 2011 for the> 0.8 MeV model and 1 April 2011 for

the > 2 MeV model.

In addition to simply inspecting the figures showing the

difference between the forecast and observed electron flux at

GEO, the statistics of how the model 1-day forecast relates

to the measurement needs to be calculated. Here, the per-

formance of the models were statistically analysed using the

prediction efficiency (PE) (Eq. 2), and the correlation coeffi-

cient (CC) (Eq. 3). These statistics are common in analysing

the performance of models and have been used by Temerin

and Li (2006), Li (2004), Boynton et al. (2011a) and Wei

et al. (2004a) to name a few.

EPE = 1−

N∑
t=1

[(
y(t)− ŷ(t)

)2]
N∑
t=1

[
(y(t)− ȳ(t))2

] , (2)

ρyŷ =

N∑
t=1

[
(y(t)− ȳ(t))

(
ŷ(t)− ¯̂y(t)

)]
√√√√ N∑

t=1

[
(y(t)− ȳ(t))2

] N∑
t=1

[(
ŷ(t)− ¯̂y(t)

)2
] , (3)

where EPE is the PE, ρ is the CC, y(t) is the output at time

t , ŷ is the estimated output from the model and N is the

length of the data. The PE is a quantitative measure of the

normalised error, where a high PE (unity) indicates a low er-

ror and a low PE (≤ 0) shows that the error of the model is
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equivalent to (or greater than) the variance of the measured

output and, thus, is very inaccurate. The CC is often em-

ployed as an indicator of a model’s performance and shows

the linear dependence between the measured and the fore-

cast, unity showing high dependence and zero none.

The > 0.8 MeV model resulted in a PE of 0.700 and CC

of 0.847 between 1 January 2011 and 30 June 2012, while

the> 2 MeV model was found to have a PE of 0.786 and CC

of 0.894 between 14 April 2010 and 30 June 2012. There-

fore, both models show a high dependence between the mea-

sured and estimate, and an error much smaller than the mea-

sured electron flux variance. The lower PE for the> 0.8 MeV

model can be partly attributed to the overshoot observed in

Fig. 1, which increases the error of the forecast.

4 Comparison with NOAA-SWPC electron flux model

The aim of this study was to derive electron flux models that

provide a high accuracy for the 1-day forecast and implement

them online in real time. The CC and the PE show that the

models are accurate; however, since a high accuracy is rela-

tive, the > 2 MeV electron flux model was compared to an-

other online electron flux model. This model was the NOAA-

SWPC model based on the work by Baker et al. (1990). This

was the final hurdle that the model needed to pass before it

was deemed suitable for real-time online implementation.

The SWPC provides a forecast of the > 2 MeV elec-

tron flux at the website http://www.swpc.noaa.gov/products/

relativistic-electron-forecast-model. The forecast is calcu-

lated from the LPF model by Baker et al. (1990), which,

as described in Sect. 1, employs the solar wind velocity,

Kp index and AE index. The model has multiple modes:

three that use ACE data, which estimate the 1-day-ahead,

2-day-ahead and 3-day-ahead electron flux at GOES. Only

the 1-day-ahead estimate is considered here, since in this

study the aim was to forecast 1 day in advance. The

NOAA-SWPC provide statistics of the prediction efficiency

for the previous year at http://services.swpc.noaa.gov/text/

relativistic-electron-fluence-statistics.txt. Between 29 Au-

gust 2011 and 28 August 2012 the PE of the SWPC model

was 67.8 %. The prediction efficiency of the SNB3GEO>

2 MeV electron flux model was calculated for the same time

period and came to 77.5 %. Therefore, the NARMAX model

had a 9.7 % higher PE than the NOAA-SWPC for the same

period of time.

5 Conclusions

The main aim of this study was to produce two electron flux

models at GEO: for energies of > 0.8 and > 2 MeV. Both

of these models have been shown statistically to provide an

accurate 1-day forecast for the validation period used in this

study, as shown by the high prediction efficiencies and corre-

lation coefficients between the 1-day forecasts and the mea-

sured fluxes.

The NARMAX> 2 MeV model was compared to the

NOAA-SWPC electron flux model (Baker et al., 1990). The

PE for the NARMAX electron flux model was shown to be

∼ 10 % higher than the SWPC model for the same period,

illustrating that these models have the potential to provide an

accurate real-time forecast for the following day’s electron

flux.

Thus, the goal to implement the models online to deliver

a real-time forecast for the next day using the real-time data

provided by the NOAA NWS Space Weather Prediction Cen-

ter has been achieved and the online forecast of SNB3GEO

electron flux models can be found at http://www.ssg.group.

shef.ac.uk/USSW/UOSSW.html.
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