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Abstract. We have developed a hydrodynamic theory of the

nonlinear stage of dust devil generation in a convectively un-

stable atmosphere with large-scale seed vertical vorticity. It

is shown that convective motion in such an atmosphere trans-

forms into dust devils extremely fast. The strong vortical

structure of the dust devils can be formed in a few minutes or

even in a fraction of a minute. The formation process strongly

depends on the convective instability growth rate and hori-

zontal vorticity.

Keywords. Meteorology and atmospheric dynamics (con-

vective processes)

1 Introduction

Dust devils are upward spiralling vortices. They are common

atmospheric phenomena on Earth and Mars and, due to the

presence of dust, these vortices can be visible as miniature or

small tornadoes. This phenomenon can have a major impact

on weather and climate and serve as nuclei of dust storms on

Mars.

The main characteristics of dust devils have been anal-

ysed and collected in a number of in situ measurements

(Balme and Greeley, 2006; Leovy, 2003; Ryan and Carroll,

1970; Sinclair, 1969; Thomas and Gierasch, 1985), as well

as laboratory (Greeley et al., 2003; Zheng et al., 2003) and

numerical experiments (e.g. Gu et al., 2008; Huang et al.,

2008). It is well known that this phenomenon arises on

sunny days when the superadiabatic lapse rate occurs. The

latter leads to convective instability in the planetary bound-

ary layer. This results in generation of convective cells with

finite poloidal (horizontal) vorticity (e.g. Onishchenko and

Pokhotelov, 2012; Onishchenko et al., 2013, 2014a, b).

Numerous observations and laboratory experiments have

revealed that dust devils can be generated only in a convec-

tively unstable atmosphere with large-scale seed vertical vor-

ticity. Sinclair (e.g. Sinclair, 1969) has analysed dust devil

generation in the lee of small mountains. Based on the anal-

ysis of observational results, he concluded that dust devils

probably arise due to a vortex embedding in the background

flow together with superadiabatic lapse rate.

In such structures the dust grains are in contact with each

other and, therefore, via friction or triboelectric processes can

generate electric charges and related electric fields (Farrell

et al., 2004, 2006; Renno and Kok, 2008). The electric forces

near and within dust devils are coherent and fairly strong, but

nevertheless they are, as a rule, still small in comparison with

corresponding pressure gradients.

The linear theory of dust devil generation, i.e. by assuming

that the excited small-scale vertical vorticity is smaller than

external vorticity, has been developed in Onishchenko et al.

(2014c, 2015). One of the main features of dust devil vortex

generation refers to a strong increase in the tangential speed

and vertical vorticity within a few seconds or even a fraction

of a second. In this paper we study the nonlinear stage of

dust devil generation. We show that the vertical vorticity and

the toroidal speed in an unstably stratified atmosphere with

large-scale seed vorticity rapidly grows within a time of the

order of the inverse convective instability growth rate. Note

that, in the present analysis, the dissipative processes (i.e. vis-

cosity, thermal conductivity, heat flow, etc.) are neglected.

Moreover, we disregard the effects of the dust component as-

suming that it plays a passive role in vortex generation.
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2 The model

We consider the fluid motion in cylindrical geometry (r,φ,z)

and the axially symmetric case ∂/∂φ = 0. The most gen-

eral divergence-free flow velocity v can be decomposed into

its poloidal v⊥ = (vr ,0,vz) and toroidal vφ êφ parts, v =

v⊥+vφ êφ , respectively. Here v⊥ =∇×(ψ×∇φ)= (∇ψ×

∇φ)/r , where ψ (t,r,z) is the stream function:

vr =−
1

r

∂ψ

∂z
, vz =

1

r

∂ψ

∂r
. (1)

According to Onishchenko et al. (2014c, 2015) the equation

describing the nonlinear internal gravity waves in the approx-

imation ∂/∂r � ∂/∂z can be written as(
∂2

∂t2
+ω2

g

)
1∗rψ +

1

r

∂

∂t
J
(
ψ,1∗rψ

)
= 0, (2)

where ωg is the Brunt–Väisälä or buoyancy frequency given

by

ω2
g = g

(
γa − 1

γaH
+

1

T

dT

dz

)
, (3)

where J (A,B)= (∂A/∂r)∂B/∂z−(∂A/∂z)∂B/∂r is the Ja-

cobian, γa is the ratio of specific heats, H = g/c2
s is the re-

duced height of atmosphere, cs is the adiabatic sound veloc-

ity and

1∗r = r
∂

∂r

1

r

∂

∂r
. (4)

If ω2
g < 0, Eq. (2) describes the dynamics of convective cells

in an unstable atmosphere. An equation similar to Eq. (2) has

been obtained previously by Stenflo (1990) for interpretation

of behaviour of acoustic gravity vortices.

In this work we constrain the model stream function as

ψ =
αr2z

2
exp(γ t − r2/r2

0 ), (5)

where r0 is the vortex radius, γ is the growth rate of the rising

air, and α is a constant. By applying the differential operator

Eq. (4) to the stream function Eq. (5) it is easy to obtain that

1∗rψ =−
8

r2
0

ψ +
4

r2
0

r2

r2
0

ψ. (6)

Therefore, by taking into account Eq. (6) the nonlinear term

in Eq. (2) is negligible in comparison with the linear terms if

α

γ

r2

r2
0

exp(γ t − r2/r2
0 )� 1. (7)

In this approximation from Eq. (2), it follows that γ = |ωg|.

Thus, the function in Eq. (5) is a solution of Eq. (2) if the

condition in Eq. (7) is satisfied.

Using Eq. (5) the radial and vertical velocities can be writ-

ten as

vr =−
αr

2
exp(γ t − r2/r2

0 ) (8)

and

vz = αz

(
1−

r2

r2
0

)
exp(γ t − r2/r2

0 ). (9)

From Eqs. (8) and (9), it follows that the poloidal vorticity at

r � r0 is

ωφ =
∂vr

∂z
−
∂vz

∂r
= 4α

rz

r2
0

exp(γ t). (10)

Thus, the parameter α corresponds to horizontal (poloidal)

vorticity for 4rz= r2
0 and t = 0 in the internal vortex region.

To investigate the evolution of the vertical (toroidal) vorticity

ωz we make use of the following equation:

∂ωz

∂t
+ vr

∂ωz

∂r
+ vr

∂ωz

∂z
= ωz

∂vz

∂z
, (11)

which describes the interaction of vertical vorticity with

poloidal motion. We consider that in the vortex area there

is a stationary large scale, with characteristic scale R� r0,

vortex vorticity germ �zh(r) when z < h and �z(r) when

z > h. Here h is the vertical scale due to the interaction of

vortex with the ground surface,

�zh(r)=�
z

h

[
1− exp

(
r2

R2

)]
'�

z

h

r2

R2
, (12)

and

�z(r)=�

[
1− exp

(
r2

R2

)]
'�

r2

R2
, (13)

where � is a constant. We assume that ωz =�zhf (r, t) and

ωz =�zF(r, t) when z < h or z > h, respectively. By substi-

tuting expressions for ωz into Eq. (11) one can obtain that

f (r, t)= exp[(α/γ )exp(γ t − r2/r2
0 )] (14)

and

F(r, t)= exp[2(α/γ )exp(γ t − r2/r2
0 )]. (15)

It is seen that in the internal vortex region at r2/r2
0 � 1

and when t = 0, we have f (r, t)= F(r, t)= 1. The vor-

tex generation when F(r, t)− 1< 1 and therefore F(r, t)=

1+2(α/γ )exp(γ t−r2/r2
0 ) corresponds to the linear approx-

imation which has been investigated before by Onishchenko

et al. (2014c, 2015). In this article we study the vertical

vortex generation at arbitrary values f (r, t) and F(r, t) and

pay special attention to the nonlinear stage of the vertical

vorticity ωz generation when in the internal vortex region
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Figure 1. The normalized radial velocity (Vr/r0α) as a function of r/r0 and time t = 0.8, 4.0, 5.6, and 6.4 s. The r/r0 dependance is shown

for two separate radial intervals: 0< r/r0 < 0.2 (left) and 2< r/r0 < 4 (right).
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Figure 2. The normalized vertical velocity (Vz/r0α) for z= 2r0 as a function of r/r0 and time t = 0.8, 4.0, 5.6, and 6.4 s. The r/r0 intervals

are the same as for Fig. 1.

f (r, t)� 1 and F(r, t)� 1. The vertical vorticity ωz is re-

lated to tangential velocity vφ by relation

ωz =
1

r

(
∂

∂r
rvφ

)
. (16)

Thus the tangential velocity for z < h is as follows:

vφ = vφh0 exp[(α/γ )exp(γ t − r2/r2
0 )]. (17)

For z > h,

vφ = vφ0exp[2(α/γ )exp(γ t − r2/r2
0 )]. (18)

Here,

vφh0 = (�R/4)(r/R)
3(z/h)

and

vφ0 = (�R/4)(r/R)
3

are seeds of tangential velocities. To illustrate our results we

make use of observations from Oke et al. (2007). We consider

an air temperature lapse rate of 2 C m−1 that corresponds to

characteristic temperature vertical scale LT = 150 m and the

growth rate γ = 0.25 s−1. Figures 1 and 2 show the depen-

dence of normalized radial and vertical components of the

velocity within the time interval t ≤ 4s and when α = γ in

the radial domains r/r0 ≤ 0.2 or r/r0 ≥ 2.0. Note that ac-

cording to Eq. (9) the vertical velocity is proportional to z.

Figure 2 is plotted for z= 2r0. Equations (8) and (10) show

that the poloidal (horizontal) vorticity is proportional to the

radial velocity vr(r, t); therefore its dependence on the ra-

dial coordinate, and time is similar to that in vr(r, t). In the

intermediate domain 0.2< r/r0 < 2.0, where the condition

in Eq. (7) fails, the stream function in Eq. (5) is not a solu-

tion of Eq. (2). In this case while solving Eq. (2), the nonlin-

earity associated with the Jacobian should be taken into ac-

count. Further investigation of this nonlinearity in the region

0.2< r/r0 < 2.0 will be carried out elsewhere. Comparing

the left and right panels of Figs. 1 and 2, using interpolation

behaviour of velocities in the regions 0.2< r/r0 < 2.0 and

r/r0 ≥ 2.0, one can assume that for r ' r0 the absolute val-

ues of the radial velocity and the horizontal vorticity attain

their maximum values. Then the vertical component of the

velocity, for r ≈ r0, vanishes and then changes the sign.
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Figure 3. The radial dependence of the vertical vorticity amplification factor exp[2(α/γ )exp(γ t − r2/r2
0
)] in the inner (left) and the outer

region (right) of the vortex.
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Figure 4. The normalized toroidal velocity as a function of r/r0 in

the inner vortex region for R = 50 m and �= 0.1s−1.

Figure 3 shows the amplification factor F in the radial

intervals the same as in Figs. 1 and 2. Note the strong, i.e.

10-times, increase of F from t = 5.6 to 6.4 s in the interior

of the dust devil vortex, while in the external region (right

panel) the amplification factor F remains close to the unity.

Therefore, the amplification of the vertical vorticity is con-

centrated in the internal part of the vortex. Figure 4 indicates

the normalized toroidal velocity in the internal part. The ex-

ample shows a factor-of-8 increase in the toroidal velocity at

r = r0/5 in the time interval δt = 6.4− 5.6= 0.8 s.

For smaller temperature gradient with scale LT = 300 m

we have γ = 0.18 s−1, and the behaviour of vr and vz re-

mains the same. However, the former time interval t ≤ 4s is

enlarged to t ≤ 9 s following the condition γ t = const .

In Figs. 1–4 we show the generation of dust devils in the

Earth atmosphere with its characteristic parameters. When

applied to the Martian atmosphere, these parameters will

have other values; as a result, the instability growth rate and

spatial scales of generated dust devils will be different. Nev-

ertheless, the behaviour of radial velocity (Vr ), vertical ve-

locity (Vz), vertical vorticity (ωz), and toroidal velocity (Vφ)

will remain same. Therefore, Figs. 1–4 can also be used to

illustrate the mechanism of dust devil generation on Mars.

3 Conclusion

In summary, the new nonlinear analysis developed here

shows how an unstably stratified atmosphere develops high-

speed toroidal rotation from a large-scale seed vertical vortic-

ity. It is shown that convective cells in such a case can convert

into dust devil vortex structures extremely fast, more rapidly

than simply exponentially. From formulae (15) and (18), it

follows that the vertical vorticity ωz/�z0 and toroidal veloc-

ity vφ/vφ0 grow as∼ exp[2(α/γ )exp(γ t−r2/r2
0 )]. It is seen

that, in the inner vortex region, r/r0� 1, for moderate time

domain t&γ−1 the amplification factor shows explosive be-

haviour if α/γ&1.
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