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Abstract. A model of non-elliptic wavevector anisotropy is

developed for the inertial-range spectrum of magnetohydro-

dynamic turbulence and is presented in the two-dimensional

wavevector domain spanning the directions parallel and per-

pendicular to the mean magnetic field.

The non-elliptic model is a variation of the elliptic model

with different scalings along the parallel and the perpendic-

ular components of the wavevectors to the mean magnetic

field.

The non-elliptic anisotropy model reproduces the smooth

transition of the power-law spectra from an index of−2 in the

parallel projection with respect to the mean magnetic field to

an index of −5/3 in the perpendicular projection observed

in solar wind turbulence, and is as competitive as the critical

balance model to explain the measured frequency spectra in

the solar wind. The parameters in the non-elliptic spectrum

model are compared with the solar wind observations.

Keywords. Interplanetary physics (MHD waves and turbu-

lence; solar wind plasma) – space plasma physics (turbu-

lence)

1 Introduction

The spatial structure of space and astrophysical plasma tur-

bulence is fundamentally different from that of ordinary fluid

turbulence because the large-scale magnetic field imposes a

special direction, causing anisotropy in the energy spectrum

in the wavevector domain. On spatial scales larger than the

ion gyro-radius and inertial length, the behavior of plasmas

can be treated as magnetohydrodynamics (MHD). Evidence

for anisotropy in MHD turbulence can be found in numerical

simulations (Shebalin et al., 1983), correlation functions of

interplanetary magnetic field fluctuations (Matthaeus et al.,

1990; Dasso et al., 2005), and mean free paths in galac-

tic cosmic ray diffusion (Bieber et al., 1994, 1996). Naively

speaking, anisotropy is explained by three-wave interactions

of obliquely propagating Alfvén waves such that the parallel

component of the wavevector remains either zero or constant

through the energy cascade (Biskamp, 2003).

Various models have been proposed to explain or repro-

duce the anisotropic energy spectra in the wavevector do-

main: the density fluctuation model (Higdon, 1984), the crit-

ical balance model by regulating the Alfvén wave interac-

tion time with the eddy turnover time (Goldreich and Srid-

har, 1995, 1997; Forman et al., 2011), generalization of

critical balance by adding damping (von Papen and Saur,

2015); two-component model consisting of slab geome-

try and quasi-two-dimensional turbulence (Matthaeus et al.,

1990; Bieber et al., 1996), the three-component model as

an extension of the two-component model by adding the

compressible fluctuation component (Matthaeus and Ghosh,

1999), the cross-helicity model showing asymmetry in the

energy spectrum between the parallel and the anti-parallel

directions to the mean magnetic field (Chandran, 2008), and

the elliptic anisotropy model parameterized by the shape co-

efficients (Carbone et al., 1995).

Single-spacecraft measurements show that the magnetic

energy spectra in the frequency domain (in the spacecraft

frame) have different values of the spectral index in the range

from −2 to −5/3 when the flow is quasi-parallel and quasi-

perpendicular to the mean magnetic field, respectively (Hor-

bury et al., 2008; Osman and Horbury, 2009). Although the

spectra are measured in the frequency domain, the angle de-
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pendence of the spectral index is valid in the streamwise

wave-number domain regardless of the validity of Taylor’s

frozen-in-flow hypothesis within the random sweeping treat-

ment (Wilczek and Narita, 2012).

The critical balance model is so far known to explain the

dependence of the spectral index on the angles between the

flow direction and the mean magnetic field direction in so-

lar wind turbulence. Forman et al. (2011) successfully fit the

critical balance model to the results of Horbury et al. (2008),

and the only free parameter that controlled the anisotropy is

the outer spatial scale of turbulence L. The kinetic extension

of the critical balance model can also reproduce the angle

dependence (von Papen and Saur, 2015). The other spectral

models cannot explain the angle dependence. For example,

the two-component or three-component models assume that

the wavevectors are confined to either quasi-parallel or quasi-

perpendicular directions to the mean magnetic field. The one-

dimensional spectral curves do not provide the power law.

The elliptic spectrum provides a reasonable fit to the en-

ergy spectrum in the three-dimensional wavevector domain,

but the measured wave-number range is limited to about 1

order of magnitude due to the limitation by the four-point

sampling in space. Furthermore, as shown below, the elliptic

spectral model implies that the power-law index of the one-

dimensional spectra is invariant to the angle of integration. Is

there any other spectral model that explains the measured an-

gle dependence of the solar wind turbulence spectrum? This

question is the motivation of this paper.

Here we develop a non-elliptic model of wavevector

anisotropy for the inertial-range spectrum of MHD turbu-

lence. The non-elliptic anisotropy is obtained as a general-

ization of the elliptic anisotropy by including different scal-

ings along the parallel and the perpendicular components

of the wavevectors to the mean magnetic field. It is worth

noting that the multi-spacecraft measurements in the solar

wind do not provide strong evidence for the critical bal-

ance so far, but the wavevector spectrum is of elliptic type

or nearly elliptic (Narita, 2014). The critical balance model

can successfully explain the angle dependence of the spec-

tral index (Forman et al., 2011) at the cost of several (ex-

plicit or implicit) assumptions: (1) co-existence of the ed-

dies and the Alfvén waves, (2) self-regulation of the en-

ergy cascade, and (3) axial symmetry. The first item (the

co-existence) means that both the eddies in the perpendic-

ular plane and the parallel (or obliquely) propagating Alfvén

waves are present in MHD turbulence. Dispersion relation

studies using multi-spacecraft data in the solar wind from

the MHD to the ion kinetic ranges show that the wave fre-

quencies in the plasma rest frame cannot be associated with

either the eddies (identified as the zero-frequency mode) or

the obliquely propagating Alfvén waves but rather with the

sideband waves (Narita et al., 2011a; Perschke et al., 2013,

2014). The second item (the self-regulation) means that the

major or predominant wavevector directions become increas-

ingly oblique to the mean magnetic field on smaller spatial

scales (or at higher wave numbers). The wavevector anal-

ysis using the Cluster data shows that the wavevectors are

already quasi-perpendicular on both the MHD and the ion

kinetic ranges (Narita et al., 2011a). The third item (the ax-

ial symmetry) means that the fluctuating magnetic field is

axially symmetric (or gyrotropic) in the directions around

the mean magnetic field due to the presence of eddies. Both

single-spacecraft and multi-spacecraft observations in the so-

lar wind show that the axial symmetry is violated in the dis-

tribution of the wavevectors and in the sense of fluctuating

fields (Narita et al., 2010, 2011b; Chen et al., 2012). There-

fore, we look for a model of anisotropic energy spectrum

without incorporating the critical balance. The non-elliptic

model is competitive for explaining the angle dependence of

the spectral index in solar wind turbulence as the critical bal-

ance model does.

The non-elliptic spectrum model is important because it

expands the list of possible models to explain the spectral

anisotropy in the solar wind.

The currently known spectral models cannot account for

the observation of a nearly elliptic formation of the energy

spectra in the wavevector domain in solar wind turbulence

showing a transition of the spectral extension from the paral-

lel direction to the mean magnetic field into the perpendicular

direction (Narita, 2014).

In particular, although the critical balance model was suc-

cessfully applied to explaining solar wind turbulence essen-

tially using one free parameter (except for the degree of free-

dom in the positive symmetric function), the model relies on

both assumptions that obliquely propagating Alfvén waves

co-exist with eddies and that an axially symmetry exists in

the directions around the mean magnetic field. The direct

measurements of the dispersion relations using the Cluster

spacecraft data indicate that obliquely propagating Alfvén

waves unlikely exist (or at least do not occur on the ana-

lyzed time intervals) both in the MHD and the kinetic ranges

(Narita et al., 2011a; Perschke et al., 2013, 2014). The di-

rect measurements of the energy spectra in the wavevector

domain in the solar wind show nearly elliptic formation of

the spectra with the broken axial symmetry around the mean

magnetic field (Narita et al., 2011b, 2014).

The advantage of the non-elliptic model is in its mathemat-

ical construction. The spectral anisotropy in the wavevector

domain is described. The model does not require assumption

of any particular wave modes or fluctuation types such as

Alfvén waves or eddies.

The non-elliptic model is particularly suited for testing

in the solar wind, since the angle dependence of the spec-

tral slopes has been studied in detail using in situ spacecraft

measurements. The model is constructed as an inertial-range

spectrum for MHD turbulence. Applications to laboratory

plasmas and astrophysical plasmas are in principle possible,

too.
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2 Model construction

2.1 Elliptic anisotropy

Elliptic shape of the energy spectrum in the two-dimensional

wavevector domain is constructed as a natural extension of

the isotropic spectrum by introducing the shape coefficients,

c⊥ and c‖, as

E(k⊥,k‖)= E0

(
c⊥k

2
⊥
+ c‖k

2
‖

)−α/2
, (1)

where k⊥ and k‖ are the perpendicular and parallel compo-

nents of the wavevector, respectively, and α the spectral index

(see, e.g., Eq. 22 in Carbone et al., 1995).

Note that polarizations in the elliptic model by Carbone

et al. (1995) are not considered here, as the goal of the paper

is to construct a non-elliptic model for the total fluctuation

energy (i.e., the trace of the cross-spectral density matrix).

Construction of an elliptic model for the cross spectral den-

sity matrix may be possible, but it is beyond the scope of the

current work.

To simplify the argument, the other coefficients in

the inertial-range spectrum such as the Kolmogorov or

Iroshikov–Kraichnan constant (Kolmogorov, 1941; Irosh-

nikov, 1964; Kraichnan, 1965) and the energy transfer rate

ε are renormalized to E0 in Eq. (1).

The elliptic spectrum assumes a symmetry with respect

to changing the sign of the wavevector components, i.e., the

cross helicity is implicitly zero. The scale invariance holds

under the transformation k⊥→ λk⊥ and k‖→ λk‖. One-

dimensional spectra are obtained by integrating the elliptic

spectrum over the wavevector components:

E(k⊥)= E0

∞∫
−∞

dk‖E(k⊥,k‖)= E0C1k
−α+1
⊥

, (2)

E(k‖)= E0

∞∫
−∞

dk⊥E(k⊥,k‖)= E0C2k
−α+1
‖

, (3)

where C1 and C2 (and also C3 and C4 in the next subsec-

tion) denote the spectral amplification factors that determine

the spectral energy in the one-dimensional wave-number do-

main in different directions with respect to the mean mag-

netic field.

The coefficient C1 is evaluated using Euler’s gamma func-

tion as

C1 = 2c
−α/2
⊥

∞∫
0

dξ

(
1+

c‖

c⊥
ξ2

)−α/2

= a−α/2
√
c⊥π

c‖

0(− 1
2
+
α
2
)

0(α
2
)

. (4)

The coefficient C2 is obtained by exchanging c⊥ by c‖ in

C1. Here we assumed an inertial-range spectrum spanning

to infinity in the wavevector domain. The one-dimensional

spectra are expressed as a power law and, furthermore, the

spectral index is the same between the two spectra. The

isotropic spectrum is restored by taking the limit c⊥/c‖→

1, and Kolmogorov’s inertial-range spectrum is restored by

comparing the spectral index of the one-dimensional spec-

trum as−α+1=−5/3. An important property of the elliptic

anisotropy is that the existence of anisotropy cannot be mea-

sured solely from the analysis of the spectral indices because

the effect of anisotropy appears in the coefficients, not in the

spectral slope. To verify the elliptic anisotropy using one-

dimensional spectra, one needs to measure the spectra both

in the perpendicular and parallel directions to the large-scale

magnetic field simultaneously.

2.2 Non-elliptic anisotropy

The power-law index of the frequency spectra in the solar

wind has been found to depend on the angle of the flow

(streamwise direction) from the large-scale magnetic field

(Horbury et al., 2008; Osman and Horbury, 2009): −5/3 for

the quasi-perpendicular angles and −2 for the quasi-parallel

angles. Although the energy spectra of solar wind turbu-

lence are measured in the frequency domain, the Eulerian

frequency spectrum retains the same power law as that of

the streamwise wave-number spectrum even under a large-

scale flow variation which causes the Doppler broadening

(Wilczek and Narita, 2012). Therefore, the dependence of

the spectral index as a function of the angles from the large-

scale magnetic field should be regarded as valid both in the

frequency and streamwise wave-number domains.

We construct a non-elliptic wavevector spectrum by gen-

eralizing the quadratic dependence of one of the wavevector

components. We seek a generalization of the dependence on

the parallel wavevector component and replace k2
‖

by |k‖|
µ

in Eq. (1) because the spectral decay is steeper in the paral-

lel wave numbers. One-dimensional spectra turn out to again

be power laws, but the spectral indices now depend on the

parameter µ as

E(k⊥) = E0C3k
−α+ 2

µ

⊥
, (5)

E(k‖) = E0C4k
−
µ
2
(α−1)

‖
. (6)

Here again, the coefficients C3 and C4 denote the spectral

amplification factors that determine the spectral energies in

the one-dimensional wave-number domain.

The coefficients C3 and C4 are again evaluated using the

gamma function as

C3 =
4c−α
⊥

µ

∞∫
0

dξ

(
1+

c‖

c⊥
ξ2

)−α/2
ξ
−1+ 2

µ

= 2c−α
⊥

(
c⊥

c‖

)1/µ0
(
α
2
−

1
µ

)
0
(

1+ 1
µ

)
0
(
α
2

) , (7)

www.ann-geophys.net/33/1413/2015/ Ann. Geophys., 33, 1413–1419, 2015



1416 Y. Narita: Anisotropy in magnetohydrodynamic turbulence

C4 = 2c
−α/2
‖

∞∫
0

dξ

(
1+

c⊥

c‖
ξ2

)−α/2

= c
−α/2
‖

√
c‖π

c⊥

0
(
−

1
2
+
α
2

)
0
(
α
2

) . (8)

Matching the power-law indices with the measured power

laws, k
−5/3
⊥

and k−2
‖

, yields µ= 3 and α = 7/3. The non-

elliptic wavevector spectrum for MHD turbulence E(k⊥,k‖)

in the solar wind is thus

E(k⊥,k‖)= E0

(
c⊥k

2
⊥
+ c‖|k‖|

3
)−7/6

. (9)

3 Properties and application

3.1 Parameter study

Figure 1 displays four distinct cases of the non-elliptic spec-

tra: case (a), with c⊥ = 10−4c‖; case (b), with c⊥ = 10−5c‖;

case (c), with c⊥ = 10−6c‖; and case (d), with c⊥ = 10−7c‖.

The values are motivated by the direct measurements of

the wavevector spectra (Narita, 2014).

The wave-number range is representative of the MHD

range in the solar wind, well below the ion inertial wave num-

ber for protons at about 10−2 rad km−1.

The Alfvén speed is typically in the range between 30 and

50 km s−1, and the ion gyro-frequency is in the range from

0.5 to 1 rad s−1 in the solar wind near 1 AU (e.g., Perschke

et al., 2014). Therefore, the variation in the ion inertial wave

number is in the range from about 0.01 to 0.03 rad km−1. The

ion gyro-radius is in the same range for ion beta of unity (also

typical in the solar wind at 1 AU; see Perschke et al., 2014).

Anisotropy is moderate in case (a) and becomes clearer at

smaller ratios of the coefficients c⊥/c‖ with the spectral ex-

tension in the perpendicular directions to the mean magnetic

field. Inspection of the spectra in Fig. 1 shows a transition of

the spectral anisotropy. The spectra are extended in the par-

allel direction at lower wave numbers and perpendicular at

higher wave numbers. The anisotropy transition is clearest in

case (a).

3.2 One-dimensional spectra

Two-dimensional spectra are rotated around the axis at

(k⊥,k‖)= (0,0) to transform the coordinate system into the

kx–kz plane (i.e., rotation within the k⊥–k‖ plane) with a pro-

jection angle θVB between the flow direction and the mean

magnetic field direction.

The transformation of the wavevector components (or the

coordinate system) is given by the following relations:

k⊥ = cos(θVB) kz− sin(θVB) kx, (10)

k‖ = sin(θVB) kz+ cos(θVB) kx . (11)

Figure 1. Two-dimensional energy spectrum for non-elliptic

anisotropy (Eq. 9) for four coefficient sets: (a) c⊥ = 10−4c‖, (b)

c⊥ = 10−5c‖, and (c) c⊥ = 10−6c‖, and (d) c⊥ = 10−7c‖. Wave-

number range is chosen as representative of magnetohydrodynamic

turbulence in the solar wind. The color bar is the spectral energy in

the 2-D wavevector domain in units of nT2 (rad km−1)−2.

Note that we measure the angle θVB from the mean magnetic

field direction. The spectra in the kx–kz plane are obtained

with

E(kx,kz) =
[
c⊥|cos(θVB)kz− sin(θVB)kx |

2
+

c‖|sin(θVB)kz+ cos(θVB)kx |
3
]−7/6

(12)

and then integrated numerically over kz to obtain the one-

dimensional spectra at the projection angle θVB as

E(kx)=

+k0∫
−k0

dkzE(kx,kz), (13)

where kx represents the streamwise component of the

wavevectors and kz the perpendicular component to the flow.

The model is constructed as an inertial-range spectrum for

MHD turbulence. It is assumed that the inertial range is in-

finitely long in the integration over the wavevector compo-

nents.

The limit of the integration range is set to k0 = 100kx ,

above which the integration shows an asymptotic behav-

ior. The integral is evaluated using Simpson’s formula

(Abramowitz and Stegun, 1972). Figure 2 displays the one-

dimensional spectra in the streamwise wave-number domain

E(kx) for projection angles θVB = 0◦,10◦, · · ·,90◦. We ob-

tain the results that the one-dimensional spectra show a

power law in the streamwise wave-number domain, and that

the power-law index varies smoothly from −2 at θVB = 0◦

(in gray) to −5/3 at θVB = 90◦ (in black) in all four cases.

Ann. Geophys., 33, 1413–1419, 2015 www.ann-geophys.net/33/1413/2015/
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Figure 2. One-dimensional streamwise energy spectra obtained

from the non-elliptic two-dimensional spectra for the four coeffi-

cient sets shown in Fig. 1. The spectra are obtained for projection

angles θVB from the mean magnetic field from 0◦ (parallel pro-

jection, in gray) to 90◦ (perpendicular projection, in black) at 10◦

steps. The spectra are shifted on the logarithmic scale to separate

among the four cases.

3.3 Test against solar wind data

Variation in the spectral index is studied quantitatively as a

function of the projection angle θVB in Fig. 3.

The wave-number range from 2.5× 10−7 to 2.5×

10−4 rad km−1 (see Fig. 2) is used in the analysis of the spec-

tral slopes, in which the slope determination is sufficiently

accurate in the calculation.

The transition from a slope of −2 to −5/3 occurs at

smaller angles from the mean magnetic field when the

anisotropy is stronger. The transition angle is measured by

the crossing of an index of 1.8: case (a) (c⊥ = 10−4c‖) shows

the transition at 70 to 80◦, case (b) (c⊥ = 10−5c‖) at 50

to 60◦, case (c) (c⊥ = 10−6c‖) at around 30◦, and case (d)

(c⊥ = 10−7c‖) at around 10◦.

The angle dependence of the spectral index is then com-

pared with that obtained from the single-spacecraft measure-

ments in the solar wind (Horbury et al., 2008; Osman and

Horbury, 2009). Overall, case (d) reproduces the observed

angle dependence of the spectral index in solar wind tur-

bulence observed by Horbury et al. (2008), in particular the

plateau formation at an index of about−5/3. Case (b) and (c)

also show a partial agreement with the observation by Osman

and Horbury (2009) at smaller angles up to θVB = 30◦ and at

θVB = 45◦.

The differences in the observed spectral slopes represent

different solar wind realizations. The spectra are measured

at different radial distances from the Sun, different helio-

Figure 3. Power-law index α of the one-dimensional streamwise

energy spectra as a function of the projection angles from the mean

magnetic field θVB obtained from the non-elliptic anisotropy for

four coefficient sets shown in Fig. 1, and that from single-spacecraft

measurements of the frequency spectra in the solar wind presented

by Horbury et al. (2008) (triangles in gray) and Osman and Horbury

(2009) (squares in gray).

spheric latitudes, and for different components of the fluc-

tuating fields.

Horbury et al. (2008) use a 30-day Ulysses spacecraft data

set in the solar wind over Sun’s northern polar coronal hole

at a heliocentric distance of about 1.4 AU. The plasma is a

high-speed solar wind (about 750 km s−1). The spectra are

determined for the trace of the cross spectral density matrix

in the spacecraft-frame frequency range from about 10−2 to

about 2×10−1 Hz (or in the streamwise wave numbers from

about 8×10−5 to about 10−3 rad km−1 using Taylor’s frozen-

in-flow hypothesis; Taylor, 1938).

Osman and Horbury (2009) use a 1 h Cluster spacecraft

data set in 2006 in the near-Earth solar wind (at about 1 AU).

The spectra are measured for the perpendicular component

to the mean magnetic field. The spacecraft-frame frequency

range is above 2× 10−4 (corresponding to the 1 h interval).

The upper limit of the frequency range is not specified in

Osman and Horbury (2009). The frequency spectra are av-

eraged over two spacecraft separated at about 104 km from

each other. The plasma is a low-speed solar wind (about

330 km s−1). The corresponding streamwise wave numbers

are above 5× 10−6 rad km−1.

4 Discussion and conclusion

The concept of the non-elliptic anisotropy is a likely candi-

date to explain the power-law spectra at arbitrary projection

angles from the mean magnetic field and the smooth change

in the spectral index from the parallel to the perpendicular

projection to the mean magnetic field.

The major lesson from the non-elliptic anisotropy is that

the angle dependence of the spectral index can be explained

without incorporating the critical balance.

www.ann-geophys.net/33/1413/2015/ Ann. Geophys., 33, 1413–1419, 2015
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Non-elliptic anisotropy implies that the scale invariance

is broken in the wavevector domain such that the sense of

anisotropy turns from a parallel extension of the spectrum at

lower wave numbers into a perpendicular extension at higher

wave numbers.

The broken scale invariance means that the spectrum (or

spectral shape) is not self-similar under the simultaneous

transformation of the wavevector components k⊥→ λk⊥
and k‖→ λk‖. The non-elliptic anisotropy model breaks the

self-similarity in the wavevector domain. The critical bal-

ance model (cf. Eq. 3a or 3b in Forman et al., 2011) does

not intrinsically retain the self-similar property in the spec-

tral anisotropy for two reasons. First, the dependence on the

parallel wavevector components (to the mean magnetic field)

is achieved through the positive symmetric function g, while

the dependence on the perpendicular wavevector components

is made both as a power law and through the function g. Sec-

ond, the positive symmetric function itself has the scaling in-

variance because one can renormalize the large-scale param-

eter L into Lλ under the transformation k→ λk. In the non-

elliptic model, the anisotropy becomes stronger at increas-

ingly smaller scales or higher wave numbers due to different

power exponents, k2
⊥

and k3
‖
. The breakdown of the scale in-

variance may be interpreted as a realization of anisotropic

energy cascade or spatially intermittent process that creates

sparse structures parallel to the large-scale magnetic field. It

is thus important to associate the wavevector spectra with the

fluctuation components (waves or coherent structures) and

the energy cascade mechanisms.

More detailed verification of the non-elliptic anisotropy

is possible using both single-spacecraft and multi-spacecraft

methods. In the former case, the angle dependence of the

spectral index (as shown in Fig. 3) needs to be evaluated

using a larger data set with a higher accuracy in the pro-

jection angle resolution and a higher statistical confidence,

particularly at small projection angles around 0◦. In the

latter case, the energy spectra need to be evaluated directly

in the wavevector domain. Also, numerical simulation using

an MHD code serves as an independent, complementary

method to verify the validity of the non-elliptic wavevector

anisotropy. As a final remark, we note that further general-

izations of the wavevector spectrum should take account of

beta dependence, axial asymmetry, and a finite cross helicity.

The topical editor E. Roussos thanks the two anonymous

referees for help in evaluating this paper.
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