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Abstract. We present the first results of a data analysis

method, developed by Sonnerup and Hasegawa (2011), for

reconstructing three-dimensional (3-D), magnetohydrostatic

structures from data taken as two closely spaced satellites

traverse the structures. The method is applied to a mag-

netic flux transfer event (FTE), which was encountered on

27 June 2007 by at least three (TH-C, TH-D, and TH-E) of

the five THEMIS probes near the subsolar magnetopause.

The FTE was sandwiched between two oppositely directed

reconnection jets under a southward interplanetary magnetic

field condition, consistent with its generation by multiple X-

line reconnection. The recovered 3-D field indicates that a

magnetic flux rope with a diameter of ∼ 3000 km was em-

bedded in the magnetopause. The FTE flux rope had a signif-

icant 3-D structure, because the 3-D field reconstructed from

the data from TH-C and TH-D (separated by ∼ 390 km) bet-

ter predicts magnetic field variations actually measured along

the TH-E path than does the 2-D Grad–Shafranov reconstruc-

tion using the data from TH-C (which was closer to TH-E

than TH-D and was at ∼ 1250 km from TH-E). Such a 3-

D nature suggests that the field lines reconnected at the two

X-lines on both sides of the flux rope are entangled in a com-

plicated way through their interaction with each other. The

generation process of the observed 3-D flux rope is discussed

on the basis of the reconstruction results and the pitch-angle

distribution of electrons observed in and around the FTE.

Keywords. Magnetospheric physics (magnetopause cusp

and boundary layers) – space plasma physics (magnetic re-

connection; instruments and techniques)

1 Introduction

Magnetic field structures and topologies play an important

role in dynamical plasma phenomena, such as solar or stel-

lar flares (e.g. Kusano et al., 2012; Bamba et al., 2013) and

magnetospheric substorms (e.g. Consolini and Chang, 2001),

and in the transfer of mass, momentum, and energy in space

and astrophysical plasmas. A key physical process underly-

ing the rearrangement of field line configurations and topol-

ogy changes is magnetic reconnection, which is known to oc-

cur in the solar corona (e.g. Masuda et al., 1994), solar wind

(e.g. Gosling et al., 2005), and magnetotail (e.g. Nagai et al.,

2013), and at the magnetopause (e.g. Sonnerup et al., 1981).

In order to understand in what manner and how efficiently

this process converts energy and transfers mass and momen-

tum across a current layer, it is indispensable to reveal the

nature of one-dimensional (1-D) discontinuities (rotational

or tangential discontinuities and shocks), the formation, lo-

cation, and interplay of the X- and O-points in 2-D, and those

of magnetic nulls and separators in 3-D (e.g. Cai et al., 2001;

Xiao et al., 2006; Wendel and Adrian, 2013), which may be

embedded in the current layer in question.

In studies of solar magnetic activities, a number of at-

tempts have been made to reconstruct 3-D force-free mag-

netic field structures in the corona from nearly instantaneous,

remote-sensing (ground-based or space telescope) measure-

ments of the photospheric field (e.g. Wheatland and Leka,

2011; Wiegelmann and Sakurai, 2012; Inoue et al., 2014).

In particular, nonlinear force-free field models allow for an
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estimation of the free magnetic energy available, by compar-

ison with reconstructed potential or linear force-free fields,

and thus potentially make it possible to forecast where so-

lar flares could be initiated. However, such reconstructions

of fully 3-D fields have not been conducted by use of in situ

data taken by spacecraft during a short period, while a 3-D

magnetohydrostatic equilibrium field in the magnetosphere

has been recovered, for example, by modelling the field us-

ing Euler potentials and using an average equatorial profile

of the plasma pressure based on long-term, in situ measure-

ments as input and empirical fields as boundary conditions

(e.g. Zaharia, 2008).

Recently, Sonnerup and Hasegawa (2011) developed a

novel data analysis method for the reconstruction of steady,

3-D, magnetohydrostatic structures using plasma and mag-

netic field data recorded by two closely spaced spacecraft,

which is hereafter referred to as the SH11 method. They

developed and benchmarked a primitive version of the nu-

merical code for the SH11 method, using an analytical solu-

tion of the 3-D magnetohydrostatic equations (∇ ·B = 0 and

∇p = j ×B). This type of reconstruction in 3-D space, as

well as those in 3-D space-time (2-D space and time) de-

veloped recently by Sonnerup and Hasegawa (2010), and

Hasegawa et al. (2010a, 2014), is a natural extension of a

variety of 2-D reconstruction techniques developed to date

(see Sonnerup et al., 2006, 2008 and Hasegawa, 2012 for an

overview or reviews) that in principle require data from sin-

gle spacecraft as input. In this paper, we present a first appli-

cation of the SH11 method to actual observations in space,

along with modest improvements of the reconstruction code.

The present paper is organised as follows. In Sect. 2, the

basic equations used in the reconstruction and methodol-

ogy are briefly summarised. In Sect. 3, an overview is given

of THEMIS spacecraft observations at the subsolar magne-

topause of a flux transfer event (FTE), which is generated

through some time-dependent form of magnetopause recon-

nection. For overviews and models of FTEs, the readers are

referred to Scholer (1995), Raeder (2006), and Paschmann

et al. (2013). We apply the SH11 3-D reconstruction method

as well as the classical Grad–Shafranov (GS) reconstruction

technique for 2-D magnetohydrostatic structures (Sonnerup

and Guo, 1996; Hau and Sonnerup, 1999; Hasegawa et al.,

2004) to the FTE seen by THEMIS and compare the results.

In Sect. 4, particle measurements during and around the FTE

are analysed in detail to discuss the generation mechanism

of the FTE. A brief summary and discussion is presented in

Sect. 5.

2 The method

We numerically solve the magnetohydrostatic equations us-

ing as input the magnetic field and pressure data taken along

the paths of two closely separated spacecraft. The assump-

tions underlying the technique are that the structure to be

reconstructed is time-independent and magnetohydrostatic,

and moves at a constant velocity relative to the spacecraft.

The magnetohydrostatic equations solved in the reconstruc-

tion are:

∇ ·B = 0, (1)

and the force balance relation, ∇p = j ×B, which can be

written, by use of j = (∇ ×B)
/
µ0, in the form

∇P =
(B · ∇)B

µ0

, (2)

where P = p+B2
/
(2µ0) is the total (magnetic plus

plasma) pressure. Equation (2) assumes that the inertia terms

in the MHD equation of motion can be neglected, and ex-

presses the balance between the force from the total pressure

gradient and magnetic tension. Equations (1) and (2) con-

stitute four scalar equations for the four unknown physical

quantities, U =
{
Bx; By; Bz; P

}
. To understand the reasons

why we use the total pressure, rather than plasma pressure,

as one of the variables, see Sect. 5 in SH11.

The x axis of the Cartesian reconstruction coordinates is

chosen to be parallel to, and halfway between, the paths of

the two spacecraft, Sc-A and Sc-B, in the frame co-moving

with the structure (Fig. A1). The z axis is defined in such a

way that the two spacecraft are contained in the x-z plane.

The two spacecraft are separated by lz in the z direction,

and are assumed to move in the +x direction at a constant

speed, V Sc, relative to the structure. This velocity is usually

approximated by the negative deHoffmann–Teller (HT) ve-

locity, determined by the method as described by Khrabrov

and Sonnerup (1998), i.e. V Sc =−V HT. Because of the as-

sumed time independence of the structure, temporal varia-

tions seen in time series of the data can now be converted

into spatial information along the two spacecraft paths, i.e.

spatial variations in the x direction.

We use an equilateral triangular integration grid, as shown

in Fig. A1, so that central differences can be used (SH11).

Under the assumption of time independency, the z deriva-

tives of U , ∂U
/
∂z, on the x axis, namely, at the midpoint,

(y, z)= (0,0), between the two spacecraft paths, can be eval-

uated by use of the data taken at the same x locations, i.e.(
∂U

/
∂z
)
i
=
(
UB,i −UA,i

)/
lz. Here UA,i and UB,i are the

values at (x, y, z)= (xi , 0, −lz
/

2) on the path of Sc-A and

at (x, y, z)= (xi , 0, +lz
/

2) on the path of Sc-B, respec-

tively. The subscript i (= 0, 1, 2, . . . , Nx = Lx
/
1x), repre-

sents the ith grid point in the x direction, where Lx is the x

length of the reconstruction domain and 1x is the distance

between the neighbouring points after interpolation in the x

direction of the original data. The x derivatives, ∂U
/
∂x, on

the x axis are calculated by use of a set of the interpolated

values at points along the x axis, which are averages, UM,i =(
UA,i +UB,i

)/
2, of the two spacecraft data at the same

x locations, i.e.
(
∂U

/
∂x
)
i
=
(
UM,i+1−UM,i−1

)/
(21x)
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if the lowest-order central difference is used. The four un-

known y derivatives ∂U
/
∂y are then given by the following

equations derived from Eqs. (1) and (2) (SH11),

∂U

∂y
=


∂Bx

/
∂y

∂By
/
∂y

∂Bz
/
∂y

µ0∂P
/
∂y

= (3)


(
µ0

/
By
)
∂P

/
∂x−

(
Bx
/
By
)
∂Bx

/
∂x−

(
Bz
/
By
)
∂Bx

/
∂z

−∂Bx
/
∂x− ∂Bz

/
∂z(

µ0

/
By
)
∂P

/
∂z−

(
Bx
/
By
)
∂Bz

/
∂x−

(
Bz
/
By
)
∂Bz

/
∂z

Bx∂By
/
∂x+Bz∂By

/
∂z+By

(
−∂Bx

/
∂x− ∂Bz

/
∂z
)

 .
These derivatives can be used to integrate U in the +y di-

rection to obtain the values at (y, z)= (1y, 0) (point 1 in

Fig. A1). Here 1y is the integration step, which should be

adjusted to an optimal value that allows for sufficiently ac-

curate reconstruction over a larger domain and, in Fig. A1,

is chosen to satisfy lz <
(

2
/√

3
)
1y. In the present study,

1x is set equal to 1y
/√

3. In general, 1x should be com-

parable to 1y for obtaining the best solution.

The next step is to compute the values at point 2 by use

of the extrapolated (or interpolated when lz >
(

2
/√

3
)
1y)

and integrated values at points 0b and 1, respectively. This

can be done by first rotating the coordinate system by +60◦

about the x axis and then using Eq. (3) to integrate U in the

rotated y axis direction, i.e. along +s in Fig. A1. This kind

of rotation-then-integration process is repeated until the inte-

gration reaches the two z boundaries, zmax and zmin (point 9

in Fig. A1). The integration in the plus and minus y direction

is then performed by use of Eq. (3) on the basis on the recov-

ered values at y =1y and y = 0, respectively, and is contin-

ued until the two y boundaries are reached. The end results

are the reconstructed 3-D distributions of the four quantities

U , i.e. the 3-D configuration of the magnetic field lines and

the pressure distribution, in a rectangular parallelepiped do-

main.

Since we can use only the lowest-order central difference

and two of the four equations (3) have terms divided by By
(and also because of the ill-posed nature of initial value prob-

lems), numerical errors develop with increasing number of

integration steps, especially in regions where By reverses

sign. The reconstruction is thus possible over only a limited

range in the y and z directions, while the x length Lx of the

reconstruction domain is determined by the path length of the

two spacecraft, i.e. V Sc times the length of the chosen data

interval. Because of the numerical errors, the reconstructed

total pressure and/or plasma pressure may take on negative

values at some grid point(s), after a number of integration

steps. Thus, in each integration step, if the computed total

pressure value becomes negative, it is reset to zero. If the

plasma pressure p = P −B2
/
(2µ0) computed at the end

of all integration steps becomes negative, it is also set to

zero. As consequences of these errors and corrections, the

reconstructed pressure may not be as strictly preserved along

the reconstructed field lines as expected from the magneto-

hydrostatic force balance equation, and the field may also

have nonzero divergence. For details of some newly devel-

oped methods to reduce these numerical errors, the readers

are referred to Appendix A.

3 Observations and analysis

In this section, we present an overview of THEMIS obser-

vations on 27 June 2007, ∼ 04:50 UT, when an FTE was en-

countered at the subsolar magnetopause under a southward

interplanetary magnetic field (IMF) condition. The FTE is

analysed by applying both the 3-D and GS (2-D) reconstruc-

tion techniques to the event. Note that both methods assume

the magnetohydrostatic force balance. The primary differ-

ences are the spatial dimension of the structure reconstructed,

and that the 3-D reconstruction requires data from two space-

craft, whereas the Grad–Shafranov reconstruction (GSR) in

principle utilises data from a single spacecraft. Hereafter we

use lower-case italic letters (x, y, z) for representing the com-

ponents and positions in GSM, capital italic letters (X, Y , Z)

for those in the 3-D reconstruction coordinate system, and

capital roman letters (X, Y, Z) for those in the 2-D GSR co-

ordinate system.

3.1 THEMIS observations of the FTE

The FTE studied in this paper was encountered by at least

three of the five THEMIS probes during the coast phase when

they formed a string-of-pearls configuration with separations

of order 1 RE (Angelopoulos, 2008). Figure 1 shows data

taken by the ESA ion instrument (McFadden et al., 2008)

and the fluxgate magnetometer (FGM) (Auster et al., 2008)

on board four (THB, THC, THD, and THE) of the five probes

during a 14 min interval 04:43–04:57 UT. The probes were

moving from the dayside magnetosphere into the subsolar

magnetosheath along similar orbits. This is most clearly seen

from the THE observations (blue lines in Fig. 1) showing

that the ion density, temperature, and the GSM z component

of the magnetic field all have typical magnetospheric val-

ues at the beginning of the interval, but have magnetosheath

values at the end. The IMF observed by THB in the mag-

netosheath immediately sunward of the magnetopause had a

southward component (Fig. 1i), the condition favourable for

reconnection to occur at the low latitude magnetopause. THC

and THD were separated by about 390 km, THB was on the

magnetosheath side of these two probes, and THE was on the

magnetospheric side.

Two FTEs were observed during the interval, one at

∼ 04:46 UT and another at ∼ 04:50 UT. Both events showed

typical FTE signatures: a negative to positive perturbation

in the x component of the field (Fig. 1g), which is approxi-

mately the component normal to the nominal magnetopause

www.ann-geophys.net/33/169/2015/ Ann. Geophys., 33, 169–184, 2015



172 H. Hasegawa et al.: Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope

0

20

40

N
 (/

cc
)

THEMIS  2007−06−27  0443:00−0457:00 UT

102

103

T 
(e

V
)

−100
0

100

V
x 

(k
m

/s
)

−100
0

100

V
y 

(k
m

/s
)

−200
−100

0
100

V
z 

(k
m

/s
)

30
60
90

|B
| (

nT
)

−40
−20

0
20
40

B
x 

(n
T)

−100
−50

0

B
y 

(n
T)

04:45
10.34
1.04

−2.65

04:50
10.40
1.09

−2.68

04:55
10.47
1.13

−2.72

−30
0

30
60

B
z 

(n
T)

 

 

THB
THC
THD
THE

UT
THC XGSM (RE)
THC YGSM (RE)
THC ZGSM (RE)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 1. (a–e) Ion and (f–i) magnetic field data in GSM coor-

dinates recorded by the ESA and FGM instruments, respectively,

on board four (THB, THC, THD, and THE) of the five THEMIS

probes during the interval 27 June 2007, 04:43–04:57 UT. THC and

THD data during the interval 04:49:05–04:52:05 UT, sandwiched

between the two vertical dashed lines, are used for the 3-D magne-

tohydrostatic reconstruction.

in the subsolar region, and an increase of the field magni-

tude (Russell and Elphic, 1978). Here we focus on the second

FTE, which is prominent in that the three probes, close to the

magnetopause, observed a large negative perturbation of Bx
(down to about −40 nT), and the field intensity at THE ex-

ceeded 90 nT, much higher than that in the magnetosphere

(∼ 60 nT). Note that a rather weak bipolar perturbation in

Bx was seen by THB in the magnetosheath, almost at the

same time as the FTE signatures were seen by the other three

probes, and also that around the centre time (∼ 04:50:30 UT)

of the event the core field (seen by THC, THD, and THE)

had a strong negative y component even though By in the

magnetosheath as seen by THB was near zero (Fig. 1h).

Interestingly, the second FTE was preceded by a signifi-

cant northward ion flow at 04:48 UT, followed by a south-

ward flow at 04:52 UT (Fig. 1e). These flows with |vz| ≥

100 km s−1, comparable to the magnetosheath Alfvén speed

(∼ 120 km s−1), were clearly seen by THE and less clearly

by THC, both of which were closer to the Earth than the other

two probes (THB and THD), and thus are consistent with

reconnection jets observed on the earthward side of a mag-

netopause of rotational discontinuity-type. Such FTEs sand-

wiched between oppositely directed reconnection jets have

been reported and can be interpreted as being associated with

magnetic flux ropes generated through multiple X-line re-

connection at the dayside magnetopause (Hasegawa et al.,

2010b; Øieroset et al., 2011; Zhang et al., 2012; Zhong et al.,

2013; Pu et al., 2013). Their in-depth analysis has demon-

strated that the oppositely directed flows are oriented toward

the flux rope centre, i.e. X-lines exist on both (northern and

southern) sides of the flux rope, and can compress the flux

rope from both sides. Such flows are likely to produce the

observed larger field magnitude and bipolar Bx perturbation

at the FTE centre than in FTEs generated by single X-line

reconnection.

In the following subsections, we apply both the 3-D and

the 2-D (GS) reconstruction methods to the interval between

the two vertical dashed lines in Fig. 1. During this interval,

the ion flows are not as intense as in the surrounding jet re-

gions where the flow is nearly Alfvénic. Thus the magneto-

hydrostatic force balance appears to be a reasonable assump-

tion.

3.2 3-D magnetohydrostatic reconstruction

The 3-D reconstruction method is applied to a 3 min inter-

val (04:49:05–04:52:05 UT) on 27 June 2007 (between the

vertical dashed lines in Fig. 1). For this interval, the HT

frame velocity, determined using a set of ion and magnetic

field data from both THC and THD, is V HT = (−6.3, 23.8,

−56.1) km s−1 in GSM. The field-aligned components of the

velocity left over in the HT frame are much smaller than

the local Alfvén speed, with the Walén slope of −0.005

(Paschmann and Sonnerup, 2008), which validates the model

assumption that inertia effects from the field-aligned flows

are negligible. The correlation coefficient between the three

components of the magnetic field and velocity in the HT

frame is −0.024, which is equivalent to an average angle be-

tween them of 91.4◦. This indicates that the velocity com-

ponents left over in the HT frame were approximately trans-

verse to the magnetic field, so that the structure may have

been evolving in a significant way. The correlation coefficient

between the three components of the convection electric field

and−V HT×B, converted into the frame in which the average

ion velocity for the interval is zero, is 0.240. This low cor-

relation indicates that the HT frame is not well determined,

i.e. the presence of a time-dependent structure. Such possibly

non-negligible structural evolution is actually expected from

the presence of the oppositely directed jets (Sect. 3.1) that

were converging toward the flux rope centre.

Figure 2 shows the 3-D magnetic field and pressure recon-

structed, using the data from THC and THD, which were sep-

arated by∼ 390 km roughly in the GSM x direction. A movie

of the 3-D reconstructed field, showing the 3-D field line

Ann. Geophys., 33, 169–184, 2015 www.ann-geophys.net/33/169/2015/
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Figure 2. Three-dimensional (3-D) structures of the magnetic field

and pressure recovered from the THC and THD data. (a) 3-

D representations of the reconstructed field lines, with the field

intensity in colour. The top view is roughly from the south-

dusk, while the bottom view is from the duskside magnetosheath.

The three GSM components of the reconstruction axes are: X =

(0.1024,−0.3883,0.9158), Y = (0.0780,−0.9147,−0.3966), and

Z = (0.9917,0.1120,−0.0634). The white arrows represent the ap-

proximate orientation of the magnetic field in the surrounding re-

gions. Please refer to the supplement for a movie of the 3-D recon-

structed field, showing the field configuration viewed from various

angles. (b) The 3-D field lines (cyan lines) and plasma pressure at

the three boundaries of the reconstruction domain in colour. The

white, yellow, and blue arrows have roots on the paths of THD,

THC, and THE, respectively, and show the ion velocity vectors

measured by those probes and transformed into the deHoffmann–

Teller (HT) frame. The magenta, green, and red bars at the upper

left represent the GSM x,y, and z axes, respectively.

structure viewed from various angles, is provided in the sup-

plement. The reconstruction axes, X̂, Ŷ , and Ẑ, are roughly

in the directions of the GSM z, −y, and x axes, respectively

(see the caption of Fig. 2 for the GSM components of the

axes). The separation lz of the two spacecraft along theZ axis

is 390.3 km. The integration step 1y is set to be 318 km, by

maximising the correlation coefficient between the magnetic

field components predicted from the reconstruction and those

actually measured at points along the path of the THE probe

(Fig. 3b). The location of the THE probe relative to the THC

location was (x, y, z)= (−1154,−392,288) km in GSM,

and (X, Y , Z)= (298,154,−1206) km in the reconstruction

coordinates. Bear in mind that the reconstructed fields near

the boundary surfaces may not be reliable, because the nu-

merical errors accumulate with increasing number of inte-

gration steps, i.e. with distance from the X axis. The recov-

ered 3-D field lines in Fig. 2a unambiguously demonstrate

that a structure of magnetic flux rope-type was encountered

by THC and THD. The intensity of the recovered field has

a maximum (∼ 100 nT) near the centre of the reconstruction

box, consistent with the presence of a flux rope. The cross

section of the flux rope had a diameter of ∼ 3000 km.

In the top panel of Fig. 2a, the field structure may look ap-

proximately 2-D. However, the recovered field lines appear

to intersect each other at many points in this projection plane

(viewed from a certain angle), suggesting that this FTE had

a pronounced 3-D structure. A comparison between the re-

sults from the SH11 method and from the GS reconstruction,

which will be presented in Sect. 3.3, indeed demonstrates that

the observed structure is better described by a 3-D, rather

than 2-D, model. The velocity vectors transformed into the

HT frame, denoted by the arrows in Fig. 2b, are generally ori-

ented toward the centre of the flux rope, although the speed

is relatively low on the northern side (in the right part of

the figure) of the centre. The flow directions are compatible

with the oppositely directed jets observed on the southern

and northern sides of the flux rope, i.e. with the presence of a

reconnection X-line on both sides, as discussed in Sect. 3.1.

These converging flows would have compressed the flux rope

and would have resulted in the intense core field at its centre

(Fig. 1f and h).

Figure 3 shows a comparison between the three GSM com-

ponents of the magnetic field predicted along the THE path

from the 3-D reconstruction and those actually measured by

the THE probe. Since the observed field variations are gen-

erally similar at the three probes, it may not be surprising

that the variation predicted at the THE location agrees well

with the observed variation. We point out, however, that as

clearly shown in the right part of Fig. 3a (middle panel), the

magnitude of By observed at THE is larger than at THC and

THD, and that the polarity of Bz seen by THE was different

from that at THC and THD (bottom panel) since THE was

on the magnetospheric side of the FTE centre. It is striking

that these differences are well recovered by the 3-D recon-

struction.

Figure 3b shows the correlation between the GSM com-

ponents of the magnetic field predicted and actually mea-

sured by THE. The Bootstrap method is used for estimat-

ing the confidence interval of the correlation coefficient (e.g.

Efron and Tibshirani, 1986, 1994; Kawano and Higuchi,

1995). The resulting confidence interval corresponding to

±1 sigma is from 0.8642 to 0.9020. The correlation coeffi-
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Figure 3. (a) Time series of three GSM components of the magnetic

field actually measured (solid) and predicted (dashed) along the

THE path (blue), along with the THC (green) and THD (black) data

used for the 3-D reconstruction. (b) Correlation between the three

GSM components of the predicted and measured fields at THE, but

excluding the data points closest to the X boundaries of the recon-

struction domain. The subscript and superscript of the correlation

coefficient represent the upper and lower values of the confidence

interval corresponding to ±1 sigma.

cient (0.8841) is not particularly high and is lower than those

seen for high-latitude FTEs reported and successfully recon-

structed with GS reconstruction by Sonnerup et al. (2004)

and Hasegawa et al. (2006). This lower correlation is likely

due to a significant evolution of the structure during the time

interval in question. A measure of structural evolution over

the interval isMA

(
Tint

/
τA

)
= 0.89, one order of magnitude

higher than for the events studied by Hasegawa et al. (2014).

Here, MA is the average plasma speed (29.7 km s−1) in

the HT frame divided by the magnetosheath Alfvén speed

(VA = 120 km s−1), Tint is the analysis interval (3 min), and

τA = L
/
VA is the Alfvén transit time where the character-

istic length scale of the structure L= 6000 km). The long

event duration, which is partially responsible for the higher

value of MA

(
Tint

/
τA

)
, results from a relatively low HT

frame speed, namely, slow motion of the FTE flux rope near

the subsolar magnetopause. Nonetheless, we emphasise that

the correlation coefficient CC= 0.88410.9020
0.8642 is significantly

higher than that (0.80070.8259
0.7753) from the GS reconstruction of

the present FTE, because the confidence interval for the 3-D

case is above that for the 2-D case (see Sect. 3.3 and Fig. 7

for details).

3.3 2-D Grad–Shafranov reconstruction

Here we apply the single-spacecraft version of the GS re-

construction technique (Sonnerup and Guo, 1996; Hau and

Sonnerup, 1999; Hasegawa et al., 2004) to THC observa-

tions of the FTE during the same 3 min interval (04:49:05–

04:52:05 UT) as for the 3-D reconstruction, and compare the

2-D reconstruction results with those from the 3-D recon-

struction presented in Sect. 3.2. THC was closer to THE than

THD (THC was at 1252 km from THE, and THD was at

1631 km/from THE). Thus, the GS reconstruction using THC

data would and does better predict the field variations at THE

than that using THD data (Fig. 7). For details of the method-

ology, the readers are referred to Hau and Sonnerup (1999)

and Sonnerup et al. (2006).

The HT velocity determined from the THC data alone

is V HT = (−4.7,13.7,−56.8) km s−1 in GSM. The Walén

slope is −0.028, and the correlation coefficient between the

field and velocity components in the HT frame is −0.124,

equivalent to the average angle between the field and veloc-

ity of 97.1◦. These values are similar to those resulting from

the combined THC and THD data used in the 3-D reconstruc-

tion. The invariant (Z) axis, along which gradient is assumed

to be negligible (∂
/
∂Z≈ 0), is determined by the method

used by Hasegawa et al. (2004), i.e. through maximisation

of the correlation coefficient between the three field com-

ponents predicted at points along the THE path and those

actually measured. Note that only THE data are used in the

calculation of the correlation coefficient in order to make the

comparison with the 3-D result (Fig. 3b) easier. Remember

that the GSR X axis is defined to be parallel to the projection

of the THC path (in the HT frame) onto the plane perpendic-

ular to the Z axis, i.e. is antiparallel to the projection of V HT,

and that the Y axis completes the right-handed orthogonal

system.

Figure 4 shows the transverse pressure, Pt = p+

B2
Z

/
(2µ0), and the axial component of the magnetic field

BZ as functions of the partial vector potential A, for the de-

termined orientation of the invariant axis. In principle, these

two quantities should be preserved along the field lines in

2-D GS equilibria (e.g. Sonnerup et al., 2006), and this prop-

erty has been used in the method, developed by Hu and Son-

nerup (2002), for estimating the axial (Z) orientation of mag-

netic flux ropes on the basis of single-spacecraft measure-

ments. However, both panels in Fig. 4 indicate that the data
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Figure 4. Scatter plots of (a) the transverse pressure, Pt = p+

B2
Z
/(2µ0), versus partial vector potential A and (b) of the ax-

ial magnetic field component BZ versus A, for the invariant (Z)

axis orientation estimated by maximising the correlation coefficient

(Fig. 6b) between the field components measured and predicted,

from the Grad–Shafranov reconstruction (GSR) using the THC data

(Fig. 5), along the THE path. The circles show the measurements

and the thick black curves are polynomial fits to the measurements.

points acquired by THC during the FTE interval are not rep-

resented by a single curve, but show a double-branch feature.

We also estimated the axis by the Hu and Sonnerup method

in such a way that the measured data points in the Pt versus

A space (as shown in Fig. 4a) fall on a single curve as best

as possible. The resultant axis, Z= (0.1114, 0.9228, 0.3688),

has a substantial angle (16.1◦) with respect to the correlation

coefficient-based axis. These features imply that the FTE in

question cannot be well represented by a 2-D model, but has

a significant 3-D structure.

Figure 5 shows the 2-D magnetic field and pressure

maps reconstructed by the GSR method. The three THEMIS

probes traversed the structure at 56.8 km s−1 along the

X axis, from left to right in the map. The 2-D results sug-

gest that the probes encountered a magnetic flux rope with

a diameter of ∼ 3000 km, essentially consistent with the 3-

D reconstruction results. However, the transverse (in-plane)

components of the recovered magnetic field are not parallel

to those actually measured at points along the THE path, es-

pecially for the earlier half of the interval corresponding to

the southern side of the FTE centre; in the left part of the

map (Fig. 5a), the black curves have substantial angles with

respect to the white arrows on the THE path.

Figure 6 shows a time series and scatter plot of the three

GSM components of the magnetic field predicted from the 2-

D map at points along the THE path and those actually mea-

sured. The panels indicate that the reconstructed fields do not

agree well with the measured fields. As seen in Fig. 7, the

correlation coefficients in the 2-D case, CC= 0.80070.8259
0.7753

for the THC-based GSR and CC= 0.71360.7566
0.6717 for the

THD-based GSR, are indeed significantly lower than that

(0.88410.9020
0.8642) in the 3-D case. The quantity 1−CC2, which

is a measure of the deviations, is 0.36 for GSR using the

Y
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Figure 5. Two-dimensional (2-D) magnetic field and pressure re-

covered from the GSR method using the THC data for the same

interval as for the 3-D reconstruction. Black lines show the recon-

structed transverse field lines, with (a) the axial field component

BZ and (b) pressure in colour. White arrows show the projections

onto the GSR X-Y plane of the actually measured magnetic fields

in panel (a) and ion velocities left over in the HT frame in panel (b).

The GSR axes are in GSM: X= (−0.0131,−0.4544,0.8907), Y=

(0.9295,−0.3339,−0.1567), and Z= (0.3686,0.8258,0.4268).

The magenta, green, and red bars in panel (a) are the GSR X-Y

projections of the GSM x, y, and z axes, respectively.

THC data and 0.22 for the 3-D reconstruction. These com-

parisons demonstrate that the FTE encountered by THEMIS

had a substantial 3-D magnetic structure, and that the SH11

method can provide the 3-D field of acceptable quality for an

actually observed structure.

4 Magnetic topology of the FTE

In this section, we investigate magnetic field-aligned and

anti-field-aligned fluxes of electrons, as well as of ions ob-

served in the FTE and surrounding regions. Energy-versus-

time spectrograms of the ion fluxes can be used to identify

signatures of ion acceleration or heating, possibly associated

with magnetopause reconnection, while field-aligned stream-

ing electrons can be used as tracers of the topology of the

field lines. Figure 8 shows the spectrograms of the differen-

tial energy fluxes (eV cm−2 s−1 ster−1 eV−1) in the space-

craft frame based on the THD and THE observations, along

with the magnetic field data from the four probes presented

in Fig. 1. The THC spectrograms look similar to the ones for

THD (Fig. 8e–h) and thus are not shown, while THB (on the

magnetosheath side) was too far from the FTE core to be of

help in revealing the topological properties. Note that THD

traversed the central but somewhat magnetosheath-side part

of the FTE, whereas THE was on the magnetospheric side of

THD and THC (Fig. 2).

For the 14 min interval shown in Fig. 8, THD observed ei-

ther the magnetosheath or the magnetopause boundary layer
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construction using the THC data. The field variations along only the

THE path are shown.

in which FTEs were embedded, while THE observed ei-

ther the typical outer magnetospheric region or the boundary

layers including the magnetosheath boundary layer (MSBL)

(e.g. Fuselier, 1995). The magnetosheath, encountered by

THD, e.g. after 04:53 UT, was dominated by ions with en-

ergies less than a few keV and electrons with energies less

than a few hundreds eV (Fig. 8e–h). As discussed in Sect. 3,

two FTEs were encountered at around 04:46 and 04:50 UT,

when both the ion and electron spectrograms were charac-

terised by the coexistence of the hot (> a few keV) magneto-

spheric population and heated or accelerated magnetosheath

population. During a part of the second FTE interval to which

the reconstruction methods were applied (Sect. 3), the field-

aligned and anti-field-aligned electron fluxes were approx-

imately balanced at all energies (Fig. 9), suggesting that

the field lines are closed, i.e. anchored to the Earth at both

ends (e.g. Øieroset et al., 2008; Pu et al., 2013). However,

at ∼ 04:50:30 UT near the centre of the FTE flux rope, the

anti-field-aligned flux was significantly higher than the field-
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Figure 7. The correlation coefficients between the three GSM com-

ponents of the predicted and measured fields at THE, and their con-

fidence intervals corresponding to ±1 sigma, for the 2-D and 3-D

methods. The two correlation coefficients in the 2-D case are from

the GS reconstruction applied individually to the THC and THD

data.

aligned flux at energies of more than a few keV. Such electron

pitch-angle anisotropy within FTEs generated through mul-

tiple X-line reconnection has been reported by Øieroset et

al. (2011) and Pu et al. (2013). It indicated that the field lines

near the FTE centre were open, connected to the northern

ionosphere at one end and extending to interplanetary space

at the other end, in this particular case.

Heated magnetosheath electrons were seen by THD

throughout the FTE in both the field-aligned and anti-field-

aligned fluxes (Fig. 8g and h). We note that these bi-

directional heated electrons were observed on the magne-

tosheath side of the FTE centre where Bz < 0, and thus

were not due to THD crossing into the magnetosphere or

its boundary layer. This feature can be taken as a signature

of magnetopause reconnection on the field lines traversed by

the spacecraft (e.g. Onsager et al., 2001). For this particu-

lar event, it indicated that reconnection occurred on both the

northern and southern sides of the FTE, i.e. the observed FTE

was formed by multiple X-line reconnection (e.g. Hasegawa

et al., 2010b). These electron pitch-angle distribution signa-

tures demonstrate that FTEs generated by multiple X-line

reconnection can consist of field lines of various topolo-

gies, as shown by Pu et al. (2013). On the other hand, at

∼ 04:48:35 and∼ 04:52:50 UT in the MSBL immediately on

the magnetosheath side of the FTE, the field-aligned (south-

ward streaming) electrons showed no heated magnetosheath

population while the anti-field-aligned (northward stream-

ing) electrons showed the heated population. This indicated

that the MSBL field lines observed there crossed the magne-

topause on the southern side only of the FTE (Hasegawa et

al., 2010b).
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Figure 8. (a–d) Magnetic field measurements by the four THEMIS

probes, and (e–l) energy-versus-time spectrograms of ions and elec-

trons detected by the THD and THE probes. PA stands for the

“pitch-angle” in the spacecraft frame of particles in question, and

thus the upper and lower panels in each set of the two ion or electron

spectrograms show the differential energy fluxes of field-aligned

and anti-field-aligned particles, respectively. The reconstruction in-

terval is sandwiched between the two vertical dashed lines.

THE was initially in the magnetosphere, dominated by

ions and electrons of more than 1 keV, but after ∼ 04:44 UT

was in the boundary layers, either earthward (Bz > 0) or

sunward (Bz < 0) of the magnetopause (Fig. 8i–l). Both

boundary layers are characterised by the coexistence of mag-

netospheric and magnetosheath populations. However, the

fluxes of magnetospheric electrons and energies of mag-

netosheath ions were both somewhat lower in the MSBL,

seen by THE after ∼ 04:53 UT when the field became south-

ward, than in the boundary layer on the magnetospheric side.

The magnetospheric electrons observed near the FTE centre

(∼ 04:50:45 UT) had a pitch-angle anisotropy similar to that

seen by THD at ∼ 04:50:30 UT; the field lines in the FTE
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Figure 9. (a) Electron pitch-angle versus energy spectrogram and

(b) energy distributions at the pitch angles 0, 90, and 180◦, obtained

in the FTE by THD at 04:51:08–04:51:11 UT. The field-aligned and

anti-field-aligned fluxes are roughly balanced especially at higher

energies, indicating that the field lines in the FTE are partly closed.

core were open. Interestingly, the field-aligned and anti-field-

aligned electron fluxes were roughly balanced throughout the

MSBL interval of THE (Fig. 8k, l), suggesting that the MSBL

field lines were closed. Possible explanations for this feature

are given and discussed in Sect. 5. In summary, the THD

and THE particle signatures are all consistent with the view

that the FTE resulted from multiple X-line reconnection at

the low-latitude magnetopause and consisted of a mixture of

closed field lines and open ones with one end connected to

the northern ionosphere and the other end extending to inter-

planetary space.

5 Summary and discussion

We have presented the first results of the data analysis tech-

nique, developed by Sonnerup and Hasegawa (2011), for re-

constructing steady 3-D magnetohydrostatic magnetic field

and plasma structures from dual-spacecraft observations.

The method was applied to data taken at ∼ 04:50 UT on

27 June 2007 by the THC and THD probes of the THEMIS

spacecraft during a flux transfer event (FTE). The event oc-

curred at/around the subsolar magnetopause, when the IMF
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had a southward component and the two probes were sep-

arated by ∼ 390 km. The results can be summarised as fol-

lows:

1. Structure: the 3-D reconstruction results show that a

magnetic flux rope with a diameter of ∼ 3000 km was

embedded in the FTE. Comparison between the 3-D

reconstruction and 2-D GS reconstruction results indi-

cates that the flux rope had a substantial 3-D structure,

not well described by 2-D models. The flux rope was

elongated roughly in the dawn-dusk direction, with a

left-handed chirality, i.e. the core field had a significant

dawnward component.

2. Time dependence: the perpendicular (to the field) com-

ponents of the velocity remaining in the HT frame were

fairly large, suggesting that the flux rope was still evolv-

ing. Since the FTE was sandwiched between two oppo-

sitely directed reconnection jets and the flow was gen-

erally oriented toward the centre of the flux rope, it

is likely that the flux rope was being compressed by

the jets from both sides. We were not able to success-

fully reconstruct the flux rope by the methods, devel-

oped by Sonnerup and Hasegawa (2010) and Hasegawa

et al. (2010a, 2014), that can recover slow time evolu-

tion of 2-D magnetohydrostatic structures. This may in-

dicate that the 3-D and/or time-dependent effects were

too strong to be accommodated by the 2-D time evolu-

tion methods.

3. Magnetic topology: the pitch-angle distribution of hot

magnetospheric electrons shows that the FTE consisted

of open and closed field lines. A major part of the flux

rope was on closed field lines, consistent with its gen-

eration by multiple X-line reconnection; a significant

fraction of open field lines produced at one X-line was

later closed by reconnection at another X-line. However,

the field lines around the centre of the flux rope were

open, with one end anchored to the northern ionosphere.

This suggests that during an initial phase of the genera-

tion, the reconnected flux tube of the observed FTE was

on the northern side of an X-line, i.e. reconnection oc-

curred first on the southern, rather than northern, side of

the FTE.

4. Generation mechanism: all the observed features, such

as the observed locations of the oppositely directed ion

jets relative to the FTE and electron pitch-angle distri-

butions, indicate that multiple X-line reconnection was

involved in the FTE formation. The FTE flux rope was

generally moving southward, probably pushed by the

southward reconnection jet located on the northern side

of the FTE. A likely sequence of magnetopause recon-

nection, first on the southern side of the FTE and later on

the northern side under the condition when the magnetic

dipole axis is tilted sunward in the northern hemisphere

(see also Hasegawa et al., 2010b), is consistent with the

FTE generation mechanism proposed by Raeder (2006)

in which multiple X-line reconnection occurs sequen-

tially under a substantial tilt of the geomagnetic dipole

axis.

5. Implication for the 3-D method: the results demonstrate

that our 3-D reconstruction method provides a 3-D mag-

netic field of acceptable quality when the THC and

THD probes, which acquired input data for the recon-

struction, are separated by ∼ 390 km, about 10 % of the

size of the FTE, in the direction transverse to the probe

paths in the chosen structure-rest (HT) frame. This sug-

gests that the method may be used for a not-too-limited

range of inter-spacecraft distance (of the order of 1

to 10 % of the characteristic scale length). Remember,

however, that our earlier benchmark test (Sonnerup and

Hasegawa, 2011) shows that an optimal separation is

only a few per cent of the characteristic scale length.

6. Implication for the 2-D methods: for substantial 3-D

structures, 2-D methods (e.g. Hu and Sonnerup, 2002;

Hasegawa et al., 2004; Sonnerup and Hasegawa, 2005)

can fail to estimate the orientation of the invariant axis,

along which the spatial gradient is assumed to be neg-

ligible. A significant difference among the axial orien-

tations estimated by various 2-D methods may indicate

the existence of a 3-D structure. Such cases should be

interpreted with care. On the other hand, the 2-D GS

method may help to roughly estimate the size and shape

of a 3-D structure, as demonstrated by Hasegawa et

al. (2007).

Although the present version of 3-D reconstruction us-

ing two-spacecraft data is restricted to applications to steady

magnetohydrostatic structures, it is in principle possible to

extend the method to those applicable to steady fully MHD

or Hall MHD structures. As discussed by Sonnerup and

Hasegawa (2011), a more general case would be reconstruc-

tion of not only 3-D features but also time dependent effects,

which requires the use of data from at least three closely

spaced spacecraft. A difficulty associated with these more so-

phisticated reconstructions is that they require such well cal-

ibrated data, for all MHD or Hall MHD parameters (includ-

ing ion velocity and electric field) and from a larger number

of spacecraft, so that precise values of spatial and/or tempo-

ral gradients can be estimated. The present method requires

magnetic field and pressure data of sufficient quality from

only two spacecraft (or the field data alone under low β con-

ditions). Another disadvantage would be that the equations

used in the more sophisticated versions could have more sin-

gularities, leading to larger numerical errors. These are the

issues that should be addressed in future studies.

It is worth noting that a fraction of the low-latitude bound-

ary layer (LLBL) seen by THD and THE was characterised
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by approximately balanced fluxes of field-aligned and anti-

field-aligned electrons (Figs. 8 and 9) and thus appeared to

be on closed field lines, even under a southward IMF con-

dition. The formation of such a closed LLBL requires mag-

netopause reconnection at more than one site, as proposed

by Nishida (1989) and Song and Russell (1992), unless dif-

fusion is responsible for its formation. Our observations in-

deed show that multiple X-line reconnection was involved

in the generation of the observed FTE. Since the oppositely

directed plasma jets emanating from different reconnection

sites may collide, the associated open flux tubes may interact

with each other and be entangled in a complex way (Fig. 4 in

Nishida, 1989). Louarn et al. (2004) indeed reported a signa-

ture of such entangled or interlinked reconnected flux tubes.

A possible scenario that can explain our observations is that

reconnection of these open flux tubes resulted in the forma-

tion of the closed flux tube containing solar wind plasma and

of the IMF-type flux tube (Fig. 2 in Nishida, 1989), thus cre-

ating the closed portion of the LLBL present in and around

the FTE. For another possible way to create the closed field

lines in the flux rope, see Fig. 2 in Pu et al. (2013). We point

out that in an FTE reported by Øieroset et al. (2011), there

was no evidence of reconnection in the central part of the

flux rope flanked by two active X-lines where two reconnec-

tion jets and thus reconnected flux tubes from the two X-

lines were colliding (Øieroset et al., 2014). Thus, the ques-

tion of whether the Nishida mechanism works in reality re-

mains open.

Another possible consequence of multiple X-line recon-

nection at the low-latitude magnetopause under southward

IMF is less efficiency in the transfer of solar wind energy

to the magnetotail than with the transfer resulting from sin-

gle X-line reconnection (Hasegawa et al., 2010b; Hasegawa,

2012). Because an X-line may exist ahead of a reconnection

jet emanating from another X-line, magnetic flux tubes re-

connected and eroded on the dayside may be entangled or

interlinked (Nishida, 1989) and may not be smoothly trans-

ported from dayside to nightside. Thus, if multiple X-line

reconnection occurs more frequently under larger geomag-

netic dipole tilt, as suggested by Raeder (2006), lowering

the energy transfer rate, it may be that the total amount of

solar wind energy deposited to the magnetotail is smaller

during summer and winter, possibly contributing to seasonal

variations of geomagnetic activities. Although it may be dif-

ficult to observationally confirm such a possible relation-

ship among the occurrence of multiple X-line reconnection,

dipole tilt, and solar wind energy transfer rate, global mag-

netospheric simulations may help to reveal or refute the con-

nection.

Interesting questions that can be addressed with the 3-

D reconstruction method are whether an FTE, as hypoth-

esised originally by Russell and Elphic (1978), exists and

to what extent such FTEs contribute to magnetic flux trans-

port toward the tail. In the Russell and Elphic model, FTEs

are generated when magnetopause reconnection occurs in-

termittently and locally on a short segment of single X-line,

and are characterised by an elbow-shaped (namely fully 3-

D) flux tube connecting the magnetosheath and magneto-

sphere. Such localised and transient reconnection is indeed

shown to be able to produce a bipolar variation in the mag-

netic field component normal to the nominal current layer

(e.g. Semenov et al., 1994; Shirataka et al., 2006). However,

unambiguous identification of the Russell–Elphic type FTE

would need to demonstrate that the local orientation of the

flux tube axis at around the elbow has a nonzero angle with

respect to the magnetopause surface. It requires accurate es-

timation of the magnetopause normal as well as of the orien-

tation of the flux tube or rope. The latter would be possible

by careful analysis of the magnetic gradient tensor that can

be computed from the reconstructed data at any point in the

3-D reconstruction domain. We also need some reasonable

way for determining the boundary of the flux tube or rope

and magnetic flux content from the 3-D field data (and other

additional information) in order to be able to assess the role

of FTEs. These subjects will be pursued in a future study.

The 3-D magnetic field recovered by methods of the type

presented here can in principle be used to calculate the spa-

tial gradient of the field (Shi et al., 2005) and current den-

sity (j = (∇ ×B)
/
µ0) at any point in the reconstruction

domain, and also to identify magnetic nulls, separators, and

quasi-separatrix layers (Priest and Demoulin, 1995; Cai et

al., 2001; Xiao et al., 2006; Wendel and Adrian, 2013; Ko-

mar et al., 2013), key ingredients in 3-D reconnection that

could potentially exist in the domain. Recent particle simula-

tions show that 3-D dynamics can play an important role in

the magnetic dissipation in collisionless reconnection (Che

et al., 2011; Fujimoto and Sydora, 2012) and the evolu-

tion of reconnecting current sheets (Daughton et al., 2011,

2014; Nakamura et al., 2013). Our expectation is that the

3-D reconstruction technique, combined with other multi-

spacecraft methods and data from NASA’s forthcoming Mag-

netospheric MultiScale (MMS) mission (Burch and Drake,

2009; Moore et al., 2013), will facilitate our understanding

of the 3-D aspects of magnetic reconnection.
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Appendix A: Minimising numerical errors

In this section, we describe two methods to reduce numeri-

cal errors associated with the spatial integration used in our

3-D reconstruction. Major sources of the errors are (i) that

two of the four equations in (3), used in the integration, have

terms divided by By and thus have a singularity when By
vanishes, and (ii) that only the lowest-order central difference

can be used to estimate the z derivatives, since we suppose

that data from only two spacecraft are available. The meth-

ods are validated by using an analytical solution of the 3-

D magnetohydrostatic equations describing an axially sym-

metric spheromak field geometry. This field appears 3-D in

Cartesian coordinates, and was used in benchmark tests of

a primitive numerical code of the 3-D reconstruction (Son-

nerup and Hasegawa, 2011).

In one of the methods, we make a correction of the y

derivatives when ∂U
/
∂y estimated by Eq. (3) exceeds a cer-

tain threshold value. As an example, let us consider a step

in which the values at point α in the y-z plane in Fig. A1

are computed. Suppose U to be the quantities normalised to

their typical value,
(
∂U

/
∂y
)
j

to be the y derivatives esti-

mated by using Eq. (3) based on the values at points 1 and 2,

and
(
∂U

/
∂y
)
j−1/ 2

to be those estimated using the values at

point 0b and at the midpoint between points 1 and 2, i.e.(
∂U

∂y

)
j−1/ 2

=
(U1+U2)

/
2−U0b

1y
. (A1)

Here U1, U2, and U0b are the values at points 1, 2, and

0b, respectively, and simple linear interpolation is used to

obtain the values at the midpoint. Substantial difference be-

tween
(
∂U

/
∂y
)
j

and
(
∂U

/
∂y
)
j−1/ 2

suggests that mem-

bers of
(
∂U

/
∂y
)
j

are not of acceptable accuracy likely

because of the appearance of the singularities or the use

of the low-order scheme. Thus, we replace
(
∂U

/
∂y
)
j

by
(
∂U

/
∂y
)
j−1/ 2

if the absolute value of the difference∣∣∣(∂U / ∂y)j − (∂U / ∂y)j−1/ 2

∣∣∣ exceeds a certain threshold

value (set at 0.5 in the present study). Note that this correc-

tion is possible in all steps, except for the first step to com-

pute the values at point 1. For example, the computation and

evaluation of the values at point 2, conducted in the second

step, are made using the values at points 1, 0b, and 0a.

The other method, implemented after the first one, con-

cerns the solenoidal property of the magnetic field,∇·B = 0,

and tries to reduce nonzero divergence of the reconstructed

field. Although ∇ ·B = 0 is explicitly used in Eq. (3) to

compute ∂By
/
∂y, nonzero divergence may appear after the

correction described above and smoothing in the x direc-

tion of ∂U
/
∂y are performed in each integration step. Such

smoothing is needed to minimise the effects of unrealistically

large absolute values (even after the above correction) and/or

an oscillatory behaviour in the x direction of ∂U
/
∂y numer-

ically estimated (Sonnerup and Hasegawa, 2011). The value

z

y

ScB

0a

ScA

Δy

Δs
(=Δy)l z

1 2

0b 3
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j=2

j=3

k=1 k=2 k=3

k’ =1 k’ =2 k’ =3

s

s’

9

8

z = zmax

α

Figure A1. Triangular central-difference integration grid used in

the reconstruction (modified from Fig. A1 of SH11). The x axis is

halfway between the paths of Sc-A and Sc-B, and points into the

figure plane. Numbers on the grid points indicate the order in which

data at them are calculated. See text for details about the methods

used to reduce numerical errors in estimating the gradients.

of ∇ ·B after the smoothing can be written as:

∇ ·Bj,old =

(
∂Bx

∂x

)
j

+

(
∂By

∂y

)
j,old

+

(
∂Bz

∂z

)
j

= βj , (A2)

where βj may be nonzero. We nudge the numerically esti-

mated ∂By
/
∂y toward satisfying ∇ ·B = 0 in the following

way:(
∂By

∂y

)
j,new

=

(
∂By

∂y

)
j,old

−Cβj , (A3)

where C is a nudging factor smaller than unity (set at 0.5

in the present study), and the subscripts “old” and “new”

represent the values before and after the nudging correction,

respectively. The corrected value
(
∂By

/
∂y
)
j,new

is used in

the estimation of ∂P
/
∂y as well as ∂By

/
∂y (note that the

terms in the parenthesis on the right-hand side of the fourth

of Eq. (3) are in total equal to ∂By
/
∂y).

In Fig. A2, we compare numerical solutions of the poloidal

fields and plasma pressure from three versions of the 3-D in-

tegration, one with no corrections of ∂U
/
∂y and∇·B (panel

b), one with only ∂U
/
∂y correction (panel c), and one used

in the application with both ∂U
/
∂y and ∇ ·B corrections.

With no corrections, the recovered field lines deviate appre-

ciably from those of the exact solution near the boundaries

of the reconstruction domain (Fig. A2b). The pressure is
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Figure A2. Comparison between (a) exact solution and benchmark

reconstructions with (b) no corrections, (c) ∇U correction only, and

(d) both ∇U and ∇ ·B corrections (see Appendix for details). The

format is the same as in the right panels in Fig. 6a of SH11; poloidal

field lines are shown in a meridional plane at ϕ = π/4, with plasma

pressure in colour. Small circles indicate the locations at which the

Sc-A (black) and Sc-B (red) paths cross the plane. The number at

the upper-right of each panel shows the mean absolute value of

∇ ·B, as a measure of the quality of the numerical integration.

also not preserved along the field lines, contrary to expecta-

tion from the magnetohydrostatic force balance ∇p = j×B.

The ∂U
/
∂y correction makes the reconstructed fields in

good agreement with the exact ones and makes the pres-

sure roughly constant along the field lines, but the divergence

of the field is still substantial (Fig. A2c). With both correc-

tions, the mean absolute value of the divergence is reduced

to 0.0722 (Fig. A2d), which is only ∼ 32 % of that for the

version with the ∂U
/
∂y correction only. The comparison

demonstrates that the two methods described above are help-

ful in significantly reducing the numerical errors.
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The Supplement related to this article is available online

at doi:10.5194/angeo-33-169-2015-supplement.
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