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Abstract. Magnetic profiles of low-Mach-number collision-

less shocks in space plasmas are studied within the two-fluid

plasma theory. Particular attention is given to the upstream

magnetic oscillations generated at the ramp. By including

weak resistive dissipation in the equations of motion for elec-

trons and protons, the dependence of the upstream wave train

features on the ratio of the dispersion length to the dissipa-

tive length is established quantitatively. The dependence of

the oscillation amplitude and spatial damping scale on the

shock normal angle θ is found.

Keywords. Interplanetary physics (interplanetary shocks;

planetary bow shocks) – space plasma physics (shock waves)

1 Introduction

Collisionless shocks represent one of the most ubiquitous

strong nonlinear phenomena in space plasmas. The main role

of the collisionless shocks is to convert the energy of the di-

rected flow into heating for the bulk of the plasma and into

the acceleration of a fraction of the initial particle distribution

to high energies. While the acceleration mechanism works

mainly on large scales, the heating and the beginning of the

acceleration occurs at the shock transition itself. Since the

shock width is on the order of or smaller than the convec-

tive ion gyroradius (Greenstadt et al., 1975, 1980; Russell

et al., 1982; Mellott and Greenstadt, 1984; Scudder et al.,

1986; Mellott and Livesey, 1987; Farris et al., 1993; Hobara

et al., 2010), the macroscopic electric and magnetic fields

inside the transition layer govern the charged-particle mo-

tion there. Therefore, knowledge of the shock front structure

is crucial for understanding the processes related to shocks.

Observations show that, with the increase in the Mach num-

ber, the shock transition becomes progressively more com-

plicated (Greenstadt et al., 1975, 1980; Russell et al., 1982;

Mellott and Greenstadt, 1984; Scudder et al., 1986; Mellott

and Livesey, 1987; Farris et al., 1993). In low-Mach-number

shocks the transition region is known to be almost monotonic

or accompanied by magnetic oscillations decaying upstream

and downstream (Farris et al., 1993; Balikhin et al., 2008;

Russell et al., 2009). Low-Mach-number shocks are subcrit-

ical or marginally critical collisionless shocks in magnetized

plasmas (Kennel et al., 1985; Mellott, 1985), where the num-

ber of reflected ions is negligible. Although there is no the-

oretically established upper limit for the Mach number for

such shocks, usually shocks with Alfvénic Mach numbers

lower than 3 fall within this category (Mellott, 1985; Thom-

sen et al., 1985; Farris et al., 1993). Most of observed in-

terplanetary shocks in the heliosphere are low-Mach-number

shocks (Russell et al., 2009; Neugebauer, 2013). Many cos-

mological shocks, responsible for heating and acceleration,

may be low-Mach-number shocks (Ryu et al., 2003; Hong

et al., 2014).

So far, there has been no satisfactory theoretical descrip-

tion of the shock front even for low-Mach-number shocks.

The magnetohydrodynamic (MHD) approach, which treats

the plasma as a single conductive fluid, does not possess

any characteristic spatial lengths and does not allow us to

resolve the transition layer. If no dissipation is included,

MHD provides only the relation between the upstream and

downstream plasma parameters in the form of Rankine–

Hugoniot relations (RHs) (de Hoffmann and Teller, 1950).

Derivation of the latter requires the introduction of addi-

tional assumptions, such as specifying the state equations

for plasma species. RHs refer only to the asymptotic val-

ues of the plasma and magnetic field parameters, while the

transition from one asymptotic value to the other remains

unknown. Invoking dissipation in MHD, it becomes possi-

ble to describe a nonzero width transition. The typical way
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of including dissipation is to add resistivity to Ohm’s law

and/or add ad hoc viscosity terms to the equation of mo-

tion for the plasma. Yet, the width is determined by the

dissipation alone and should be significantly larger than

the ion inertial length for MHD to be valid (Kennel et al.,

1985; Kennel, 1988). During the last decades supercritical

quasi-perpendicular shocks (Bale et al., 2005; Krasnosel-

skikh et al., 2013) and quasi-parallel shocks (Burgess and

Scholer, 2013) have attracted more attention because of their

complicated pattern and the role of kinetic effects. Yet a the-

oretical description of the magnetic profile of even a low-

Mach-number shock remains a challenge. Observations show

that the ramp width and the upstream oscillation wavelength

is on the order of or less than the ion inertial length even

in low-Mach-number shocks (Greenstadt et al., 1975, 1980;

Mellott and Greenstadt, 1984; Farris et al., 1993). In this

regime MHD breaks down and the two-fluid plasma theory

(TFPT) has to be used (Krall and Trivelpiece, 1973). TFPT

describes each species (electrons and protons) with the use

of the continuity equation and Euler equation with the pres-

sure and Lorenz force included. The plasma equations are

coupled to the Maxwell equations via the charge and current

densities produced by both species together. The pressure pij
is only the second moment of the distribution function f (v),

as follows: pij =m
∫
(vi −Vi)(vj −Vj )f (v)dv, where Vi is

the bulk velocity (Krall and Trivelpiece, 1973). In the ab-

sence of collisions, the distribution function does not have to

be isotropic so that the pressure is, in general, a tensor. Yet

in many cases adopting the approximation of a scalar pres-

sure pij = pδij , δij being the Kronecker symbol, is widely

accepted. TFPT equations are completed with the state equa-

tions p(n) for each species (here n is the number density).

The polytropic law p ∝ nG is widely used as a state equa-

tion. In addition to the pressure and Lorenz force, dissipa-

tive terms which describe phenomenologically the momen-

tum exchange between the species phenomenologically can

be added to the equations of motion (Krall and Trivelpiece,

1973). In a collisionless plasma this momentum exchange is

usually related to anomalous resistivity (Sagdeev and Galeev,

1969; Papadopoulos, 2013).

Standard dissipation-free polytropic TFPT allows solitons

and periodic nonlinear waves but does not allow solutions de-

caying to different asymptotical states (Sagdeev, 1966; Ken-

nel and Sagdeev, 1967; Kennel et al., 1988; Hada et al., 1989;

Gedalin, 1998). In fact, TFPT with scalar ion pressure is valid

only in the upstream region, since ions begin to gyrate just

behind the ramp, which results in non-gyrotropic distribu-

tions and in a non-scalar pressure (Gedalin and Zilbersher,

1995; Gedalin, 1996a, b, 1997; Balikhin et al., 2008; Of-

man et al., 2009; Ofman and Gedalin, 2013). Before entering

the ramp, however, ions are expected to remain gyrotropic.

Numerical simulations of low-Mach-number, low-β (β.1)

quasi-parallel shocks (Omidi et al., 1990) have shown that,

apart from the effects due to backstreaming ions, their struc-

ture is not very different from those of quasi-perpendicular

ones. The main additional feature is the appearance of the

upstream whistler wave train. It should be mentioned, how-

ever, that the whistler wavelength rapidly decreases with the

increase in the shock angle and will become smaller than

the simulation cell size, unless the latter is on the order of

the electron inertial length. Ignoring the kinetic effects at the

first stage, it is reasonable to apply TFPT with a simple poly-

tropic pressure law in the upstream region, up to the plasma

entry to the ramp, for both quasi-perpendicular and quasi-

parallel geometries. In the present study we restrict ourselves

to the upstream region of the shock. A shock-like profile

cannot form without some dissipation (Gedalin, 1998). It is

expected that such dissipation can be produced by microin-

stabilities (Papadopoulos, 2013). In the upstream region one

can expect to have weak anomalous resistivity. Including re-

sistive dissipation in a scalar polytropic TFPT, we describe

the profiles of low-Mach-number shocks for a wide range

of angles between the shock normal and the upstream mag-

netic field. Our approach is similar to that of Gurevich and

Pitayevsky (1974), who treated a shock ramp as a discontinu-

ity constantly generating large-amplitude waves propagating

upstream. We assume that a finite width ramp is established

which acts as a large-amplitude perturbation for the upstream

region. Time stationary magnetic oscillations would damp

with the distance from the ramp due to the dissipation.

2 Basic equations

We consider a one-dimensional stationary plasma within

TFPT, where all variables depend only on the coordinate x

along the shock normal. With the increase in the Mach num-

ber the collisionless shock front is known to develop devi-

ations from planarity and become nonstationary (see, e.g.,

Bale et al., 2005). Yet observations show that, in low-Mach-

number shocks, these deviations are weak (Greenstadt et al.,

1975; Kennel et al., 1984; Farris et al., 1993). Electrons are

treated as a massless fluid. The ion and electron kinetic pres-

sures are assumed to be scalar and polytropic state equations

are used. The resistive dissipation is included as a friction

term between the two fluids. Quasi-neutrality, ni = ne = n, is

assumed, which is natural for the spatial and temporal scales

under consideration. With these assumptions the equations

take the following form (Krall and Trivelpiece, 1973):

miv∂xvi = eE+
e

c
vi ×B− x̂∂xpi − ν(vi − ve), (1)

0=−eE−
e

c
ve×B− x̂∂xpe− ν(ve− vi), (2)

x̂× ∂xB=
4π

c
ne(vi − ve), (3)

nv = J = const, E⊥ = const, Bx = const, (4)

where x̂ is the unity vector along the x axis, v = v · x̂, and

⊥ denotes components perpendicular to x̂. Here E and B are

the total electric and magnetic field, respectively, vs is the
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bulk velocity of the species s = e, i, ns is the number den-

sity of the species s, and ps is the pressure of the species

s. The momentum exchange (friction between the electrons

and protons) is described by the term with ν. We have also

taken into account that ni = ne means vi = ve. Summing the

x components of Eqs. (1) and (2) and taking into account

Eq. (3), one gets (see, e.g., de Hoffmann and Teller, 1950;

Krall and Trivelpiece, 1973; Scudder et al., 1986)

nmiv
2
+
B2

8π
+p = const, p = pi +pe. (5)

For the perpendicular components one has (Gedalin, 1998)

miv∂xvi⊥ = e[E⊥+
v

c
x̂×B⊥] +

eBx

c
vi⊥× x̂− ν(vi⊥− ve⊥), (6)

0=−e[E⊥+
v

c
x̂×B⊥]−

eBx

c
ve⊥× x̂+ν(vi⊥−ve⊥), (7)

x̂× ∂xB⊥ =
4π

c
ne(vi⊥− ve⊥). (8)

Here subscript ⊥ denotes vectors perpendicular to x̂. Sum-

ming up Eqs. (6) and (7) and using Eq. (8), one gets

vi⊥ =
BxB⊥

4πminv
+V , (9)

ve⊥ = vi⊥−
c

4πne
x̂× ∂xB⊥, (10)

where V is a constant vector which is determined by the con-

ditions at a particular reference point. There is significant

freedom in choosing the reference point and the conditions

there. This freedom will be used later, after deriving the equa-

tions in the general form. Respectively, V is specified below

in Eq. (19). Substituting all this into Eq. (6), one arrives at the

following equation for the magnetic field (cf. Gedalin, 1998):

Bx

4πn
∂xBy −

cν

4πne
∂xBz = eFy −

ev

c
Bz

(
1−

B2
x

4πminv
2

)
, (11)

Bx

4πn
∂xBz+

cν

4πne
∂xBy = eFz+

ev

c
By

(
1−

B2
x

4πminv
2

)
, (12)

F = E⊥+
Bx

c
V × x̂. (13)

These equations should be completed with nv = J = const

and

nmiv
2
+
B2
y +B

2
z

8π
+p(n)=Q= const. (14)

The stationary points of Eqs. (11–12) are the points where

∂xBy = ∂xBz = 0, that is,

0= eFy −
ev0

c
Bz0

(
1−

B2
x

4πmin0v
2
0

)
, (15)

0= eFz+
ev0

c
By0

(
1−

B2
x

4πmin0v
2
0

)
, (16)

where subscript 0 denotes values at (one of) the station-

ary point(s). Using the freedom in choosing the coordinate

axes, we put By0 = 0 and introduce the angle θ between

the magnetic field at the stationary point and the normal, so

that Bz0 = B0 sinθ and Bx = B0 cosθ . Respectively, one has

Fz = 0 and

Fy =
v0

c
B0 sinθ

(
1−

B2
0 cos2θ

4πmin0v
2
0

)
. (17)

For the ion velocities at the stationary point we find

viy0 = Vy, vz0 =
B0 sinθ cosθ

4πmin0v0

+Vz. (18)

Choosing the reference frame in which vi⊥0 = 0 (this is the

well-known normal incidence frame) sets

Vy = 0, Vz =−
B0 sinθ cosθ

4πmin0v0

. (19)

Using Eq. (6) one obtains Ez = 0 and

Ey =
v0

c
B0 sinθ. (20)

It is natural to define the Alfvén velocity and the Alfvénic

Mach number at the stationary point as

v2
A =

B2
0

4πmin0

, M =
v0

vA
. (21)

In order to achieve a better physical understanding, we intro-

duce the following normalized variables:

b =
B⊥

B0 sinθ
, V =

v

v0

, N =
n

n0

=
1

V
. (22)

Then the derived equations take the following shape:

lw∂xby − ld∂xbz =N(1− s)− (1−Ns)bz, (23)

lw∂xbz+ ld∂xby = (1−Ns)by, (24)

1

N
+ yb2

+ xf (N)= 1+ y+ x. (25)

Here

s =
cos2θ

M2
, y =

sin2θ

2M2
, x =

β

2M2
, (26)

β =
8πp0

B2
0

, f (N)=
p(N)

p0

, (27)

and the dispersion and dissipative length are

lw =
cB0 cosθ

4πn0ev0

=
ccosθ

Mωpi
, ld =

c2ν

4πn0e2v0

=
c2η

4πv0

, (28)
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where ω2
pi = 4πn0e

2/mi and η is the resistivity. The

length lw is easily recognizable as the inverse wave num-

ber of a low-frequency whistler wave standing in the

frame which is moving with the velocity v0: v0 = ω/k =

kccosθB0/4πn0e (Krall and Trivelpiece, 1973). Hereafter,

lw is referred to as “whistler wavelength”. It is worth men-

tioning that ld may depend on θ and M only implicitly, via a

possible dependence on ν. At the same time, lw rapidly drops

with the increase in M and/or θ .

The nature of the stationary point is determined by the lin-

earized equations

lw∂xδby − ld∂xδbz = δN − (1− s)δbz, (29)

lw∂xδbz+ ld∂xδby = (1− s)δby, (30)

− δN + 2yδbz+GxδN = 0, (31)

where G= (1/p0)(dp/dN)N=1 so that v2
s =Gβv

2
A/2 is

the local sound speed at the reference point. Assuming

δby,δbz,δN,δV ∝ exp(kx), one has

k2(l2w+ l
2
d)−C1kld+C2 = 0, (32)

k1,2 =

C1ld±

√
C2

1 l
2
d − 4C2(l2w+ l

2
d)

2(l2w+ l
2
d)

, (33)

C1 =
(v2
− v2

s )(v
2
− v2

I )+ (v
2
− v2

F)(v
2
− v2

SL)

v2(v2− v2
s )

, (34)

C2 =
(v2
− v2

SL)(v
2
− v2

I )(v
2
− v2

F)

v4(v2− v2
s )

, (35)

where vI, vSL, and vF are the usual velocities of intermedi-

ate, slow, and fast MHD waves, respectively (Krall and Triv-

elpiece, 1973), defined locally at the stationary point:

v2
I = v

2
Acos2θ, (36)

v2
F =

1

2

[
v2
A+ v

2
s +

√
(v2
A+ v

2
s )

2− 4v2
Av

2
s cos2θ

]
, (37)

v2
SL =

1

2

[
v2
A+ v

2
s −

√
(v2
A+ v

2
s )

2− 4v2
Av

2
s cos2θ

]
. (38)

Stationary points of the autonomous system of two first-order

ordinary differential equations are classified according to the

exponents k1 and k2 (see, e.g., Arnold, 1978). If C2 < 0, then

both k1 and k2 are real and k1k2 < 0, that is, the stationary

point is a saddle point, which means that one special solu-

tion ends at the stationary point and another special solution

starts at this point, while all other solutions do not arrive at

this point at all. If C2 > 0 and D = C2
1 l

2
d −4C2(l

2
w+ l

2
d) > 0,

then the stationary point is a node, which means that either

all solutions end there or start there and the magnetic field

vector rotates by a finite angle only. If C2 > 0 and D < 0,

the stationary point is a focus, which is similar to the node,

with the only difference being that the angle of the magnetic

field rotation is infinite.

In order to have a shock solution with different upstream

(x→−∞) and downstream (x→∞) asymptotic states, we

need the magnetic perturbation, caused by the ramp, to decay

toward±∞. Thus, Rek1 > 0 and Rek2 > 0 are required at the

upstream stationary point, and Rek1 < 0 and Rek2 < 0 are re-

quired at the downstream stationary point. For a fast magne-

tosonic shock in the upstream asymptotic state at x→−∞,

one has v > vF, which means that both C1 and C2 are posi-

tive. This point is a node for strong dissipation, D > 0, and a

focus for weak dissipation, D < 0. In both cases Rek1 > 0

and Rek2 > 0 are ensured by the presence of the dissipa-

tion. In the downstream asymptotic state (x→∞), the evo-

lutionarity conditions require that the velocity should be in

the range vI < v < vF. If vs < vI, the asymptotic point is a

saddle and Rek1Rek2 < 0. If vs > vI and v < vs , the asymp-

totic point is a node. Since in this case C1 > 0, the exponents

Rek1 > 0 and Rek2 > 0 and magnetic perturbations do not

damp toward x→∞. Thus, a resistive dissipation does not

allow a fast shock solution for any Mach number.

3 Upstream region

As mentioned above, one cannot really expect that the sim-

ple scalar pressure TFPT be applicable behind the ramp. In-

deed, the gyration of the ion distribution as a whole breaks

down these approximations. The objectives of the present pa-

per do not include the analysis of a non-gyrotropic pressure.

However, the region upstream of the ramp should be well

approximated by the approach adopted for sufficiently low

Mach numbers when ion reflection in negligible. Moreover,

we have shown that in an asymptotically super-fast magne-

tosonic flow, magnetic perturbation damps toward x→−∞.

From

dN

db2
=

yN2

GxNG+1− 1
, (39)

the maximum achievable density is Nc = (Gx)
−1/(G+1),

which corresponds to the maximum possible

b2
c =

1

y

[
1+ y+ x−

G+ 1

GNc

]
, (40)

with the maximum magnetic compression of Bt/B0 =√
cos2θ + b2

csin2θ .

We could not solve Eqs. (23–25) analytically. For numer-

ical visualization below we have chosen the fast magne-

tosonic Mach number to be fixed at MF = 2, while θ and

β are varied. A polytropic pressure is chosen, p(N)=NG,

with G= 5/3 so that v2
s /v

2
A =Gβ/2. The Alfvénic Mach

number is M =MFvF/vA and also varies with θ and β. The

ratio of the dissipation and dispersion lengths in terms of re-

sistivity is

ε =
ld

lw
=

(ωpiη
cosθ

)(ωpi
�i

)
=

(ωpiη
cosθ

)( c

vA

)
=

(
Mωpiη

cosθ

)(
c

v0

)
. (41)
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Figure 1. The total magnetic field (solid line) and the two perpen-

dicular components, Bz/B0 (dotted) and By/B0 (dash-dotted) for

the four cases: 1) θ = 70◦, β = 0.2,M = 2.14 (top left); 2) θ = 30◦,

β = 0.2,M = 2.05 (top right); 3) θ = 70◦, β = 1.2,M = 2.79 (bot-

tom left); and 4) θ = 30◦, β = 1.2, M = 2.14 (bottom right). In all

cases the fast Mach number MF = 2.

For the solar wind conditions, v0/c ∼ 10−3, one would have

ηωpi ∼ 10−3ε(cosθ/M). For the visualization below we

have chosen ε = 0.05/cosθ , which gives an approximate

idea of the dependence of ε on the shock angle for constant

resistivity. For the chosen parameters the latter is in the range

η ∼ (10−5
− 10−4)ω−1

pi .

Figure 1 compares the profiles obtained for the follow-

ing four cases: 1) θ = 70◦, β = 0.2 (top left); 2) θ = 30◦,

β = 0.2 (top right); 3) θ = 70◦, β = 1.2 (bottom left); and

4) θ = 30◦, β = 1.2 (bottom right). Coordinate x is mea-

sured in the whistler wavelengths lw. The calculated Alfvénic

Mach numbers are given in the figure caption. The profiles

are rather similar. Longer wave trains for smaller θ are due

to lower ε.

In the quasi-perpendicular case, θ = 70◦, one of the per-

pendicular components of the magnetic field, By , always re-

mains substantially smaller than the other, Bz, so that the po-

larization of the wave train is close to linear. In the quasi-

parallel case, θ = 30◦, the two components are comparable,

and the polarization is elliptical, approaching a circular po-

larization. High-β cases should be treated with caution since

ion reflection may be noticeable even at low Mach numbers.

Figure 2 shows the magnetic field profiles (total magnetic

field) for all four cases. The wavelengths for θ = 70◦ are

smaller than the wavelengths for θ = 30◦. For θ = 30◦ the

wavelength is smaller for lower β.

In the above figures the coordinate is measured in whistler

wavelengths lw = ccosθ/Mωpi . When keeping MF and β

constant, the whistler wavelength rapidly decreases with the

increase in θ . Our analysis is done using the massless elec-

tron approximation and can be valid only if lw� c/ωpe, that

x/lw
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Figure 2. Total magnetic field for the four cases: (1) θ = 70◦, β =

0.2 (solid line); (2) θ = 30◦, β = 0.2 (dash-dotted line); (3) θ =

70◦, β = 1.2 (dotted line); and (4) θ = 30◦, β = 1.2 (dashed line).
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Figure 3. Comparison of the profiles for θ = 70◦ (solid line) and

θ = 30◦ (dash-dotted line). Here the coordinate is measured in ion

inertial lengths.

is, for cosθ/M � (me/mi)
1/2. Figure 3 compares the pro-

files for θ = 70◦ and θ = 30◦ when the coordinate is mea-

sured in ion inertial lengths c/ωpi .

The representative values of θ and β were chosen to illus-

trate the differences. Figures 4 and 5 show the profiles with

additional sets of parameters.

Figure 4 shows the magnetic profiles for MF = 2 and

β = 0.2 and four values of the angle between the shock nor-

mal and the upstream magnetic field (θ = 15◦,45◦,60◦,85◦).

The number of oscillations drops rapidly with the increase in

the angle. For the nearly perpendicular shock, θ = 85◦, the

upstream wave train reduces to a magnetic dip just ahead of

www.ann-geophys.net/33/1011/2015/ Ann. Geophys., 33, 1011–1017, 2015
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Figure 4. The total magnetic field (solid line) and the two perpen-

dicular components, Bz/B0 (dotted) and By/B0 (dash-dotted). Top

left: θ = 15◦; M = 2.01. Top right: θ = 45◦; M = 2.09. Bottom

left: θ = 60◦; M = 2.13. Bottom right: θ = 85◦; M = 2.16. Other

parameters: β = 0.2; MF = 2.
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Figure 5. The total magnetic field (solid line) and the two perpen-

dicular components, Bz/B0 (dotted) and By/B0 (dash-dotted). Top

left: θ = 15◦; M = 2.04. Top right: θ = 45◦; M = 2.24. Bottom

left: θ = 60◦; M = 2.31. Bottom right: θ = 85◦; M = 2.38. Other

parameters: β = 0.5; MF = 2.

the ramp. In Fig. 5 the upstream plasma is hotter, β = 0.5,

while MF and θ are the same as in Fig. 4. There is little dif-

ference between the behavior of the magnetic profiles for the

sameMF and θ and different β. However, with the increase in

β for given MF and θ , the Alfvénic Mach number is higher.

The whistler wavelength is smaller. Therefore, when mea-

sured in the ion inertial lengths, the profiles with higher β

will look “tighter” (compare with Fig. 2).

4 Conclusions

Simple TFPT with polytropic pressure and resistive dissipa-

tion is able to reproduce quantitatively the basic features of

the upstream side of a low-Mach-number collisionless shock

in a wide range of θ and β. In the dimensionless variables,

the profiles are rather similar for constant MF, with only a

weak dependence on θ and β. The length of the whistler

wave train depends on the ratio between the dissipation and

whistler wavelengths and rapidly decreases with the increase

in this ratio. This similarity should not be surprising since

the kinetic effects are negligible for low Mach numbers in

the upstream region. Unless θ is too small, the species mo-

tion is governed by the magnetic field. The approximation of

massless electrons is valid if cosθ/M � (me/mi)
1/2. Thus,

in a wide range of angles the upstream parts of low-Mach-

number shocks should be similar. Observations would not

show this similarity as long as the measurements are nor-

malized not with the whistler wavelength but with the ion in-

ertial length, as is widely accepted. The whistler wavelength

rapidly decreases with the increase in the angle, while the

ratio of the dissipation-to-whistler wavelength increases. In

the quasi-perpendicular case the shock front should be much

narrower and exhibit fewer oscillations.
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