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Abstract. We present a new method to reconstruct solar

wind conditions from spacecraft data taken during magne-

tosheath passages, which can be used to support, e.g., magne-

tospheric models. The unknown parameters of the solar wind

are used as boundary conditions of an MHD (magnetohydro-

dynamics) magnetosheath model. The boundary conditions

are varied until the spacecraft data matches the model predic-

tions. The matching process is performed using a gradient-

based minimization of the misfit between data and model. To

achieve this time-consuming procedure, we introduce the ad-

joint of the magnetosheath model, which allows efficient cal-

culation of the gradients. An automatic differentiation tool is

used to generate the adjoint source code of the model. The re-

construction method is applied to THEMIS (Time History of

Events and Macroscale Interactions during Substorms) data

to calculate the solar wind conditions during spacecraft mag-

netosheath transitions. The results are compared to actual so-

lar wind data. This allows validation of our reconstruction

method and indicates the limitations of the MHD magne-

tosheath model used.

Keywords. Interplanetary physics (solar wind plasma)

– magnetospheric physics (magnetosheath; solar wind–

magnetosphere interactions)

1 Introduction

The interaction of the solar wind with a planet and its mag-

netic field, such as the Earth’s internal dipole field, causes

the current system of the magnetosphere. Thereby, currents

in the outer region of the magnetosphere, the magnetosheath,

are related to the deflection of the solar wind plasma around

the planet. These currents, far from the planetary surface, can

be observed by a spacecraft crossing the magnetosheath with

its boundaries being the bow shock and magnetopause. The

influence of the solar wind on the currents in the inner mag-

netosphere can also be directly observed by ground magne-

tometer data. Modifications of the strength of these currents

can be expressed by the indices of geomagnetic activity de-

pending on the solar wind conditions.

This dependence was used by Andreasen (1997) to recon-

struct average solar wind conditions and their gross tempo-

ral variations in the pre-spacecraft era. Thereby, solar wind

spacecraft observations were related to the indices of geo-

magnetic activity using a multi-regression method. Then, the

solar wind conditions were estimated from ground magne-

tometer data back to 1926. A different approach to relate

solar wind conditions to the indices of geomagnetic activ-

ity was introduced by Kondrashov et al. (2014). They use a

singular spectrum analysis to fill gaps of the solar wind data

in the period of 1972–2013. This analysis estimates hourly

solar wind conditions during periods where no in situ mea-

sured solar wind information is available. It was shown that

the reconstructed solar wind information can improve empir-

ical models such as the Tsyganenko model (Tsyganenko and

Sitnov, 2005).

In contrast to the previous approaches, Nagatsuma et al.

(2015) included spacecraft observations to reconstruct solar

wind conditions. During a geomagnetic storm in 1989, the

magnetopause was near the geostationary orbit due to the

extremely high solar wind dynamic pressure. The magne-

topause location was determined by the Geostationary Oper-

ational Environmental Satellite (GOES). This magnetopause

location was related to the solar wind conditions with the
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magnetopause model by Shue et al. (1998). This reconstruc-

tion approach using the spacecraft data with a high time reso-

lution allows one to estimate the solar wind conditions more

precisely on a much higher time resolution compared to the

previous approaches.

We extend this approach by using not only the mag-

netopause location observed by a spacecraft, but by using

spacecraft data obtained everywhere in the magnetosheath.

Analogously to the previous studies, the reconstruction can

be used to provide solar wind information if in situ solar

wind observations are not available. This determines the so-

lar wind parameters, which are the drivers of the magneto-

spheric current system and are usually required in magne-

tospheric and ionospheric models (e.g., Nagata et al., 2008;

Korth et al., 2010; Zhang et al., 2013; Baker et al., 2013)

We reconstruct the solar wind conditions during a space-

craft magnetosheath passage using the magnetosheath model

introduced by Nabert et al. (2013). The solar wind parame-

ters are boundary conditions of the magnetosheath model and

they are varied until the model predictions match the mag-

netosheath data. The corresponding adjoint magnetosheath

model is derived to perform this time-consuming proce-

dure. Adjoint models are broadly used in fluid dynamic op-

timization problems such as drag minimization (e.g., Jame-

son, 1988; Othmer, 2008, 2014; Meader and Martins, 2012),

or in seismology (e.g., Fichtner et al., 2006). We will in-

troduce and discuss the problems of how to deal with a

magnetosheath model when an adjoint approach is used. To

verify our method, we use data from the THEMIS (Time

History of Events and Macroscale Interactions during Sub-

storms) mission (Angelopoulos, 2008) to reconstruct the so-

lar wind conditions at Earth’s orbit. The reconstructed con-

ditions are compared to OMNI solar wind monitor data

(see http://omniweb.gsfc.nasa.gov/) as well as THEMIS data

from a second spacecraft in the solar wind. This indicates the

limitations of the magnetosheath model used.

2 Solar wind reconstruction method

2.1 The forward magnetosheath model

For the solar wind reconstruction, we chose the zeroth order

MHD (magnetohydrodynamics) model presented in Nabert

et al. (2013). This model uses series expansions of density,

velocity, gas pressure, and magnetic field up to the first order

away from the stagnation streamline to simplify the station-

ary MHD equations. Consequently, the model is only valid

close to the stagnation streamline. The x axis of the coordi-

nate system is chosen to be along the stagnation streamline,

the z axis is along the Earth’s dipole axis, which is assumed

to be orthogonal to the x axis, and the y axis completes a

right-hand orthogonal system. Note that the y and z direc-

tions are called tangential hereafter. The series expansion

procedure provides the following set of ordinary differential

equations (Nabert et al., 2013):

(ρ0ux0)
′
+ ρ0

(
uy10+ uz01

)
= 0, (1)

(Bz0ux0)
′
+Bz0uy10 = 0, (2)

ρ0ux0u
′

x0+p
′

0+
1

µ0

Bz0B
′

z0−
1

µ0

Bx01Bz0 = 0, (3)(
p0ρ
−γ

0

)′
= 0. (4)

Here, ρ0 represents the density, ux0 the velocity compo-

nent in x direction, Bz0 the magnetic field component along

the Earth dipole moment, and p0 the gas pressure. The in-

dex 0 indicates the zeroth order approximation used. The

derivatives marked by the prime are with respect to the

stagnation streamline direction x. The vacuum permeabil-

ity is µ0 = 4π × 10−7 N/A2. The tangential velocity deriva-

tives uy10 and uz01, as well as the magnetic field derivative

Bx01, are given by uy10 = 0.81u/xBS, uz01 =1u/xBS, and

Bx01 ≈ 0 (Nabert et al., 2013). Here, 1u denotes the x com-

ponent of the velocity difference across the bow shock, which

is calculated using Rankine–Hugoniot relations. The bow-

shock distance to the Earth’s center is denoted by xBS. Figure

1 sketches the workflow of this model.

The solar wind parameters are used as input parameters to

obtain the magnetosheath solution. Note that this evaluation

procedure is called forward model. In a later step, yet to be

discussed, these boundary values are modified to match any

observed magnetosheath situation to our calculation results

using a so-called reverse model approach. The solar wind pa-

rameters are the density ρSW, velocity’s x component uSW,

magnetic field’s z component BSW, and pressure pSW. Note

that an x component of the magnetic field does not affect the

solution of the zeroth order model used. This limitation of the

magnetosheath model restricts our solar wind reconstruction

to the y and z components of the solar wind magnetic field.

The x component cannot be reconstructed using this magne-

tosheath model. A y component of the magnetic field can be

taken into account in this model by replacing the z compo-

nent Bz0 by the magnitude of the tangential magnetic field,

i.e., Bz0← sgn(Bz0) ·(B
2
y0+B

2
z0)

0.5. Here, sgn() denotes the

signum function. Then, the solar wind magnetic field BSW is

replaced by BSW← sgn(Bz,SW ) · (B
2
y,SW+B

2
z,SW)

0.5.

At the bow shock (x = xBS), the solar wind values are

transformed into post-shock magnetosheath conditions us-

ing Rankine–Hugoniot relations (e.g., Petrinec and Russell,

1997). The post-shock values ρ0(x = xBS), ux0(x = xBS),

Bz0(x = xBS), and p0(x = xBS) are the boundary conditions

for the ordinary differential Eqs. (1)–(4) presented above.

Furthermore, the bow-shock distance needs to be known in

order to calculate uy10 and uz01. The bow-shock distance xBS

is the sum of the magnetopause distance to the Earth’s center

xMP and the magnetosheath thickness 1xMS. An initial esti-

mator of the magnetopause distance denoted by x0
MP is given
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Solve DEQ
A q = b

Solar Wwwwwwind
conditions

Solve rankine-
hugoniot relations

Estimate
xBS

Calculate
u ,y10 uz01

Magnetosheath
solution

Determine
x xMS MP,

Convergence of xBS

Figure 1. Scheme of the forward magnetosheath model presented

in Nabert et al. (2013). The solar wind conditions are the input to

the model. First, the bow-shock distance is initially estimated. Then,

the Rankine–Hugoniot relations are solved and determine the post-

shock values, which are used as boundary conditions for the sys-

tem of differential equations (DEQ). Solving this system leads to

a new estimate of bow-shock distance. After some iterations, the

bow-shock distance converges and the magnetosheath solution is

obtained.

by Pudovkin and Semenov (1977):

x0
MP =

(
f 2M2

2µ0KρSWu
2
SW

) 1
6

, (5)

where the parameter of magnetopause geometry f = 2.44,

the flow deflection parameter K = 0.89, and a magnetic

dipole moment M = 8× 1015Tm3 are valid for a terrestrial

situation. The initial magnetosheath thickness 1x0
MS is es-

timated by an analytically derived formula (Nabert et al.,

2013):

1x0
MS =

x0
MP(

4
5
+mBS

)
(gu− 1)− 1

, (6)

where the deceleration at the shock is gu := uSW/ux0(x =

xBS) and mBS is a measure for the solar wind magnetization

defined by

mBS := 1−
1

1+
γ
2
p0(x=xBS)
pmag(x=xBS)

. (7)

Here, pmag(x = xBS) := B
2
z0(x = xBS)/2µ0 is the post-

shock magnetic pressure and γ = 5/3 is the ratio of specific

heats. The sum of Eqs. (5) and (6) estimates the initial bow-

shock distance:

x0
BS = x

0
MP+1x

0
MS. (8)

Next, the system of differential Eqs. (1)–(4) is solved nu-

merically. Therefore, the differential equations are written as

a matrix-vector equation:
ux0 ρ0 0 0

0 Bz0 ux0 0

0 ρ0ux0
Bz0
µ0

1

−γp0ρ
−γ−1 0 0 ρ−γ



ρ′0
u′x0

B ′z0
p′0



=


−ρ0

(
uy10+ uz01

)
−Bz0uy10
Bx01Bz01

µ0

 . (9)

This equation can be represented by

A(q)q ′ = b(q), (10)

with q := (ρ0,ux0,Bz0,p0)
T , the coefficient matrix A, and

the inhomogeneity vector b. Note that b depends not only

on q but also on uy10 and uz01, initially determined by x0
BS.

For numerical calculation, the magnetosheath solution q is

discretized along the x direction:

q(x)→ q(xn)= qn, (11)

where the position index n is space discretization. Conse-

quently, Eq. (10) transforms into

A
(
qn
) (qn+1− qn

)
1x

= b
(
qn
)
, (12)

where 1x is the step size along the x direction. Equa-

tion (12) is solved with respect to qn+1 using a Gaussian

elimination algorithm. Starting from the bow shock (x =

xBS), the solution is evaluated earthward until the mag-

netopause is reached, i.e., until the flow velocity vanishes

(ux0 = 0). The distance in space between bow shock and

magnetopause yields a new estimator of the magnetosheath

thickness 1x1
MS.

The planetary magnetic field is approximated by a dipole

with its moment along the z direction. The dipole is included

via inner boundary conditions; i.e., the calculated total pres-

sure ptot (sum of gas pressure, magnetic pressure, and dy-

namic pressure) at the magnetopause is related to the plane-

tary field as follows (Nabert et al., 2013):

ptot =
(f ·M)2

2µ0x
3
MP

. (13)
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Note that due to the iteration procedure used, the actual

stagnation pressure at the magnetopause will differ from the

stagnation pressure KρSWu
2
SW in Eq. (5) when initiating

the iteration. Now, Eq. (13) is solved with respect to xMP.

This gives a new estimator x1
MP for the magnetopause dis-

tance. Together with the calculated magnetosheath thickness

1x1
MS, a new estimator for the bow-shock distance is ob-

tained: x1
BS = x

1
MP+1x

1
MS. As depicted in Fig. 1, the newly

estimated bow-shock distance is used to run the scheme again

until the bow-shock distance converges. Then, the magne-

tosheath solution qn is obtained.

The magnetosheath solution is determined along the stag-

nation streamline. According to Nabert et al. (2013), ex-

tending the solution to locations off the stagnation stream-

line requires one to shift the corresponding x coordinate

with respect to the paraboloid coordinates used. To transfer

the spacecraft’s location (xSC, ySC, zSC) into the parabolic-

shifted coordinate system of the model indicated by xSC,shift,

the following equation is used:

xSC,shift = xSC+

(
cBS,y +1cy

xSC

xMP

)
y2

SC

+

(
cBS,z+1cz

xSC

xMP

)
z2

SC, (14)

where 1cy := cMP,y − cBS,y and 1cz := cMP,z− cBS,z. The

curvature parameters are determined to be cBS,y = 0.4/xBS,

cBS,z = 0.5/xBS, cMP,y = 0.4/xMP, and cMP,z = 0.5/xMP.

However, due to the assumptions made to derive the mag-

netosheath model, the solution is only valid in the vicinity of

the stagnation streamline.

2.2 Data assimilation

The spacecraft at a position (xSC, ySC, zSC) in the magne-

tosheath measures the density ρSC, velocity uSC, magnetic

field BSC, and pressure pSC. Values for these quantities at

a certain position form a single data point. Each data point

is related to certain solar wind parameters individually by

the model introduced above and the succession of steady-

state states approximates any dynamical behavior of the mag-

netosheath. To find the appropriate solar wind parameters,

the magnetosheath solution needs to match the data point at

its position. Starting from an arbitrary first guess of the so-

lar wind parameters, the parameters are modified until the

solution matches the data, which is called data assimila-

tion. It seems natural to start from typical solar wind condi-

tions at Earth’s orbit, such as ρSW,t = 8.0·mP cm−3, uSW,t =

400 kms−1, BSW,t = 5nT, and pSW,t = 1× 10−11 Pa. Note

that the proton mass ismP = 1.67262178×10−27 kg. To sim-

plify the notation, we setmP = 1 in the following, so that the

mass density is presented as a particle density.

During the process of varying the solar wind parameters,

it is important to quantify the agreement between data and

model. Therefore, a cost function is introduced. Consider,

for example, the density ρSC measured at (xSC, ySC, zSC)

and assume the model proposes a density ρ. The difference

of these two values is a measure of the density agreement

of model and data. The square of this difference is taken to

obtain a function with a minimum: (ρ− ρSC)
2. In order to

sum up such terms for different quantities, these terms are

normalized to avoid effects from different units. The mea-

sured values themselves can be taken as normalization. The

cost function K sums up all contributions from the different

quantities:

K =

(
ρ− ρSC

ρSC

)2

+

(
u− uSC

uSC

)2

(15)

+

(
B −BSC

BSC

)2

+

(
p−pSC

pSC

)2

.

The cost function K is minimized with respect to the so-

lar wind parameters ρSW, uSW, BSW, and pSW. Thereby, the

step size is proportional to the value of the cost function. If

the model used is able to represent the physics of the situa-

tion considered and data errors are negligible, the cost func-

tion vanishes in its (global) minimum. Taking data errors and

limitations of the model into account, the global minimum of

the cost function gives the best estimator for the solar wind

parameters.

Starting from the typical solar wind conditions presented

above, a gradient-based minimization algorithm is used to

minimize the cost function. We use a steepest descent method

without line search as minimization algorithm. If the gradi-

ent vanishes, a minimum of the cost function is determined.

Using an adjoint approach the gradient required for this min-

imization scheme is determined as illustrated in the next sec-

tion.

2.3 The reverse magnetosheath model – adjoint

approach

An adjoint approach offers an efficient way to calculate the

gradient of a cost function (e.g., Meader and Martins, 2012).

The numerical implementation of the magnetosheath model

provides a source code, which calculates the cost function

from the initial solar wind parameters. Here, the adjoint ap-

proach is performed with an automatic differentiation tool.

Such a tool is able to transfer the source code into a new mod-

ified source code, which automatically calculates the deriva-

tive of the cost function (Wengert, 1964). Therefore, the au-

tomatic differentiation tool dissembles the code into elemen-

tary operations, i.e., simple arithmetic operations. To illus-

trate this, consider a simple example of a cost function simi-

lar to Rall and Corliss (1996) defined by

K(ρSW,uSW)= 2ρSW+ sin(uSW), (16)

which depends on the two parameters ρSW and uSW. The ex-

ample discussed here illustrates how the tool is processing

Ann. Geophys., 33, 1513–1524, 2015 www.ann-geophys.net/33/1513/2015/
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the code. An appropriate source code implementation to cal-

culate this function with elementary operations only is

l1 = ρSW

l2 = uSW

l3 = 2l1

l4 = sin(l2)

l5 = l3+ l4.

(17)

Using the chain rule, the derivative of the cost function

(Eq. 16) can be expressed as follows:

∂K

∂(ρSW,uSW)
=

∂l5

∂(l3, l4)
·
∂(l3, l4)

∂(l1, l2)
·

∂(l1, l2)

∂(ρSW,uSW)
. (18)

Now, the automatic differentiation tool inserts calculation

of the matrices ∂(l1, l2)/∂(ρSW,uSW), ∂(l3, l4)/∂(l1, l2), and

∂l5/∂(l3, l4) needed to calculate the derivative. This gives

l1 = ρSW

l2 = uSW

∂K

∂(ρSW,uSW)
←

∂(l1, l2)

∂(ρSW,uSW)

l3 = 2ρSW

l4 = sin(uSW)

∂K

∂(ρSW,uSW)
←

∂(l3, l4)

∂(l1, l2)
·

∂K

∂(ρSW,uSW)

l5 = l3+ l4

∂K

∂(ρSW,uSW)
←

∂l5

∂(l3, l4)
·

∂K

∂(ρSW,uSW)
.

(19)

Here, the arrow to the left (e.g., a← a · b) means that the

expression on the right side (a ·b) is calculated first, and then,

the variable on the left side (a) is replaced by the result of the

right side. The entities of the matrices are elementary deriva-

tives such as sin(l2)
′, which are substituted from a library

used by the automatic differentiation tool: sin(l2)
′
→ cos(l2).

This procedure has the advantage whereby the calculated

derivatives are not subjected to errors of finite difference ap-

proximations because analytical expressions are inserted.

The new code (Eq. 19) calculates the derivative parallel to

the execution of the forward model. This procedure is called

forward differentiation. However, this is not the most effi-

cient way to calculate the derivative. It is more efficient to

use the automatic differentiation in reverse mode, which is

nothing else but the adjoint approach. A short introduction

of the mathematical motivation of adjoint methods is given

in Appendix A. Executing the code above performs the cal-

culation of the derivative as shown in Eq. (18) from the right

to the left. During this procedure, 12 elementary multiplica-

tions are performed. However, the calculation from the left to

the right in Eq. (18) needs only 8 elementary multiplications.

Consequently, the reverse mode is more time efficient. The

transpose of Eq. (18) reverses the order similar to the calcu-

lation described above. Note that adjoint and transpose are

equivalent in real space and this is why the reverse approach

is called the adjoint approach.

The adjoint approach of the more complex cost function

with the magnetosheath model presented in the previous sec-

tion is derived by the OpenAD/F (open-source tool for the

automatic generation of adjoint code from Fortran 95 source

code) tool (Utke et al., 2008). The code contains a Fortran

subroutine evaluating the magnetosheath model as shown in

Fig. 1 with the solar wind parameters and the cost function

as input and output variables. To prepare the subroutine for

the OpenAD/F tool, solar wind parameters, such as rhoSW,

are declared as independent variables by a !$openad INDE-

PENDENT(rhoSW) statement. The cost function (cost) is de-

clared as dependent by a !$openad DEPENDENT(cost) state-

ment. The tool transfers an ordinary variable y into a struc-

ture, which contains the value of the variable y%v and the

value of the derivative of the cost function with respect to y

denoted by y%d . In order to enable the code to operate in

reverse mode, the derivative of the cost function is initialized

by 1 because the derivative of the cost function with respect

to the cost function gives 1. Then, the OpenAD/F tool can

be applied in reverse mode to the source code. First, the tool

executes a lexical, syntactic, and semantic analysis, which

results in an intermediate representation, called whirl. Then,

the OpenAnalysis module of the OpenAD/F tool produces

call and flow graphs. This information is combined with the

whirl code into a new representation of the code called xaif.

This code representation is transferred into a code that cal-

culates the derivative parallel to the execution via the xaif-

Booster module. Afterwards, the tool transfers this represen-

tation back to ordinary Fortran code. A call of the new sub-

routine is able to calculate the gradient.

For the four independent parameters that we consider, i.e.,

ρSW, uSW, BSW, and pSW, the adjoint approach can be 4

times faster. To calculate in reverse mode requires one to

execute the code before the derivatives are calculated be-

cause the derivative terms require the results calculated later

in the code. Therefore, all variables used during the execu-

tion of the code to calculate the cost function need to be

stored. The implementation of checkpointing, i.e., splitting

the adjoint calculation into separate parts to reduce memory

requirements, was not necessary for our adjoint code.

2.4 A technical problem and its solution

The cost function has a lot of very small local minima on

top of the monotonous cost function with its global mini-

mum. These minima result from the iterative modification of

the bow shock as described in Fig. 1. The bow-shock dis-

tance is used to calculate uy10 and uz01. Small modifications

change the value of the cost function differently compared

to the global shape of the cost function. If a finite difference

approach is applied, the local minima can be ignored using

www.ann-geophys.net/33/1513/2015/ Ann. Geophys., 33, 1513–1524, 2015
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Figure 2. Color-coded value of the cost function with respect to

solar wind velocity and density. The solar wind magnetic field and

gas pressure is set to zero. The global minimum can be obtained

using a gradient-based minimization.

a step size for the finite difference, which is larger than the

extent of such a local minimum. However, it is difficult to

determine the correct finite difference size because the size

varies depending on the solar wind conditions.

The situation is different for an automatic differentiation

approach because it is based on analytical expressions. Un-

fortunately, without code modifications, the gradient is cal-

culated with respect to the local minima. Consider, e.g., the

one-dimensional cost function h(x) := hq(x)+ho(x) with

the quadratic function hq(x) := x
2 and the oscillation func-

tion ho(x) := (cos(10x)− 1)2. The global minimum is de-

termined by the quadratic function, which decreases mono-

tonically on both sides towards the minimum. However, the

oscillation function superposes local minima to the function.

The derivative ∂xh(x)= 2x− 20sin(10x)(cos(10x)− 1) os-

cillates around the global minimum due to the latter con-

tribution ∂xho(x). Following the gradient usually gives a

local minimum. This problem can be solved by replacing

ho(x) by a sum of step functions h̃o(x)=
∑
iaiθ(x− xi)

with the coefficients ai and xi , which are determined to fit

ho(x). Here, θ(x) denotes a step function. The analytical

derivative of h̃o vanishes if x 6= xi . Consequently, ∂xh(x)=

∂xhq(x)+∂x h̃o(x)= ∂xhq(x)= 2x and the global minimum

is found by following the gradient. In our magnetosheath

model, the modifications of uy10 and uz01 produce the lo-

cal minima and we excluded them by introducing step func-

tions. This was done by rounding the tangential velocities.

Note that the rounding error is chosen to be very small on

the order of the numerical error, essentially not effecting the

result of the cost function. Consequently, the calculation of

uy10 and uz01 does not contribute to the calculated gradient

and a gradient with respect to the global shape is obtained.

Figure 2 shows the resulting global shape of the cost func-

tion depending on the solar wind density ρSW and solar wind

velocity uSW.

The solar wind magnetic field and the solar wind pressure

are zero. The spacecraft values are set to ρSC = 20.4 cm−3,

uSC = 48.0 kms−1, BSC = 0.1nT, and pSC = 0.59nPa at

the spacecraft’s position xSC = 12.8RE, ySC = 0.9RE, and

zSC = 3.1RE, with the Earth’s radiusRE = 6371km. The red

areas on the lower left and upper right corner are cost func-

tion values where the spacecraft’s position is outside the cal-

culated magnetosheath. Consequently, the cost function is

high due to the bad matching of data and model. Note that

the magnetospheric values, i.e., the values outside the mag-

netosheath on the earthward side, are set to the magnetopause

values except from the magnetic field, which increases earth-

ward. The middle area of the plot offers a smooth global min-

imum as sketched in Fig. 2, which can be determined by a

gradient minimization.

The rounding procedure introduced above is used to ne-

glect the small local minima due to iterative bow-shock mod-

ifications for the calculation of the gradient. To ensure that

the minimum found by the gradient-based minimization is

the local minimum, which corresponds to the global min-

imum, we calculate the cost function value on a param-

eter grid a couple of steps in each direction around the

minimum. We choose the grid step sizes 1ρ = 0.035 cm−3,

1u= 2 kms−1, 1B = 0.035nT, and 1p = 1.5× 10−3nPa.

Note that the step sizes determine the accuracy of the recon-

structed parameters.

3 Application

In the Nabert et al. (2013) magnetosheath model, the time

resolution is limited because of the steady-state approxima-

tion in the model. A disturbance due to a change of solar

wind conditions needs to pass the magnetosheath to obtain a

stationary state. A typical subsolar magnetosheath thickness

is about 2.5RE and the average flow velocity in the magne-

tosheath is about 50 kms−1. Then, the transit time for the

disturbance is approximately 5min. Consequently, we use

spacecraft data with a time resolution of 5min for our re-

construction.

The temperature is often very difficult to measure pre-

cisely. Therefore, we assume a cold plasma approximation

for the solar wind. A variation of the solar wind temperature

does not affect the reconstruction results much for the results

presented here. Note that the temperature T0 is related to the

pressure used in the magnetosheath model via ρ0 kB T0 = p0,

with the Boltzmann constant kB = 1.3806488× 10−23 J/K.

We have chosen THEMIS magnetosheath transitions

where a second THEMIS spacecraft observes the solar wind

conditions to validate our method.

3.1 Reconstruction close to the stagnation streamline

The reconstruction method is applied to magnetosheath tran-

sitions along the stagnation streamline. First, the magne-
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Figure 3. The magnetosheath density (top panel), the ion velocity

(middle panel), and the magnetic field (bottom panel), which are

observed by THEMIS on 1 August 2009, are presented in red. The

best match for the data to the magnetosheath model for any initial

choice of the solar wind boundary parameters was found for the

magnetosheath model predictions, which are shown in blue.

tosheath transition of the THEMIS spacecraft THC on 1 Au-

gust 2009 is discussed. Starting at the magnetopause close

to the stagnation point, the spacecraft traverses the magne-

tosheath and crosses the subsolar point at the bow shock

about 2.5h later.

The THC magnetosheath data and the best model predic-

tion, which could be found in the magnetosheath by vary-

ing the solar wind boundary parameters, are shown in Fig. 3.

Note that the data are presented in the same coordinates as

the model with the z direction along the dipole axis (see

Sect. 2.1).

It is seen that the observation and model prediction agree

very well. Only at the magnetopause and at the bow shock

do the model and the observations significantly differ. Our

magnetosheath model represents the bow shock by a step

function profile using Rankine–Hugoniot relations to calcu-

late the jump conditions. This approximation is not correct

close to the shock where instead a smooth transition is ob-

served. Our algorithm fits the values within this transition

region with values of either pre- or post-shock values, and

thus the reconstruction fails there. The magnetopause is ap-

proximated as a rigid boundary by a vanishing flow veloc-

ity in the model. This neglects, e.g., single particle processes

where high energy particles can penetrate the magnetopause

boundary and diffusion processes. Our magnetosheath model

is extended into the magnetosphere using the magnetopause

values of velocity, density, and magnetic field. Therefore, our

Figure 4. The reconstructed solar wind boundary conditions of the

model density (top panel), the ion velocity (middle panel), and the

magnetic field (bottom panel) for the magnetosheath data presented

in Fig. 3 are shown in blue. Additionally, the THB (red) and OMNI

(green) solar wind data during this time interval is shown.

approach is able to reproduce the magnetospheric values ob-

served approximately.

The results of the solar wind reconstruction are displayed

together with OMNI solar wind data and the solar wind ob-

servations by the THEMIS spacecraft THB in Fig. 4.

The calculated solar wind conditions show overall a good

agreement with the solar wind data. The first 10min interval

corresponds to a reconstruction from magnetospheric obser-

vations. Due to the magnetospheric extension of our magne-

tosheath model, the magnetosheath model is able to estimate

the solar wind parameters roughly during this time interval.

For example, a different choice of the solar wind magnetic

field parameter would lead to a different magnetopause mag-

netic field, and consequently the magnetospheric field of the

model does not fit the magnetospheric observations. A higher

solar wind dynamic pressure is related to a different mag-

netopause location, and again, the model predictions would

differ from the observations. However, this reconstruction

method is valid only in the vicinity of the magnetopause. Our

approach cannot be used to reconstruct accurate solar wind

parameters far in the magnetosphere.

From 03:20 to 04:00 UT the density of the solar wind data

from OMNI, THB, and the reconstructed solar wind param-

eters of THC differ slightly. This might be due to spacecraft

potentials (e.g., McFadden et al., 2008) or due to a varying

spatial density distribution of the solar wind. Note that the

THB spacecraft is located about 12RE from THC in y direc-

tion. The density variation between 05:15 and 5:40 UT ob-
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Figure 5. The value of the cost function at each iteration step is

shown for three different initial densities. Independent of the start-

ing value, the cost function converges to the identical value.

served by the solar wind monitor data is well reconstructed.

The average value of the solar wind velocity is well recon-

structed; however, the velocity reconstruction shows more

variability than the solar wind data from THB and OMNI. A

slight increase of the solar wind magnetic field towards the

bow shock is seen in all solar wind data in the lower panel.

We ensure that our algorithm produces the same results

for different initial solar wind parameters. As an example,

the minimization of the cost function of the data point at

05:30UT in Fig. 3 for three different initial values of the den-

sity is presented in Fig. 5.

A different initial choice leads to the same reconstructed

solar wind parameters, only the number of iteration steps dif-

fer. Note that we have chosen a cold plasma approximation

to fix the solar wind pressure.

To examine the reconstruction method in more detail, we

present a second magnetosheath transition close to the stag-

nation streamline, which contains more solar wind varia-

tions.

On 28 September 2008, the THC spacecraft crosses the

bow shock and traverses the magnetosheath. The correspond-

ing THC observations and the model fit are shown in Fig. 6

with the bow shock on the left-hand side and the magne-

topause on the right-hand side. Both, model and observa-

tions, fit very well, except for the bow-shock region similar

to the previous example. The reconstruction of the solar wind

parameters are compared to THB and OMNI solar wind data

in Fig. 7.

One expects that the variations of the THB solar wind data

are in general more precise than OMNI solar wind data be-

cause THB is located close to the subsolar bow shock and

observes the local solar wind conditions. Note that THB en-

ters the magnetosheath at 20:15 UT; therefore, afterwards

no THB solar wind observations are available. The solar

wind density varies between 4 and 7 cm−3 and the recon-

Figure 6. The magnetosheath density (top panel), the ion velocity

(middle panel), and the magnetic field (bottom panel), which are

observed by THEMIS on 28 September 2008, are presented in red.

The best match for the data to the magnetosheath model for any

initial choice of the solar wind boundary parameters was found for

the magnetosheath model predictions, which are shown in blue.

Figure 7. The reconstructed solar wind boundary conditions of the

model density (top panel), the ion velocity (middle panel), and the

magnetic field (bottom panel) for the magnetosheath data presented

in Fig. 6 are shown in blue. Additionally, the THB (red) and OMNI

(green) solar wind data during this time interval are shown.

structed solar wind data reproduce the solar wind variations

seen on timescales of about 15min. For example, the den-
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sity dip around 16:25 UT, the increase and decrease around

17:55UT, and the increase at 18:15UT agree very well. The

reconstructed density shows a small offset of about 0.2 cm−3

compared to the solar wind monitor data. Such an offset

can be produced by a small spacecraft potential (McFadden

et al., 2008). Comparing THC and THB solar wind observa-

tions, typical offsets of about 10 % can be observed. Thus,

we assume that 10 % is a typical data error for an offset.

The solar wind reconstruction fails at the bow shock and at

the magnetopause as discussed before. The velocity recon-

struction reproduces the solar wind variations, e.g., observed

around 16:50UT. However, similar to the previous example,

there are additional small variations on timescales less than

10min in the reconstruction, which are less pronounced or

not present at all in the solar wind data, e.g., at 18:10UT.

Both solar wind data, as well as the reconstruction, provide a

slightly different offset. The magnetic field data are directed

approximately along the z direction during the transition and

varies between 3 and 6nT. Similar to the density variations,

the magnetic field variations on scales larger than 15min are

well reconstructed from the THC magnetosheath data, e.g.,

the magnetic field decreases at 15:40, around 18:00, and at

19:00UT.

Finally, a third THC magnetosheath crossing is used

to investigate our reconstruction method. The THC data

from 16 September 2009 were used to reconstruct the solar

wind data during the magnetosheath transition. The magne-

tosheath data and model predictions agree very well, similar

to the previous examples discussed. THB and OMNI solar

wind data are compared to the THC reconstruction in Fig. 8.

The solar wind densities show a small offset. It is seen

that a density and magnetic field variation at 19:35 UT is ob-

served by THB and also seen in the reconstruction, but not

in the OMNI data. This indicates that this variation is a lo-

cal solar wind phenomenon. The reconstruction can repro-

duce such local solar wind variations better than the OMNI

solar wind predictions for the subsolar point. Closer to the

bow shock and magnetopause, the reconstruction fails as dis-

cussed previously.

3.2 Reconstruction alongside the stagnation streamline

The magnetosheath model used is limited to the stagnation

streamline region. To evaluate the applicability of the recon-

struction using observations at some distance off the stagna-

tion streamline, we consider a magnetosheath traversal on 24

August 2008 where the THC spacecraft is positioned 5–6RE

off the stagnation streamline. The corresponding density, ve-

locity, and magnetic field observations are shown in Fig. 9

together with the best magnetosheath model predictions for

any choice of the solar wind parameters.

The density differs closer to the magnetopause location,

seen on the right-hand side of the plot. The reconstruction

method takes not only the density, velocity, and magnetic

field magnetosheath data into account, but also the space-

Figure 8. The reconstructed solar wind boundary conditions of the

model density (top panel), the ion velocity (middle panel), and the

magnetic field (bottom panel) for the magnetosheath transition on

16 September 2008 are shown in blue. Additionally, the THB (red)

and OMNI (green) solar wind data during this time interval are

shown.

Figure 9. The magnetosheath density (top panel), the ion velocity

(middle panel), and the magnetic field (bottom panel), which are

observed by THEMIS on 24 August 2008, are presented in red. The

best match for the data to the magnetosheath model for any choice

of the solar wind boundary parameters was found for the magne-

tosheath model predictions, which are shown in blue.

craft’s position where the data point was measured. Thus,

more measured parameters are used (xSC, ySC, zSC, ρSC, uSC,
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Figure 10. The reconstructed solar wind boundary conditions of the

model density (top panel), the ion velocity (middle panel), and the

magnetic field (bottom panel) for the magnetosheath data presented

in Fig. 9 are shown in blue. Additionally, the THB (red) and OMNI

(green) solar wind data during this time interval are shown.

BSC, and pSC) than free solar wind boundary parameters

(ρSW, uSW, BSW, and pSW), which need to be determined.

The misfit of model prediction and data can be due to limita-

tions of the magnetosheath model itself or due to data errors.

The reconstructed solar wind parameters and the OMNI,

as well as the THB solar wind data, are presented in Fig. 10.

The solar wind density of THB and OMNI show an off-

set of about 15 %. Because the electron and ion densities

are slightly different, a spacecraft potential might be present,

which can explain such an offset. The reconstructed so-

lar wind density agrees with the THB density. However, a

significantly different density behavior can be observed at

00:50UT, where the density increases in the reconstruction

but not in the solar wind monitor data. The corresponding

density peak can be observed in the magnetosheath data in

Fig. 9. This might be either a very local solar wind den-

sity enhancement or a time-dependent process, which is not

covered by our model. Apart from that, in the first 1.5h the

differences in the reconstruction of the solar wind data are

similar to the previous results for the stagnation streamline

events. Closer to the magnetopause, the calculated solar wind

parameters predict a continuous velocity increase during the

transition. However, the OMNI and THB solar wind data of-

fer a nearly constant solar wind velocity.

More magnetosheath transitions in the neighborhood of

the stagnation streamline were investigated. Nearly all so-

lar wind reconstructions from magnetosheath data alongside

the stagnation streamline offer a systematic velocity increase.

The increase is more significant far away from the stagna-

tion streamline. The solar wind velocity distribution is not

correlated with a magnetosheath transition of a spacecraft.

Consequently, one would not expect an increase of the ve-

locity in all transitions alongside the stagnation streamline.

Thus, the systematic velocity increase is due to model lim-

itations. Note that this limitation can be examined without

solar wind monitor data because of the systematic increase

in the reconstructed solar wind velocity. This is not surpris-

ing because the series expansions used to derive the magne-

tosheath model restricts the model to the stagnation stream-

line (Nabert et al., 2013). The model predicts an approxi-

mately continuous linear decrease of the velocity in the mag-

netosheath on the stagnation streamline. However, alongside

this streamline, the velocity also decreases, but it still jumps

at the magnetopause from a certain value to zero, which is

outside the scope of the model used here (Nabert et al., 2013).

4 Conclusions

We conclude that our method using the Nabert et al. (2013)

magnetosheath model is suitable to reconstruct the solar wind

parameters during a magnetosheath transition. The recon-

struction was validated by comparing the reconstructed so-

lar wind parameters to solar wind spacecraft observations.

The limitations of the magnetosheath model are its time res-

olution of about 15min and its restriction to magnetosheath

transitions close to the stagnation streamline. Note that these

limitations are due to the magnetosheath model used and not

due to the adjoint approach or minimization procedure. The

adjoint approach presented can be applied to other spacecraft

data such as CLUSTER (e.g., Escoubet et al., 2001) as well

as any other magnetosheath models. For example, a global

magnetohydrodynamic simulation code can be used instead.

The reconstruction of solar wind parameters might be used

for the data from the Messenger mission (e.g., Solomon

et al., 2007) or the upcoming BepiColombo mission (e.g.,

Benkhoff et al., 2010) at the planet Mercury. Then, a Mer-

cury magnetosheath model can be examined, even if in situ

solar wind observations are not available.
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Appendix A: Adjoint system of linear equations

Here, the adjoint approach is introduced from the perspective

of linear algebra (Giles and Pierce, 2000). In contrast to the

differential equation of our forward model, a system of linear

equations is considered:

AX= B, (A1)

with coefficient matrix A, inhomogeneity B, and solution X.

The cost function in terms of linear algebra is a scalar prod-

uct of the solution X with the vector g that needs to be deter-

mined:

gT X= ? (A2)

There are two ways to calculate this scalar product. The

first one solves the linear system of Eq. (A1), which corre-

sponds to our forward model. This gives the solution X and

then, the scalar product (Eq. A2) is directly calculated.

The second way takes advantage of the following relation,

which results from the scalar product of Eq. (A1) with the

vector y:

yT AX= yT B. (A3)

The vector y is defined by

yT A= gT . (A4)

The transpose of this equations gives

AT y = g, (A5)

the so-called adjoint equation. Note that the transpose for real

value matrices is equivalent to the adjoint. The second way

to calculate the scalar product (Eq. A2) is to solve the ad-

joint system (Eq. A5) with respect to y. The scalar product

(Eq. A2) is transferred using Eqs. (A4) and (A3) to

gT X= yT AX= yT B. (A6)

Thus, yTB is nothing else but the Eq. (A2). In general,

the matrix B is composed of columns of vectors. If this ma-

trix contains only a single vector, the calculation effort of

both approaches is identical. However, if the matrix consists

of M vectors, the first way requires one to solve Eq. (A1).

This means solving M times a system of linear equations

with a vector as inhomogeneity. This is different if the sec-

ond approach is used. The second approach needs to solve

only a single system of linear equations with a vector as in-

homogeneity. Thus, the second way requires approximately

M times less calculation effort than the first.
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