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Abstract. In this paper, interannual variability of tropo-

spheric air temperatures over the Asian summer monsoon

region during the pre-monsoon months is examined in re-

lation to Indian summer monsoon rainfall (ISMR; June to

September total rainfall). For this purpose, monthly grid-

point temperatures in the entire troposphere over the Asian

summer monsoon region and ISMR data for the period 1949–

2012 have been used. Spatial correlation patterns are inves-

tigated between the temperature field in the lower tropo-

spheric levels during May over the Asian summer monsoon

region and ISMR. The results indicate a strong and signifi-

cant northwest–southeast dipole structure in the spatial cor-

relations over the Indian region, with highly significant pos-

itive (negative) correlations over the regions of north India

and the western Tibetan Plateau region – region R1 (north

Bay of Bengal: region R2). The observed dipole is seen sig-

nificantly up to a level of 850 hPa and eventually disappears

at 700 hPa. Thermal indices evaluated at 850 hPa level, based

on average air temperatures over the north India and western

Tibetan Plateau region (TI1) and the north Bay of Bengal

region (TI2) during May, show a strong, significant relation-

ship with the ISMR. The results are found to be consistent

and robust, especially in the case of TI1 during the period

of analysis. A physical mechanism for the relationship be-

tween these indices and ISMR is proposed. Finally the com-

posite annual cycle of tropospheric air temperature over R1

during flood/drought years of ISMR is examined. The study

brings out the importance of the TI1 in the prediction of

flood/drought conditions over the Indian subcontinent.

Keywords. History of geophysics (atmospheric sciences)

1 Introduction

The Asian summer monsoon (ASM), a part of the global

monsoon system, is considered to be an atmospheric re-

sponse to seasonal changes in a land–sea thermal contrast,

induced by the annual cycle of the solar zenith angle. A num-

ber of studies (Mohanty et al., 1983; Pearce and Mohanty,

1984; Li and Yanai, 1996; Liu and Yanai, 2001) also referred

to the land–ocean thermal contrast as being a primary driver

for the Asian monsoon – a seasonal-scale sea breeze circu-

lation. As part of ASM, summer monsoon circulation over

India is a unique example of such seasonal-scale circulation

and also thought of as emanating in a similar way to a gigan-

tic land–sea breeze.

The summer monsoon circulation over India normally gets

established by the end of May over the Indian seas and

south peninsular India, and prevails till the end of Septem-

ber. During the period of the Indian summer monsoon sea-

son, strong heat troughs form over land areas surrounding

the Arabian Sea, particularly over areas of north India, Pak-

istan, Iran and Saudi Arabia. At the same time, high moun-

tains like Himalaya, to the north, seal off the cold air out-

breaks (Mahajan et al., 1989). In the past, the relationship

between tropospheric temperature in pre-monsoon months

and the Indian summer monsoon rainfall (ISMR: June to

September total rainfall) has been examined in several stud-

ies (Verma, 1982; Mooley and Paolino, 1988; Parthasarathy

et al., 1990; Rajeevan et al., 1998; Kothawale and Rupa Ku-

mar, 2002). Verma (1982) pointed out that years with a cooler

upper troposphere over north and northwest regions of In-

dia during pre-monsoon months (April and May) were gen-

erally associated with normal/below-normal activities of the

subsequent Indian summer monsoon. In the 1980s, Moo-
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ley and Paolino (1988) examined the relationship between

the monthly surface thermal field over India during the pre-

monsoon months and summer monsoon rainfall. They re-

ported that the mean minimum temperature in the month of

May over the south Gujarat region showed a highly signif-

icant positive correlation with subsequent monsoon rainfall.

Using conventional data (station observations) over the In-

dian region, Parthasarathy et al. (1990) showed that upper air

temperature during the pre-monsoon season over west cen-

tral India can be useful in the prediction of ISMR. Also,

using well distributed radiosonde station data over India,

Kothawale and Rupa Kumar (2002) reported that the tro-

pospheric temperature anomaly, composites of excess (de-

ficient) monsoon rainfall years, showed pronounced posi-

tive (negative) anomalies during the month of May. Liu and

Yanai (2001) showed that the summer rainfall across the

whole of India is positively correlated to the mean tropo-

spheric temperature at 200–700 hPa averaged over Eurasia

in summer. Hence the above studies have shown that the pre-

monsoon thermal field over the Indian landmass affects the

overall performance of the summer monsoon rainfall over In-

dia. However, most of these studies are based either on sta-

tion observations over the Indian subcontinent or on surface

air temperature indexes averaged over the whole large area.

Studies have also pointed out that anomalies at higher lat-

itudes are considered to influence the variations in the Asian

monsoon (Kripalani et al., 1997; Bansod et al., 2005; Ding

and Wang, 2007; Fujinami and Yasunari, 2009; Krishnan et

al., 2009). A study by Kripalani et al. (1997) showed that the

west Pacific teleconnection pattern in the mid-troposphere is

significantly related to the ISMR. Also Bansod et al. (2005)

pointed out that mid-tropospheric height over the eastern

tropical Pacific Ocean during winter plays an important role

in modulating the ISMR. Based on the geopotential height

data, Watanabe and Yamazaki (2012) suggested that the

western Tibetan Plateau region has an important effect on

the intensity of the south Asian monsoon.

In India, summer monsoon is the lifeblood of the agricul-

tural population which shows considerable interannual vari-

ability. The large-scale deficit/excess rainfall over the In-

dian subcontinent not only affects life but also influences the

economy of the country. Hence even in present days, identi-

fication of a precursor for flood/drought-type conditions over

India has an enormous importance for the Indian meteoro-

logical community. Also, as discussed earlier, past studies

were either based on conventional measurements or even if

they were based on model data, a detailed analysis of inter-

annual variation of the thermal field over the ASM region

in relation to ISMR is not reported adequately, as well as

a detailed composite analysis of the thermal field also not

being reported. Taking into consideration all these facts, in

this paper, using global NCEP(National Center for Environ-

mental Prediction)-based model data, we examine a detailed

analysis of interannual variation of the thermal field over the

ASM region for various tropospheric heights in relation to

ISMR. Using a composite analysis technique, we have fur-

ther demonstrated that this relationship may be useful in the

prediction of flood/drought conditions over the Indian sub-

continent.

This paper is organized as follows: the data and methodol-

ogy utilized are discussed in Sect. 2. A detailed examination

of the relationship between air temperature and the ISMR

and the discussion of the physical linkage of the relationship

observed is made in Sect. 3, and t value statistics based on

the difference of monthly composite temperature anomalies

for flood and drought years over R1 (25 to 40◦ N and 70 to

80◦ E) are discussed in Sect. 4. Finally, a summary of the

study is presented in Sect. 5.

2 Data and methodology

Monthly mean NCEP/NCAR (National Center for Atmo-

spheric Research) reanalyzed grid-point temperature, wind

and geopotential height data at 2.5◦ lat× 2.5◦ long grid in-

terval, for standard levels in the troposphere for the period

1949–2012 (Kalney et al., 1996) are used in the analysis,

taken from http://www.esrl.noaa.gov/psd/data/gridded/data.

ncep.reanalysis2.html. In addition, ISMR data extracted from

the IITM website (www.tropmet.res.in) for the same period

are also used.

The thermal structure over the ASM domain for the entire

troposphere is obtained from air temperature data. The cir-

culation changes related to warm years (1953, 1956, 1959,

1961, 1970, 1988, 2007 and 2011) and cold years (1968,

1972, 1979, 1982, 1987, 1992, 2002 and 2009) are analyzed

from zonal and meridional wind at 850 hPa. The selected sets

of years are chosen such that they consist of contrasting years

of ISMR as well as exhibit consistent warm and cold May

mean temperatures in the entire lower tropospheric column

over the selected region. In an earlier study, Mason and God-

dard (2001) defined criteria for cold and warm years. In their

criteria, the warm (cold) years are defined when the normal-

ized temperature values exceed (are below) 1 standard devia-

tion (SD). of the selected warm and cold years of the present

study follow this criterion.

The zonal and meridional winds and geopotential height at

200 hPa level have also been used to explain the physical sig-

nificance of the relationship between the thermal index (TI1,

deduced in this study explained in Sect. 3.2) and the ISMR.

In order to study the relationship between the air tempera-

ture field over the ASM domain and the ISMR, and to explore

the possible physical linkage between them, the following

approaches have been adopted.

i. Simple linear correlation analysis is performed to re-

veal the possible relationship between the air temper-

ature field over the given domain and the ISMR.

ii. The technique of running windows of different width

has been applied to test the consistency/stability of the

relationship.
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Figure 1. Spatial distribution of the correlation coefficients of ISMR with air temperature over Asian region for (a) 1000 hPa (b) 925 hPa (c)

850 hPa and (d) 700 hPa for May. Positive (negative) correlations, significant at 1 % level, are indicated by yellow (gray) shade.

iii. To understand the physical linkage of the relationship

between ISMR and temperature, composite winds and

geopotential heights are analyzed for warm and cold

years.

In the present analysis, a year is defined as being a flood

year if ISMR > M+1 σ and as being a drought year if ISMR

< M− 1 σ , where M and σ are the mean and the SD of

ISMR. As per these criteria, flood years are: 1955, 1956,

1959, 1961, 1970, 1975, 1983, 1994 and 2007, and drought

years are: 1951, 1965, 1966, 1972, 1979, 1982, 1986, 1987,

2002 and 2009. The composite annual cycle of temperature

over significant regions during flood/drought monsoon years

of the ISMR are examined in detail for the prediction of

flood/drought conditions over the Indian subcontinent.

The Student’s t test has been applied to test the difference

in mean temperature over the specified regions during May

in flood and drought years. The critical value of the Student’s

t test with a 95 % confidence level is 1.75.

3 Results and discussion

3.1 Relationship between air temperature and ISMR

To explore the air temperature–ISMR relationship during

pre-monsoon months, we have computed the spatial corre-

lation between the thermal field over the ASM region for

each month of the pre-monsoon season (March through May)

at standard levels in the troposphere and ISMR. It was no-

ticed that the spatial correlation coefficients (CC) between

air temperature field and ISMR were weak and insignificant

during March to April for all the levels, while for the month

of May, CC is found to be significant for lower tropospheric

levels and hence only these results are presented. Figure 1

gives the correlation patterns for May, for the levels 1000 to

700 hPa. The statistical significance of these CCs is tested us-

ing the Student’s t distribution. The positive correlation val-

ues, which are significant at 1 % (5 %), are shown by yellow

(red), while negative CCs, significant at 1 % (5 %), are shown

by a gray (blue) shade in the Figure. The correlation map for

1000 hPa (Fig. 1a) shows a northwest–southeast dipole-type

pattern with significant positive correlation observed within

a domain bounded by 25 to 40◦ N and 70 to 80◦ E (region

www.ann-geophys.net/33/1051/2015/ Ann. Geophys., 33, 1051–1058, 2015
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Figure 2. Interannual variability of the normalized values of (a) TI1

and ISMR and (b) TI2 and ISMR. Index one and Index two are

shown by solid curves while ISMR is shown by histogram.

R1), and negative correlation over 17.5 to 22.5◦ N and 90

to 100◦ E (region R2). The dipole persists and remains an-

chored over the same region with a little bit of expansion of

significant correlation area for 925 hPa (Fig. 1b). The dipole

was found to be strongest in the case of 850 hPa (Fig. 1c).

At a level of 700 hPa, the significant positive correlations

persist all over India, excluding the northwest and northeast

regions (Fig. 1d). The strongest significant dipole-type rela-

tionship at 850 hPa level during May indicates that during

flood (drought) years, above (below)-normal temperatures

are witnessed over R1, while the reverse is noticed in case

of R2. In an earlier study, Mohanty et al. (2002) reported

that positive (negative) surface temperature anomalies oc-

cur over the northwest Indian (Bay of Bengal) region during

the excess rainfall years over India. The positive temperature

anomaly over R1 seems to be due to excess pre-monsoon

heating, whereas the negative temperature anomaly over R2

is due to excess cooling in May.

3.2 Interannual variability of indices and ISMR

As discussed in the previous section, since the dipole-type

relationship between ISMR and air temperature is found to

be strongest and significant at 850 hPa during May, we have

computed the two thermal indices viz., (1) TI1 and (2) TI2,

based on the areal average air temperature over R1 and R2,

respectively, for the month of May. The TI1 appears to be the

best, showing the highest correlation coefficient with ISMR

(CC was 0.48) followed by that of TI2 (CC was 0.41). The

positive relationship between TI1 and the ISMR suggests

that the above (below) normal activity of ISMR is related

to warmer (cooler) temperature in May over R1, while the

reverse is seen in the case of TI2. The interannual variabil-

ity of ISMR as well as that of the thermal indices (TI1 and

TI2) is presented in Fig. 2. It can be concluded that the in-

terannual variability of ISMR is in phase with the TI1, while

it is out of phase with TI2. This is again in agreement with

the high positive (negative) correlation between the TI1 (TI2)

and ISMR.

The physical linkage of the thermal TI1 and TI2 with

ISMR is proposed as follows. The primary contributor to

the positive thermal TI1 may be the excess heating in May

over R1. Kripalani et al. (2003) showed that an inverse re-

lationship exists between snow cover depth over the west-

ern Himalayan region during May and ISMR. From this, it

can be inferred that during above-normal years of ISMR, less

snow cover depth over west Himalayan region in the month

of May is observed. This may lead to relatively warmer air

temperatures over the region (R1 in the present study) re-

sulting in positive TI1, favoring the above-normal ISMR,

while negative TI2 may be due to excess cooling in May

over R2. Based on Outgoing Longwave Radiation (OLR)

data, Prasad et al. (2000) showed that, when the north Bay of

Bengal region (R2 in present study) experiences more con-

vective activities during May, the subsequent ISMR happens

to be above normal. Such frequent convective activities in-

duce a sudden drop in temperature and rise in pressure due

to descending cold air from aloft. Hence the cooling over

R2 may be due to frequent formation of pre-monsoon thun-

derstorm/squall activities over the region and favors above-

normal ISMR. It is also observed through earlier studies that

when the number of cyclones forming over the Bay of Ben-

gal region in pre-monsoon season is increased (Fadnavis et

al., 2011, 2014), the subsequent ISMR is found to be above

normal (Krishna, 2009; Ng and Chan, 2012). During pre-

monsoon months, most of the cyclones, formed in Bay of

Bengal region, show north–east movement and hit the land

in the north of the Bay of Bengal region (Fadnavis et al.,

2014). Occurrence of heavy rainfall activity associated with

these events may further lead to cooling over the region (R2

in present study) and favoring for above-normal ISMR.

In order to strengthen the physical linkage between the TI1

and ISMR, we investigate the composite analysis of 200 hPa

wind anomalies for the years of positive and negative TI1 i.e.,

the years with warm and cold temperature anomalies over R1

respectively. Figure 3a and b present composites of 200 hPa

wind anomaly in the month of May for warm and cold years

(given in Sect. 2), respectively. The figure depicts anticy-

clonic (cyclonic) winds during warm (cold) years over the re-

gion of northwest India and neighboring regions. In an earlier

study, Joseph and Srinivasan (1999) have also observed al-

most similar features in the mean 200 hPa wind anomaly field

and they found that when anticyclonic (cyclonic) wind field

is observed in May over northwest India, then subsequent

ISMR may be seen as a wet (dry) year. Based on the analysis

of 200 hPa meridional wind anomalies, they also noted a train

of large amplitude waves (Rossby waves) with spatial phase

difference of about 20◦ longitude between wet and dry years

of ISMR. By carrying out similar analysis we also found

Ann. Geophys., 33, 1051–1058, 2015 www.ann-geophys.net/33/1051/2015/
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(a)  200 hPa Composite wind anomaly for warm years 

 

 

(b)  200 hPa Composite wind anomaly for cold years 

  

 

 

Figure 3. Composites of global northern hemispheric 200 hPa wind

anomalies for the month of May for selected (a) warm and (b) cold

years.

similar features for warm and cold years (figure not shown).

From Fig. 3b it can also be inferred that the presence of cy-

clonic wind anomalies in May over the region R1 may lead

to incursion of cold air from northern latitudes over the north

Indian region. This may further adversely affect the heat low,

resulting in subsequent below normal ISMR. Also a study

by Krishnan et al. (2009) showed that on intraseasonal to in-

terannual timescales, the anomalous mid-latitude circulation

over western, central and eastern Asia can induce anomalous

cooling in the middle and upper troposphere through cold

air advection. The intrusion of such extra-tropical wind into

northwestern India and Pakistan can in turn weaken the mon-

soon flow.

Fig. 4a and b present composites of 200 hPa geopotential

height anomalies in the month of May for warm and cold

years. High positive (negative) anomalies are observed dur-

ing the composites of warm (cold) years over the region of

northwest India and neighboring regions, which indicates the

presence of strong anticyclonic (cyclonic) anomalies over the

region. Based on the results of the geopotential height in-

dex over the region of Afghanistan and the western Tibetan

Plateau, Watanabe and Yamazaki (2012) suggested that the

upper level anticyclone over the region generates an anoma-

lous descent over the Thar desert region. They also men-

tioned that the upper level anomalous anticyclone promotes

the development of a heat low through adiabatic heating,

associated with strong subsidence and near-surface sensible

heating. In a similar analogy, the stronger anomalous anti-

 

(a)  200 hPa Composite Geopotential height anomaly for warm years 

 

 

 

(b)  200 hPa Composite Geopotential height anomaly for cold years 

 

 

Figure 4. Composites of global northern hemispheric 200 hPa

geopotential height anomalies for the month of May for selected

(a) warm and (b) cold air years.

cyclone seen over region R1 (Fig. 4a) during warm years

may lead to intensification of the heat low over northwest

India and the adjoining areas. This further leads to an above-

normal ISMR.

From Fig. 4a and b, zonal wave trains, consisting of alter-

nating zones of high and low thickness values of geopotential

height running over the mid-latitudes, are seen for warm and

cold years. The striking difference is the high thickness val-

ues (Fig. 4a) and anticyclonic circulation (Fig. 3a) which are

seen to appear over the region of northwest India during the

warm years are noticed to have been replaced by low thick-

ness values (Fig. 4b) and cyclonic circulation (Fig. 3b) over

the same region in cold years. This might thus have taken

place due to a relative shift of wave train based on the com-

posites of warm and cold years and is consistent with the

earlier results of Joseph and Srinivasan (1999).

3.3 Stability of the relationship between ISMR and

thermal indices

The relationship between the temperature anomalies and

ISMR should be tested for its stability before using it in

prediction of the ISMR, since a recent study by Prasad et

al. (2000) found that some predictors of the ISMR have

been losing the power of prediction of ISMR during recent

decades. In order to test the consistency and stability of the

relationship between the thermal indices with the ISMR, we
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Figure 5. Variation of 31 year sliding correlation coefficient be-

tween (a) TI1 and ISMR and (b) TI2 and ISMR for the study period.

Horizontal dotted line denotes the line 5 % level significance.

have used the 31 years sliding window technique. In this

technique, 31 years data of both (ISMR and TI1 and TI2)

series are considered in a moving manner for calculating the

CC. Figure 5 shows the variation of the CCs between the

thermal indices with the ISMR during the period 1949–2012.

The CC values are plotted against the middle year of the run-

ning windows. It is seen from Fig. 5 that the relationship be-

tween TI1 (TI2) with the ISMR is consistently positive (neg-

ative) and statistically significant throughout the period of

analysis. However, there is a slight decrease in the strength

of the relationship in case of TI2 in recent period. Here it

may be noted that a study by Mandke and Bhide (2003) using

data for the period 1901–1998 reported a significant change

in various atmospheric parameters over the Bay of Bengal

after 1980 during the summer monsoon period. The decreas-

ing strength of the relationship of TI2 perhaps may be due

to the change in various atmospheric variables even extend-

ing from pre-monsoon period also. It would be interesting to

examine such variations during the pre-monsoon season also

but this is beyond the scope of the present study. From the

above analysis, it can clearly be concluded that the relation-

ship is robust only in case of TI1 and hence we have not given

much importance to TI2 for using it as a predictor of ISMR.

3.4 t value statistics based on difference of air

temperature anomaly (flood minus drought)

over r1

Based on data from Indian stations, Verma (1980) indi-

cated that the years with high upper tropospheric temper-

ature anomalies over northern India during pre-monsoon

months are generally associated with flood years. Tamura

et al. (2010) observed that the upper tropospheric warming

(during April–mid June) over the Tibetan Plateau is closely

associated with the monsoon Hadley circulation. They men-

tioned that the Tibetan Plateau is heated not only by diabatic

 
Figure 6. Vertical time variation of monthly composite difference

(flood–drought) of air temperature anomalies for the months of Jan-

uary to December over region R1 (line contour plot) and 5 % sig-

nificant level t values are plotted as shaded contour.

Table 1. Contingency table for frequency of occurrence of flood,

drought and normal rainfall over India corresponding to warm, nor-

mal and cold temperatures over region R1.

Flood Normal Drought

Warm 5.0 6.0 1.0

Normal 6.0 22.0 9.0

Cold 0.0 11.0 3.0

chi-square= 8.571

heating from the surface, but also by the adiabatic subsidence

in the upper troposphere around the onset phase of the ASM.

Hence to check the thermal characteristics of the whole tro-

posphere, as an exercise we have evaluated t statistics for the

entire tropospheric column over the region R1. The t values

are deduced based on the difference of monthly composite

temperature anomalies of flood and drought years for all the

months from January to December. The Student t test has

been applied to check whether the observed feature has oc-

curred merely by chance or if it has really given a true signal.

Figure 6 gives the vertical time section of t values over R1

for the months January to December. Significant high pos-

itive t values (> 2; significant at 1 % level) are seen from

1000 to 300 hPa level during the month of May as well as

during the established period of summer monsoon. Although

the values are significant up to upper tropospheric levels, the

correlation analysis (as discussed in Sect. 2) suggested that

the signal (based on TI1) is significant with maximum CC at

850 hPa level. Hence the t statistics support our hypothesis

that TI1 can be used as a predictor for ISMR.

Ann. Geophys., 33, 1051–1058, 2015 www.ann-geophys.net/33/1051/2015/
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To confirm further, we apply a chi-square (χ2) test. For

this purpose, we classified the TI1 for 63 years into cold, nor-

mal, and warm years as per criteria explained by Mason and

Goddard (2001) and constructed the contingency table cor-

responding to the occurrence of drought, normal and flood

years of ISMR which is shown in Table 1. It is seen that, in

the case of warm events, there is only one drought year, but

that of cold events, there are no flood years. Hence, the de-

gree of certainty in the prediction of ISMR is increased for

the case of cold events of the TI1. The null-hypothesis that is

tested concerns these distribution results from random sam-

pling fluctuations, and is not due to the influence of temper-

ature anomalies over R1 (TI1). The results of χ2 presented

through the contingency Table 1 show that the result for TI1

is found to be significant at 5 % level. Hence, from the above

discussion it can be inferred that TI1 can be considered as

a predictor for flood and drought conditions over India with

good confidence.

4 Conclusions

The interannual variation of the thermal field over the Asian

summer monsoon region for lower tropospheric levels in re-

lation to the ISMR has been brought out using correlation

analysis and composite techniques based on data for the pe-

riod 1949–2012. The following results are noteworthy.

1. A strong and significant northwest–southeast dipole

structure in the correlation pattern is found over the

Asian summer monsoon region between the tempera-

ture fields over the region during the month of May

and the ISMR with highly significant positive (negative)

correlations over the north India and western Tibetan

Plateau regions (the north Bay of Bengal region).

2. The average air temperature over the north India and

west Tibetan Plateau region during May at 850 hPa level

(TI1) has a strong and stable relationship with the ISMR

during the period of analysis.

3. The t statistics based on composite annual cycle of the

air temperature, along with the results of χ2 test, over

the north India and west Tibetan Plateau region well

supports the above result. The study has thus brought

out that TI1 can be used as a predictor for the IMSR.
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