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Abstract. In relation to satellite applications like global nav-

igation satellite systems (GNSS) and remote sensing, the

electron density distribution of the ionosphere has signifi-

cant influence on trans-ionospheric radio signal propagation.

In this paper, we develop a novel ionospheric tomography

approach providing the estimation of the electron density’s

spatial covariance and based on a best linear unbiased esti-

mator of the 3-D electron density. Therefore a non-stationary

and anisotropic covariance model is set up and its parameters

are determined within a maximum-likelihood approach in-

corporating GNSS total electron content measurements and

the NeQuick model as background. As a first assessment

this 3-D simple kriging approach is applied to a part of Eu-

rope. We illustrate the estimated covariance model reveal-

ing the different correlation lengths in latitude and longi-

tude direction and its non-stationarity. Furthermore, we show

promising improvements of the reconstructed electron densi-

ties compared to the background model through the valida-

tion of the ionosondes Rome, Italy (RO041), and Dourbes,

Belgium (DB049), with electron density profiles for 1 day.

Keywords. Ionosphere (mid-latitude ionosphere; modeling

and forecasting; general or miscellaneous)

1 Introduction

The ionosphere is the upper part of the atmosphere where

sufficient free electrons exist to affect the propagation of ra-

dio waves, and its morphology is mainly driven by solar ra-

diation, particle precipitation and charge exchange.

Over the last decade, global navigation satellite system

(GNSS) measurements have become one of the major tools

for ionospheric sounding, enabling the derivation of the to-

tal electron content (TEC) along a satellite-to-receiver ray

path. There are several activities in the ionosphere commu-

nity aiming to estimate or model the ionospheric electron

density based on GNSS data and other ionospheric measure-

ments.

The International Reference Ionosphere model (IRI; see

Bilitza, 2001; Bilitza and Reinisch, 2008) is an empir-

ical model based on historical ground- and space-based

data. It describes monthly averages of electron densities

and temperatures in an altitude range of about 50–1500 km

in the non-auroral ionosphere. Another empirical model is

NeQuick (see Nava et al., 2008). It is mainly driven by the

monthly average solar flux F10.7 and ionospheric F2 peak

parameters computed by the International Telecommunica-

tion Union (ITU) foF2 and M(3000)F2 models; see ITU-R

(1995). However, those models represent median ionospheric

behavior. Consequently the inclusion of actual ionospheric

measurements is essential to update the model and hence to

improve the electron density characterization.

Through the years different approaches have been devel-

oped and tested for ionospheric imaging, combining actual

direct or indirect measurements with empirical or physical

background models. We can identify methods modifying the

coefficients of an empirical model (see Brunini et al., 2011;

Galkin et al., 2012), methods updating the model towards the

measurements without modification of its coefficients (see

Angling and Cannon, 2004; Bust and Mitchell, 2008), meth-
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ods combining both (see Pezzopane et al., 2011) and ap-

proaches using physical background models and including

the estimation of ionospheric drivers, such as neutral winds,

in the state vector (see Schunk et al., 2004; Scherliess et al.,

2009; Wang et al., 2004).

Since methods for data assimilation/ionospheric imaging

were first developed, iterative methods have been used as

computer resource-saving approaches to assimilate data into

background models, e.g., derivatives of the algebraic recon-

struction technique and the successive correction method

(see Daley, 1991; Stolle et al., 2002; Gerzen and Jakowski,

2012). However, such techniques have the disadvantage that

the incorporation of additional information (e.g., background

and measurement error covariances), which is extremely

helpful for regularization of the ill-posed inverse problem be-

hind the ionosphere imaging, is hardly foreseen. Thus, tech-

niques which take advantage of spatial and temporal covari-

ance information of the ionosphere, such as optimal interpo-

lation (OI), the 3-D and 4-D variational technique, Kalman-

filter-based approaches, and geostatistical approaches such

as kriging, have been applied. In general, these methods pro-

vide a best linear unbiased estimator/predictor but differ in

their mathematical frameworks and thus in their practical im-

plementation; see e.g., Lorenc (1986).

As an example, Angling and Cannon (2004) introduced

the Electron Density Assimilative Model (EDAM) that incor-

porates different measurements into an empirical background

model by means of a Kalman filter. The majority of the in-

put data is GPS TEC derived from the ground-based GNSS

stations of the International GNSS Service (IGS). However,

EDAM also deals with ionospheric radio occultation (IRO),

ionosonde data and in situ electron density measurements;

see Angling et al. (2008). Bust et al. (2004) developed a

similar approach, the Ionospheric Data Assimilation Three-

Dimensional (IDA3-D) technique based on 3-D variational

data assimilation. Both EDAM and IDA3-D apply an expo-

nential time covariance model to forecast the electron density

state vector and its covariance matrix from one time step to

the next. The right choice of the covariance matrix of the

state vector (i.e., in this case the background covariance), the

determination of the time forecast model and the appropriate

choice of its parameters (for instance the correlation time)

are critical to these kinds of approaches. However, until now

there have only been limited publications which explicitly

cover these topics.

Variograms originating from geostatistics and describing

the variation between measurements depending on the dis-

tance separation are a popular tool to investigate spatial co-

variance; see, e.g., Wackernagel (1995); Chilès and Delfiner

(2012). For the provision of vertical TEC (VTEC) and its

integrity/error bounds, this method is successfully applied

within the Wide Area Augmentation System (WAAS) and

for the generation of global ionospheric maps (GIMs); see

Blanch et al. (2003) and Pèrez (2005), respectively. In par-

ticular, both applications detrend the VTEC measurements

Figure 1. Flow chart of the 3-D simple kriging approach.

using a background model to derive the spatial covariance

of the measurements or, more specifically, the error covari-

ance of the background. Afterwards this information is used

to estimate VTEC at ionospheric grid points using ordinary

kriging.

However, since electron density measurements are rarely

available, especially at altitudes above the F2 layer, it is dif-

ficult to obtain the electron density’s spatial covariance with

variograms. In this paper, we develop an approach enabling

the estimation of the electron density’s spatial covariance

model by means of direct and indirect ionospheric measure-

ments. Based on this information, the electron density for

arbitrary points/grids is calculated using 3-D simple kriging.

2 Methodology

The work flow of the approach is outlined in Fig. 1. Fol-

lowing the general knowledge about the ionospheric be-

havior, we set up a parametric spatial covariance model of

the 3-D electron density. Based on the ground-based slant

TEC (STEC) measurements and the NeQuick model, the un-

known parameters of the spatial covariance model are de-

rived using maximum likelihood estimation (MLE). After-

wards the electron densities of a given grid are calculated by

3-D simple kriging of linear functionals, i.e., integrals, incor-

porating the obtained covariance model, the NeQuick model

and the STEC measurements. The subsequent sections de-

scribe each step in more detail.

2.1 Spatial covariance model of electron density

In order to establish a spatial covariance model of electron

density, information about the behavior of the ionosphere is

necessary. Bust et al. (2004) suggested the separation of the

spatial covariance model into horizontal and vertical compo-

nents to take the geometric anisotropy of the ionosphere, i.e.,

directionally dependent correlation lengths, into account.

Yue et al. (2007) and Shim et al. (2008) confirmed this

approach with the analysis of GPS and incoherent scatter

radar observations revealing different correlation lengths in

latitude, longitude and height direction. Furthermore, the

investigations of Blanch et al. (2003) and Pèrez (2005) show

that the exponential covariance model might be appropriate
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to describe spatial dependencies of the ionosphere.

Moreover, the non-stationarity of the ionosphere should

be considered within the spatial covariance model. In

other words, if we assume the electron densities Ne(xi)

at arbitrary coordinates xi as a Gaussian random field

(Ne(x1),...,Ne(xn)), then the corresponding cumulative

distribution functions are N(µ1,σ
2
1 ), . . .,N(µn,σ

2
n ) de-

scribed by the expectation values µ1, . . .,µn and variances

σ 2
1 , . . .,σ

2
n , vary in space.

Based on this information, we set up the following spatial

covariance model of the electron density with the unknown

parameter vector θ = (θ1, . . .,θ4):

covθ (Ne(xi),Ne(xj )) :=

µ(Ne(xi)) · µ(Ne(xj )) · θ1 · ch(hh;θ2,θ3) · cv(hv;θ4), (1)

where xi,xj represent Earth-centered, Earth-fixed (ECEF)

coordinates of the WGS84 reference ellipsoid,

µ(Ne(xi)),µ(Ne(xj )) are the expected electron densi-

ties at the coordinates xi,xj , θ1 is the sill parameter and

ch(hh;θ2,θ3) and cv(hv;θ4) are the horizontal and vertical

spatial covariance models, respectively. The quantities ch

and cv are respectively driven by their correspondent model

parameters θ2, . . .,θ4 and the horizontal or vertical distance,

hh and hv, between two coordinates, xi and xj .

The horizontal covariance model is defined as

ch(hh;θ2,θ3) := e
−3hh , with

hh :=

∣∣∣∣∣∣
θ2 0 0

0 θ2 0

0 0 θ3

( xi

|xi |
−
xj

|xj |

)∣∣∣∣∣∣ . (2)

By means of the normalization, the ECEF coordinates xi
and xj are projected to the unit sphere, and the influence of

the height component becomes negligible. Furthermore, the

assumed anisotropic correlation lengths in latitude and lon-

gitude direction are modeled by a diagonal matrix contain-

ing the parameters θ2 and θ3 (see Chilès and Delfiner, 2012,

p. 98).

Furthermore, the vertical covariance model is chosen as to be

cv(hv;θ4) := e
−3hv
θ4 with hv := |hgti − hgtj |, (3)

where hgti and hgtj are the corresponding heights of xi and

xj over the WGS84 reference ellipsoid.

Considering Eqs. (1)–(3), it becomes clear that ch and

cv describe the anisotropy of the ionosphere and the ex-

pectation values µ(Ne(xi)) and µ(Ne(xj )) are incorporated

to take into account the ionosphere’s non-stationarity. For

instance, let us assume Ne(x1) and Ne(x2) to be around

the ionospheric F2 peak height of 300 km, and Ne(x3) and

Ne(x4) at a height of about 2000 km, where the horizon-

tal distances hh(x1,x2) and hh(x3,x4) are equal. Then with

Eq. (1) it follows that covθ (Ne(x1),Ne(x2)) is usually higher

than covθ (Ne(x3),Ne(x4)).

2.2 Estimation of the spatial covariance model

parameters using STEC

The spatial covariance model in Sect. 2.1 depends on the pa-

rameters θ = (θ1, . . .,θ4). In order to estimate them, a back-

ground model and STEC measurements are used. Subse-

quently we briefly describe the calculation of ionospheric

STEC measurements as well as the background model.

Therefore, we particularly derive the relationship between θ

and the STEC measurements and outline the MLE of θ .

2.2.1 Background model

As background model an arbitrary electron density model

can be considered, e.g., the NeQuick or the IRI model.

Within this paper we apply the three-dimensional NeQuick

model version 2.0.2 released in November, 2010 (B. Nava,

personal communication, 15 January 2013). It serves as a

non-stationary trend model providing the expected electron

density µ(Ne(xi)) at a coordinate xi and the STEC along a

ray path s. Additionally, the NeQuick electron density back-

ground is used within the 3-D simple kriging to stabilize

the tomography of the ionospheric electron density, which

presents an ill-posed and strongly underdetermined inverse

problem.

The NeQuick model is currently being developed at the In-

ternational Centre for Theoretical Physics (ICTP) in Trieste,

Italy, and at the University of Graz, Austria (see Hochegger

et al., 2000; Radicella and Leitinger, 2001; Nava et al., 2008).

It is widely used in ionospheric delay and TEC estimation

for trans-ionospheric ray paths (see, e.g., Kashcheyev et al.,

2012). The vertical electron density profiles of the NeQuick

model are modeled by summing up five semi-Epstein lay-

ers whose shape parameters, such as peak ionization, peak

height and semi-thickness, are deduced from the ITU-R (ITU

Radio-Communication Sector) foF2 and M(3000)F2 mod-

els (see ITU-R, 1995). Therefore, the modeled electron den-

sity distribution inherits the spatial variances provided in the

ITU-R maps via the peak ionization and peak height informa-

tion. Additionally, the impact of the geomagnetic field on the

ionospheric plasma density distribution is determined using a

specific geomagnetic parameter called modip which is calcu-

lated from the Earth’s magnetic field. The NeQuick model is

driven by the solar activity level, either by the Zurich sunspot

number or by the solar radio flux at 10.7 cm wave length

(F10.7 index). In the present work, we used the daily F10.7

index to drive the NeQuick model.
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2.2.2 STEC measurements

GNSS STEC measurements represent integral measurements

of the electron density along a ray path s extending from

a satellite position to a receiver position. By the combi-

nation of GPS dual-frequency carrier-phase (L1, L2) and

code pseudorange (P1, P2) measurements, we derive the

low-noise carrier-phase-relative STEC and the code-relative

STEC. Subsequently, the code relative STEC is smoothed

by the carrier-phase relative STEC to obtain unambiguous

relative STEC measurements with a low noise level. How-

ever, the relative STEC measurements are impacted by the

receiver and satellite inter-frequency biases. We use a model-

assisted technique to separate the ionospheric delay (i.e., ab-

solute STEC) and the receiver and satellite inter-frequency

biases. For this, the two-dimensional Neustrelitz TEC Model

(NTCM) is applied together with a mapping function based

on a thin-shell ionosphere at 400 km height. For details about

the absolute STEC estimation and the separation of inter-

frequency satellite and receiver biases we refer the reader to

Jakowski et al. (2011). Based on this approach, we estimate

STEC for all receiver–satellite link geometries having eleva-

tion angles equal to or greater than 10◦.

2.2.3 Relationship between electron density covariance

and STEC measurements

We assume zero-mean Gaussian distributed and uncorrelated

STEC measurement errors εs ∼N(0,σ
2
s ) and state the STEC

measurement model as follows:

STECs =

∫
s

Ne(s)ds+ εs, (4)

where Ne(s) values are the electron densities along the

satellite–receiver ray path s. Since the calibration of the

STEC measurements is done accordingly to Jakowski et al.

(2011), the assumption of uncorrelated measurement errors

is tricky. However for the purpose of the work, possible cross

covariance errors are not considered.

Ciraolo et al. (2007) investigated the calibration errors

on experimental STEC measurements determined by GPS.

He found out that the leveling of the carrier to the code

measurements is mainly affected by the code multipath.

Consequently, a common choice of the measurement error

variance σ 2
s might be defined as dependent on the elevation

angle of the satellite-to-receiver configuration assuming an

increasing error budget with decreasing elevation angle. In

this study, we set the minimum STEC error to 1 TECU.

Considering Eqs. (1) and (4), the relationship between the

spatial covariance model of the electron density and the co-

variance of the STEC measurements results in

covθ (STECs,STECr)=

covθ

∫
s

Ne(s)ds+ εs,

∫
r

Ne(r)dr + εr

 (5)

=

∫
s

∫
r

covθ (Ne(s),Ne(r))drds+ cov(εs,εr) with (6)

cov(εs,εr) :=

{
σ 2
s or σ 2

r , if s = r

0 otherwise
. (7)

Assuming that the STEC measurements form a Gaussian

random field
−−−→
STEC= (STECs1

, . . ., STECsn)
T with the

expectation values µ= (µ(STECs1
), . . .,µ(STECsn))

T

and the corresponding covariance matrix (6θ )ij :=

covθ (STECsi ,STECsj ) with i,j ∈ {1, . . .,n}, the mul-

tivariate Gaussian probability density function (pdf)

of the STEC measurements fθ

(
−−−→
STEC

)
depends on

θ = (θ1, . . .,θ4) ∈ R+ ·R+ ·R+ ·R+ and is defined as

fθ

(
−−−→
STEC

)
=

1
√
(2π)n · |6θ |

e
−

1
2

(
−−−→
STEC−µ

)T
6−1
θ

(
−−−→
STEC−µ

)
, (8)

where |6θ | is the determinant of the covariance matrix and

the expectation values µ of the STEC measurements are de-

rived from the NeQuick model. Thus, the aim is the estima-

tion of the parameters θ maximizing the Gaussian pdf of the

STEC measurements. This maximum likelihood approach is

an optimization problem and can be stated as follows:

argmax
θ
L−−−→

STEC
(θ)= argmax

θ
lnfθ

(
−−−→
STEC

)
(9)

= argmax
θ

ln((2π)n|6θ |)
−

1
2 −

1

2

(
−−−→
STEC−µ

)T
6−1
θ

(
−−−→
STEC−µ

)
(10)

= argmax
θ
− ln(|6θ |)−

(
−−−→
STEC−µ

)T
6−1
θ

(
−−−→
STEC−µ

)
. (11)

The maximization problem can be transformed into a mini-

mization problem, for which different software package so-

lutions exist. Within this paper, we used the Python-based

software SciPy to solve the problem formulated in Eq. (11).

In particular, the algorithm of Powell is applied, which works

iteratively and performs sequential one-dimensional mini-

mization along each variable θ1, . . .,θ4 without calculating

derivatives of the objective function. For more details we re-

fer the reader to Powell (1964) and Jones et al. (2015). The

initial guess for the parameter vector θ is made empirically.

We assume an electron density standard deviation of about

12 % resulting into θ1 ≈ 0.016. Furthermore, we briefly ex-

amine the maximum horizontal distance hh between two

electron densities along ray paths with ionospheric piercing

points in the considered reconstruction area; see Sect. 3.1. At

this maximum distance, the correlation is assumed to be zero

for the initial guess. Based on the investigations of Shim et al.

(2008), we choose to set the initial guess for the parameters
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θ2 and θ3 to about 1.5. The parameter θ4 controls the vertical

correlation length and is set to about 300 km in agreement

with the analyses of Yue et al. (2007).

Figure 2 illustrates the estimated electron density covari-

ance models for the three different latitudes 45◦ N, 50◦ N

and 55◦ N at the Greenwich meridian at a height of 300 km.

The black marked circle represents the corresponding coor-

dinate. The correlation coefficient with its surrounding points

is calculated at local times 10:00, 12:00 and 14:00, and color-

coded from blue (no correlation) to red (fully correlated).

The estimated parameters of the electron density co-

variance confirm the assumption of anisotropic correlation

lengths in latitude and longitude. Thus, its principal behav-

ior agrees with the TEC correlation analyses of Shim et al.

(2008). Furthermore, we observe the temporal evolution of

the horizontal covariance reaching its peak at 12:00 on day

of year (DOY) 22 (2011) coinciding with the local time vari-

ations of the TEC correlation distances described in Yue et al.

(2007).

2.3 3-D simple kriging of the electron density

Once the parameters θ of the spatial covariance model of the

electron density are derived, the electron density at a WGS84

coordinate x can be estimated using simple kriging of linear

functionals (i.e., integrals; see Boogaart and Drobniewski,

2002) as

N̂e(x)= µ[Ne(x)] +

covθ
(
Ne(x),STECs1

)
...

covθ
(
Ne(x),STECsn

)

T

︸ ︷︷ ︸
=:6x

·6−1
θ ·

[
−−−→
STEC−µ

]
, where (12)

covθ
(
Ne(x),STECsi

)
= covθ

Ne(x),

∫
si

Ne(si)dsi

=
∫
si

covθ (Ne(x),Ne(si))dsi . (13)

Consequently in order to estimate the electron density at

an arbitrary WGS84 coordinate x, the product 6x ·6
−1
θ ∈

R1·n forms the weights λ= (λ1, . . .,λn)
T , which are used

to add the difference between the GNSS-based STEC mea-

surements and the expected STEC, in an optimal way,

to the expected/modeled electron density µ[Ne(x)]. More-

over once the weights are calculated, the simple kriging

estimation error σ 2
SK(x) at a point x is derived as (see

Chilès and Delfiner, 2012, p. 153)

σ 2
SK(x)= covθ (Ne(x),Ne(x))−λ

T
· 6Tx . (14)

For computational efficiency, Eq. (13) is extended to the dual

kriging equations, enabling the estimation of Ne at several

WGS84 locations x1, . . .,xm simultaneously:

N̂e(x1, . . .,xm)= µ[Ne(x1), . . .,Ne(xm)]
T (15)

+

 covθ
(
Ne(x1),STECs1

)
. . .covθ

(
Ne(x1),STECsn

)
...

covθ
(
Ne(xm),STECs1

)
. . .covθ

(
Ne(xm),STECsn

)


·6−1
θ ·

[
−−−→
STEC−µ

]
, (16)

where

covθ
(
Ne(xk),STECsi

)
= covθ

Ne(xk),

∫
si

Ne(si)dsi

 . (17)

3 Regional application

3.1 Validation scenario

In this study we apply the outlined method to a part of Europe

at 40–60◦ N and 30◦W–30◦ E for DOY 22 (2011). We chose

this region mainly for two reasons. Firstly the availability of

STEC measurements is relatively good, and secondly within

this region we expect better performance from the NeQuick

model, which represents the background of the method, and

hence an important input for the covariance and electron den-

sity estimation.

DOY 22 (2011) is within the current maximum of so-

lar cycle 24 but reveals quiet ionospheric conditions with a

F10.7 of 84 flux units and an average geomagnetic Kp index

about 1. The STEC measurements are derived from the 1 Hz

GPS L1 and L2 measurements of the International GNSS

Service (IGS) ground-station network. The measurements

whose corresponding ionospheric piercing points at a shell

height of 400 km are within the described area are used for

processing. On average, about 50 IGS stations with about 300

STEC measurements are available for a 1 s epoch; see Fig. 3.

Consequently, the tomography of the ionosphere is a strongly

underdetermined inverse problem with extremely limited an-

gle geometry. Since especially the height resolution is com-

plicated (see Garcia and Crespon, 2008) we decide to make

use of STEC measurements with an elevation angle down to

10◦.

For validation, we chose the ionosondes DB049 in

Dourbes, Belgium, at 50.1◦ N, 4.6◦ E and RO041 in Rome,

Italy, at 41.9◦ N, 12.5◦ E; see Fig. 3. At these coordinates

the height profiles of the ionospheric electron density are re-

constructed and compared with the available ionosonde pro-

files downloaded from the Space Physics Interactive Data

Resource (SPIDR). The reconstructed F2 layer characteris-

tics in particular, in terms of NmF2 and hmF2, are validated

against the measurements. For this purpose electron density

profiles with a 1 km height resolution are estimated.

www.ann-geophys.net/33/1071/2015/ Ann. Geophys., 33, 1071–1079, 2015
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Figure 2. Correlation coefficients between selected coordinates (black dots) and their adjacent coordinates at a height of 300 km for DOY 22

(2011) at 10:00, 12:00 and 14:00 UTC.

Figure 3. Typical measurement geometry over a part of Europe

for DOY 22 (2011) using the IGS ground-station GNSS Network:

IGS ground-stations (black triangles), ionospheric piercing points

of the STEC measurements (blue circles). The ionosondes RO041

and DB049 (red triangles) are used for validation.

3.2 Preliminary results

As an example for the application of the developed iono-

spheric tomography, Fig. 4 illustrates the electron density

layers of DOY 22 (2011), 12:00 UTC, at altitudes between

200 and 350 km. On the left-hand side, the background elec-

tron densities derived using the NeQuick model are dis-

played, whereas the right-hand panel depicts the electron

densities calculated by the 3-D kriging. The reconstructed

Figure 4. Example of the NeQuick modeled electron densities (left)

and the reconstructed electron densities (right) on DOY 22 (2011)

at 12:00 UTC over 40–60◦ N and 30◦W–30◦ E. The heights 200–

350 km within the selected European region are shown.

electron density layers reveal lower electron densities than

the one provided by the NeQuick model. This indicates GPS

STEC measurements are less than the one expected by the

NeQuick model.

Ann. Geophys., 33, 1071–1079, 2015 www.ann-geophys.net/33/1071/2015/
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Figure 5. Comparison of the NeQuick electron density profile

(blue), the reconstructed electron density profile (green) and the

ionosonde profile (red) of the ionosonde station DB049 on DOY

22 (2011) at 02:00, 12:00, 13:30 and 16:00 UTC.

Figure 6. Comparison of the NeQuick electron density profile

(blue), the reconstructed electron density profile (green) and the

ionosonde profile (red) of the ionosonde station RO041 on DOY

22 (2011) at 02:00, 11:45, 13:30 and 16:00 UTC.

Figures 5 and 6 show the electron density profiles at

Dourbes, Belgium, on DOY 22 (2011) at 02:00, 12:00, 13:30

and 16:00 UTC and at Rome, Italy, on DOY 22 (2011) at

02:00, 11:45, 13:30 and 16:00 UTC. For the presented pro-

files an improvement of the NmF2 parameter is notable but

simultaneously the peak height hmF2 is apparently not cor-

rectly reconstructed.

In order to obtain a first assessment of the 3-D kriging,

we derive the F2 layer peak density and height with the 3-D

kriging for DOY 22 (2011). In Fig. 7 and Table 1 the re-

constructed F2 layer characteristics are validated against the

Figure 7. Comparison of the NeQuick model (blue), the recon-

structed (green) and the ionosonde (red) F2 layer peak character-

istics at the ionosonde station locations of DB049 (left column) and

RO041 (right column) on DOY 22 (2011).

characteristics of DB049 and RO041 measured at 15 min ca-

dence. It is clear that the 3-D kriging can provide enhanced

NmF2 estimations with respect to the background model, es-

pecially at the ionosonde station RO041. Additionally, the

limitation regarding the hmF2 estimation becomes more ev-

ident. For the selected DOY almost no difference between

the hmF2 values given by the NeQuick model and the 3-

D kriging is found. These results are underpinned by the

mean and the root-mean-square relative absolute errors of the

NeQuick model and the 3-D kriging in Table 1. The relative

absolute error |εrel| is calculated as |εrel| = |y− ŷ|/y · 100,

where y is the measured value of the ionosonde and ŷ the

F2 layer characteristic given by the NeQuick model and the

3-D kriging, respectively. For both ionosonde locations, the

mean and the RMS error of NmF2 are decreased whereas

no reduction is obtained for the hmF2 errors. Similar results

are obtained by McNamara et al. (2007). McNamara et al.

(2007) compare foF2 and the maximum usable frequency

factor M(3000)F2 estimated by the Utah State University

Global Assimilation of Ionospheric Measurements (GAIM)

model with Australian ionosonde station data. They observed

that GAIM reproduces foF2 better than M(3000)F2, which is

related to hmF2. For a better M(3000)F2/hmF2 reconstruc-

tion, the integration of additional ionosonde profiles and the

smart handling of these data within a TEC-rich environment

are noted to be crucial.

The developed 3-D kriging will be validated in more

detail in future work and, in particular, the issue of the

hmF2 reconstruction will be addressed. Our goal is to en-

hance initialization of the background model by using the

ionosonde F2 layer measurements, as well as the assimilation

www.ann-geophys.net/33/1071/2015/ Ann. Geophys., 33, 1071–1079, 2015
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Table 1. Comparison of the relative absolute errors of the NeQuick model and the 3-D kriging at the ionosonde station locations of DB049

and RO041 for DOY 22 (2011), all values are given in percent.

RO041 NmF2 RO041 hmF2 DB049 NmF2 DB049 hmF2

mean RMS mean RMS mean RMS mean RMS

NeQuick 38.1 51.5 10.8 12.9 32.6 42.7 9.4 11.7

3-D kriging 25.0 35.5 11.3 13.5 25.6 39.3 10.0 12.5

of ionosonde electron density profiles; see, e.g., Pezzopane

et al. (2013); Settimi et al. (2013).

4 Conclusions

The presented 3-D simple kriging of the ionospheric electron

density is a novel tool for ionospheric tomography and its de-

velopment is still in progress. This approach is based on the

estimation of the electron density’s spatial covariance, which

is one of the most crucial inputs for kriging and also for dif-

ferent data assimilation methods. We use the relationship of

this covariance to the covariance of the STEC measurements

and outline the possible estimation of its parameters using the

STEC measurements. Compared to the ionosonde electron

density profiles, for the considered DOY 22 (2011) and loca-

tions the calculated electron density profiles show a promis-

ing gain with respect to the background model, in particular

for the estimated NmF2.

In this study solely ground-based STEC measurements are

incorporated. Nevertheless the approach is extendable to var-

ious ionospheric measurements such as ionosonde profiles

and peak density measurements, radio occultation measure-

ments, space-based STEC measurements and in situ mea-

surements. In the next stage of our research we will exam-

ine this topic in order to improve the estimation of spatial

covariance and electron densities. Our first effort will be the

integration of the ionosonde electron density profiles, since

ionosonde measurements are assumed to be the most reli-

able and available data type, which can provide vertical in-

formation around and below the F2 layer peak. McNamara

et al. (2011) showed that in specific cases the assimilation

of ionosonde data alone can yield even more accurate foF2

results than those obtained with the incorporation of GNSS

TEC data in addition to the ionosonde data.

Furthermore, focus will be directed towards the inclusion

of temporal information, which could be done, for instance,

by developing a spatial–temporal covariance function or em-

bedding the approach into a Kalman filter environment. Sub-

sequently, the detailed validation will be one of the most

challenging tasks. Therefore we plan a study similar to Mc-

Namara et al. (2008, 2011), investigating the capability of

the 3-D kriging to reconstruct the ionospheric characteris-

tics, e.g., foF2, F2 layer thickness and M(3000)F2. Based on

these results, we will refine the approach for the provision of

ionospheric corrections for satellite-based radar missions in

regions with dense GNSS networks.
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