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Abstract. Coagulation of electrons to form macro-electrons 1  Introduction

or compounds in high temperature plasma is not generally

expected to occur. Here we investigate, based on earliePlasmas consist of equal numbers of electrons and ions
work, the possibility for such electron compound formation forming quasi-neutral fluid-like matter at temperatures suf-
(non-quantum “pairing”) mediated in the presence of vari- ficiently high for maintaining ionisation and with very large
ous kinds of plasma waves via the generation of attractivenumbers of electrons populating the Debye sphere. At such
electrostatic potentials, the necessary condition for coagulahigh temperatures electrons and ions are mutually well sepa-
tion. We confirm the possibility of production of attractive rated located at instantaneous distantgs~ N /3, where
potential forces in ion- and electron-acoustic waves, pointingV = Ne = Ni is the average plasma density in a singly
out the importance of the former and expected consequencesharged plasma. The electrostatic Coulomb fields of the
While electron-acoustic waves presumably do not play anynaked electric charges are confined to Debye spheres of ra-
role, ion-acoustic waves may potentially contribute to for- diusip by the collective effect of the many particles of oppo-
mation of heavy electron compounds. Lower-hybrid wavessite charge passing around at their average tangential speeds
also mediate compound formation but under different con-within radial distances < Ap. The geometric shape of the
ditions. Buneman modes which evolve from strong currentsPebye spheres is very close to a sphere, deviating from it
may also potentially cause non-quantum “pairing” amongOonly in very strong magnetic fields and for very high plasma
cavity-/hole-trapped electrons constituting a heavy electrorflow speeds. Outside the Debye sphere the residual particle
component that populates electron holes. The number densfield decays exponentially while contributing to a thermal
ties are, however, expected to be very small and thus not Vifluctuation background field. From a particle point of view
able for justification of macro-particles. All these processeseach of the plasma particles is a charged Fermion. In classi-
are found to potentially generate cold compound popula-cal plasmas at the high plasma temperatures the spin has no
tions. If such electron compounds are produced by the atimportance, and the fermionic property of the particles plays
tractive forces, the forces provide a mechanism of coolingno role. In quantum plasmas, which for obeying quantum
a small group of resonant electrons, loosely spoken, correProperties must be dense, this property is rather important.
sponding to classical condensation. For, when two electrons form pairs, the spins add up and the
pair becomes a Boson of either zero or integer spin. Many
‘pairs can occupy the same energy level and, altogether, tend
to condensate in the lowest energy level permitted by suffi-
ciently low temperatures (cf., however, the Appendix). This
property is very well known from solid state physics (cf. e.g.
Fetter and Waleckd 971, Huang 1987).
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976 R. A. Treumann and W. Baumjohann: Electron coagulation

Pairing is not expected under any normal plasma con-coagulation for each kind of waves, which requires knowl-
ditions. However, when a plasma wave passes across thedge of the wave spectrun.
non-quantum plasma, the dielectric properties of the plasma
change. Electrons assuming a relative velocity with respect . ] ) )
to the phase velocity of the plasma wave finding themselve€ Generation of wave-mediated attractive potentials
exposed to the dielectric polarisation which adds to the De- . .
bye screening that compensates for the naked particle chargg.he method of calculating the potential around a test charge

Such electrons may evolve an attractive electrostatic inter:” plasma was explicated sixty years agde(feld and

particle force acting on its neighbour electrons, an e1°fect§l'(t0h'e igga'tm'rtf )(/jeatrhs Iatf?r |twfas| revivedNambu a(;]d
different from classical wave trapping in the wave poten- ama 9 toinclude the effect of plasma waves and was

tial trough that causes wave saturation and other nonlinea?sed in this form to syggest the goagulatlon of p"?““c'es n
the presence of dust in plasmas in order to explain the for-

effects like solitons and holes. The attractive forces are di- i ¢ dust struct hich f hile b
rect current (dc) forces. Experienced by two electrons of ap—ir::gu':tr: O(cf ug, ZLuuCk:anV; I\I/ICeIar?(rjsS:;g;Vér:lfklaeg??le an
p_roximately same velocity_, they bind these_ together tp formZOOl_ NyamBu é%d Nitta2001 and referencés therein) '
binary compounds, that is, classical “pairs”. Experienced Following Neufeld and Ritchie(1959, the genera'l ox-
by many electrons of same velocity, they may form large . . 7 ; .
electron compounds the nature of which is that of massive?ression for tbe electrzostatlc potenti@l(x, ) is obtained
macro-particles of same charge-to-mass ratjon being fltﬁmde_ssonfs laV\iV E,E.x’lt)tq)(x’t) = _ﬂq]N(T’t)/‘l”éQt'h
sufficiently strongly correlated to behave dynamically like | 'et ensméo ha es p_ar icle I(Ia\ﬁarﬂznngsg € plasrlrzma with ve-
one single particle. Below we demonstrate that it is not the OCz;c):/eUthei‘sn i;dzr?:rqtaeqt (I)?enttia_l Ectﬂe)ufe(lrd)lannd F:;Jcr;ﬁ;
electrons themselves which coagulate but their Debye cloud 35 - Sit i 1967 K ”p d Trivel . 1973 the latt
such that the repulsive forces between the coagulating ele 5 ? 'ler:bo K ' rat f_m rivelpiece 3 the latter
trons do grow only very weakly with the numbegom of wo for textbook presentations)
coagulations. Sl —k - )
: o q (@—k-v) i,

Depending on the number,m of particles in the newly — ®(x,7) = _87'[;6 /dkdw melk (1)
formed conglomerate being odd or even, macro-electrons 0 ’
in principle behave like Fermions or Bosons. At very low Herer = x — vt is the distance between the location= vr
temperatures Bosons are k_nown to condensate to f0fm f the particle and the reference point of measurement of the
dense population. At the high plasma temperatures, trivpotential disturbancev (k) is the frequency of a spectrum of
ially implying thermal wavelengths.r = /27h?/meT ~  Plasmawave eigenmodes, presumably present in the plasma
10-°./TeV/Tm of the order of atomic scales, such effects as background noise or wave excitations, with wave number

are inhibited (for another strong counter argument see thé" The functione (k. w) is the complete dielectric plasma re-

Appendix). Classical coagulation of particles caused by at->PONse functich experienced by the particle including the

tractive inter-particle forces is, however, permitted. disturbance caused by the m(_)vin_g charge of the test particle.
In the following we show that, under certain conditions (One may note that thé function in the numerator can be

in high temperature plasmas, attractive potentials betweer"l’sed to replace the wave-number component parallel to the

neighbouring electrons are indeed produced as is schemabaticle velocity in the Fourier exponential xp- r) reduc-

ically shown in Fig.1. They are a necessary condition for mql'lrtl to ang)lmtegratlon.) f the test ch . hericall
subsequent coagulation of electrons. The intention is to find € problem as seen from the test charge IS spherically
out whether it provides a natural mechanism justifying thesymmetrlcal. Thus it makes sense to formulate it in spherical

still unavoidable assumption of macro-particles in numericalsv?t?]rig]r?\i:ﬁ]; ’ng:\Ir n S;]t(att)icc))tr? f'grvtvt?giguﬁ:ﬂ;ﬂ?ﬂf‘z:;ﬂzﬁé
particle-in-cell simulations. 9 :

The finding is that, though electrons may possibly Coag_Choosmg an expansion into spherical harmonics (as done in

ulate, their numbers will in all cases remain very small be- 1y thank the referees for reminding us that generation of at-

ing just of the order of a fraction of the resonant particles yractive potentials is merely the necessary condition for coagula-
which are a small fraction of the plasma population only, tootion. Real coagulation will take place only if a number of sufficient
small to be taken as justification of the assumption of macro-conditions is also met, a point that will be further discussed in the
particles. Discussion and Conclusions section.

The conditions for generation of attractive electrostatic po- It may be important to remark that in Poisson’s law no assump-
tentials in the presence of plasma waves are derived as a neion is made about the linearity or nonlinearity efx,s) which,
essary condition for coagulation. The numbers of particles inence, in principle is the general response function including all
e2ch f h eeciron compouncs h compourd densies arEEE/°=ll orineares, i contiute o e delctcpron
temperatures, require studying the sufficient conditions fore[k,w,cb(k)]. In discussing the Buneman mode later, we will in
passing make use of this more general form.
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Neufeld and Ritchigl 955 one has for the exponential factor

Potential

ik-r . T ms m
gk :4;1;;11 /%JH_%(kr)Yl Q@Y"M(2). (2

The notation for the spherical harmonikg' (), Y;" (2,)

is again conventional in wave number and real space, and the
* indicates the conjugate complex version of the azimuthal
exponentials exim¢y). Thek,r dependence is taken care
of by the half integer Bessel functious, 1/2(kr).

The response functiom(k,w (k)] is a function of fre-
quency and wave number and is taken in the electrostatic
limit. In the above representation it is a scalar function. When
electromagnetic contributions or an external magnetic fieldrigure 1. Schematic comparison between the dc Coulorhp)(
would have to be taken into account, it becomes a tensorDebye (@p) and plasma wave modifiedg) potentials for the case
Only its longitudinal part; =k - ¢ - k/k2 enters the expres- Wwhen the modified potential evolves an attractive domain. In all
sion for the potential, however. In addition, one would have cases considered the potential is repulsive inside the Debye sphere

to consider a variation of the vector potential caused by theft distancess Ape. In the presence of (electrostatic) plasma waves
test particle, if transverse waves are included investigated in this paper the dc potentig} outside but close to a

In the absence of the latter, it is well known that the po- distancelpe develops a region where it becomes negative. At large

tential of the test particle, in our case an electron of el_distances the effect of the plasma wave decreases rapidly.
ementary chargg = —e, consists of its Coulomb poten-

tial ®¢(r) = —q/4mweor, which will be Debye screened by ) ] ]

the plasma particles becomidiy () = ®¢ (1) exp(—r/Ap), T_hese expressions have been partially analyze_d in the
and a disturbance caused by the reaction of the plasma eigeRVailable literature with focus on the effect of dust in plas-
modes to the presence of the charge — the eigenmodes th312S (adding the susceptibility of dust particleSimukla and
are either present or are amplified by the moving test chargd!€landsg 1997 Shukla et al.2001, and others). In the fol-
for which the plasma appears as a dielectric to whose normdPWing we follow some of the lines in these papers in view
modes the charge couples. These eigenmodes contribute v @Pplication to space plasma conditions and with the inten-
adding each of them to the vacuum dielectric constant its partion of checking the chances for classical electron “pairing”
ticular susceptibilitiess(w, k), wheres is the index identi- and possible related effects like formation of macro-electron

fying the particle species which responds to the eigenmode<Ompounds. Being aware that there is no quantum pairing,

AM_—"  Distance
De q)a

Hence, withs = e, i for electrons and ions, respectively: we nevertheless keep the expression “pairing” in the follow-
ing for the reason that we consider attractive forces between
ek, w) = 1+ (kxp) "2 + xelk, ) + xi(k, w) (3)  twoelectrons. This s trivially generalised later to account for

Independent of the wave modes, the Debye term on the righftOrmatlon of coagulations of electroris.

is included here in order to account for the presence of the
point like test charge. In a non-magnetised plasma the sus- 3An apparently strong argument against the effectiveness of at-

ceptibilities assume the form tractive potentials is based on the comparison of the strengths of the
attractive and the wave potentials. Attractive potentials are weak

xs(k, ) = (kips) 2[1+ & Z (L)), (4)  and thus apparently negligible, in particular when the wave spec-
ls= (0 —k - us)/kvs. trum is unstably excited. This argument fails for two reasons. First,

at the location of the attractive potential the wave potential and the
ADs is the Debye length of species 8(¢s) the plasma dis-  resulting electric force act both on all electrons in the same direc-
persion functionps the thermal speed of species s, and  tion; in contrast the attractive potential acts between electrons, com-

is a possible bulk streaming velocity of species s which,pletely independent of the direction of the wave electric field. It can-

has to be retained both for streaming and electric current§'ectric field is given bykipe < 1, that is, it is large against the
J =Y gsNsu Debye length (Figl). In contrast, the attractive potentials between
= 2_sYqsiVsls.

One should note that Poisson’s law is quite general hoId—EIECtrons’ as shown below, act on scatekpe, only slightly larger

ina for both i d i . - R . .. thanthe Debye length, a scale on which the wave potential is practi-
Ing for both linear and nonlinear interactions. Restriction cally constant for all waves under consideration, and no force exists

to linear response functions only implies small disturbancesypich could compensate for the attractive force even then, when the
causgd. For large nonlinear d|sturbanges the .I|near responsfave is strongly excited, reaches very high amplitudes and evolves
function would have to be replaced by its nonlinear counter-nonlinearly. Its nonlinear evolution being taken care already in the

parts. general response functiefiw, k, @ (k)].

www.ann-geophys.net/32/975/2014/ Ann. Geophys., 32, 9989 2014



978 R. A. Treumann and W. Baumjohann: Electron coagulation

2.1 lon-acoustic “pairing” potential The argument of thé function depends on the direction of
electron velocityy = vz, which we arbitrarily chose in di-
Our first example is the response of the test charge potenrection. It is then appropriate to treat the integral in cylin-
tial to the presence of a spectrum of ion-acoustic waves indrical rather than spherical coordinates with wave number
a plasma, a problem originally treated cursorily Bgmbu . parallel to the electron velocity and k, perpendicu-
and Akama(1989. In this case the linear response function |ar to it. With p being the radius in the plane perpendicu-
is well known. Neglecting damping, its real part is given by |ar to v, the argument of the exponential beconigésr =
2 ik, (z—vt)+iky psing. Referring to the definition of Bessel

cia(w, k) =1+ 1 e <1+ 3k2)‘2Di)v (5) functions, the integration with respect to the azimuthal angle

kzkzDe 2 ¢ results in the Bessel function of zero order, and the expres-

where in the round brackets we iterated the frequency by ap§Ion forthe potential reads

proximating it with the ion plasma frequenay, which pro- 52 2 A
duced the ion Debye lengthp;. Puttingeia = 0 yields the  ®ia(z, p. 1) = —De /dkzdkLJoz(k;p)w'g(k;’kL) 9)
ion-acoustic dispersion relation 16reo 1+kZApe +kTAbe
R R A T e Tl L
wik)y= —— |1+ = (1+k°r 6 — Wia ia
a®) 1+ 1/k21%e[ Te ( D9> ©)
2,2 ®djy offers a possible change in sign which opens up the pos-
k?A3, 8N a . . ;
T2 N sibility for the potential of becoming attractive for another
1+k“Ape electron, in which case two electrons may form pairs.

The last term in the bracket on the right results from a possi- ©One first makes use of ti#unctions to replace; = /v
ble nonlinear density modulatianv. It vanishes in the long- " the exponential and elsewhere by performingthente-

wavelength regimézz\%e « 1. In order to proceed, we need gration. The two singularities a = +wj, require perform-

a treatable form of L. It is not difficult to show that this can "9 thew |n.teg.rat|on in the complex = .Eh(w) +i3(@) plane
X 1a via the principal values of the two integrals and the two
conveniently be written as

residua with integration contour now closed in the lower-half
1 k203 w2 (k) plane, that is, for — vt < 0 and damped ion-acoustic waves
- = o5 < > > (7)  I(w) < 0. One readily shows that the principal value van-
€ialw, k) 1+k AD w?® — w5 (k) . . . . .
e 1a ishes, for each integral contributes limg(Ine —Ine)+im =
which separates it into two parts. The first term is inde-i7 Which cancel when subtracted. The residua yield the res-

pendent of the presence of ion-acoustic waves. It is thu®nant result
completely spherically symmetric resulting in the known

2 2 .
Debye-screening potential field of the point charge (treatedp,, (;, p, 1) = e)‘De/ dkLJg(kzlp);‘"a(”’zklz) (10)
in Neufeld and Ritchigl955. Its contribution to the poten- Bueo J 1+ wirfe/v2+kTADe
tial at distances > Ape, large with respect to the Debye ra- ) 7
dius, is exponentially small. The nonlinear term in the wave X S'n[wia(v, k1) (— - f)}

dispersion relation is of higher order and can be neglected

meaning that the nonlinear modulation of the wave spectrunfor the wave—particle interaction part of the electrostatic

is of too large scale for causing a first-order effect in the po-potential. In this expression the ion-acoustic frequency is

tential disturbance. _ ~ implicitly defined through the ion-acoustic dispersion rela-
The dominant effect of the test electron interaction with tion, Replacingk, = wia/v, the latter can be iterated, yield-

the ion-acoustic wave spectrum is contained in the waveing to lowest order in the long-wavelength regime:pe <

mediated part. Its main contribution comes from the resonant hat w2 (v, k1) ~ 0PAB K3 [1+ wd /K3 v2)] ~ c2k2 /[1—

denominator in frequency space the contribution of which (me/mi)Te/ Kiesl. Here Kiest= mev?/2 is the test particle
dominates over that of the exponentially decreasing screenegh,atic energy. This becomes Simlﬂvl’ia(v ki)~ k2c2 /(1
repulsing Coulomb potentigbp outside the Debye sphere. 2 /12) With eia ~ wiApe the ion sound v;elocity. L

. . . . Cla
¢ thuattp ? 0 Tsetr_teI‘dEmtg theIger}eratlhexpresspndfor Lhe The wave-number integral must be truncated at the Debye
est particle potential Eq.3] yields for the wave-induce radiusk | Ape < 1 because inside the Debye sphere the point
charge potential dominates. This accounts for long wave-

contribution

- erBe [ dkdw wia(k)er” lengths only. Then the integral becomes
Dian,n) = qebe [ S L @) 1
2 -
[fo—kv _sw—kwn] vatz.p ~C LEOED  singge (11)
o —wiak)  o+opiak 1+ E%1+1/ (/e = D]

0
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with &=k, /Ape, p=p/ADe, and B =(cia/v)(1— A < 0forv Z cia. Here the value of the potential is

2 /vP)~Y2,  ¢=(z—vt)/ipe. The constant is

C = (e/4eorpe) (cia/v) (L — 2 /v?)~Y2. Strictly speaking, Dia(A) ~ —A’cos[i] (15)
this integral with respect t is the sum of its principal value 4 eohpel Al W2 —c2)V2 I

and the contribution of the poles &t = =i (1 — ¢2/v?)Y/2.

At sufficiently large particle speeds the pole contribution is - Cia A‘ 3

negligible, and only the principal value counts. This is seen =< —5< = (16)
as follows. For resonant particles> cia the poles are purely 2 v2 — c% 2

imaginary. Extending the singular integral over the entire do-

main implies that only the positive pole contributes, which is The effective distancg — vt| ~ Ape over which the poten-

obvious already from Eq8j since the exponential vanishes tial is attractive is thus given bfaw/Ape ~ (v2/c2 — 1)Y/2 >

at larger for positive imaginary part ok, Ape = £ only. In 2/m, mod 27, that is, the attraction is strongest just outside

performing the path integration the pole is surrounded inthe Debye length which implies that two electrons one De-

negative direction. Taking the residuum yields a term bye length apart attract each other. In other words, two Debye
spheres mutually overlapping by one Debye radius attract

o2 N . each other. For the resonant particle velocity this condition
2rilEs|do(ilE41p ) sin (iBlEs] ) = (12)  Jieldsvee 1.1ci
In order to attract another electron, it is clear that the two
—2n|§+|210<|§+|;3> sinh<ﬁ|f;‘+|>. electro_ns must move close_ to each othe_r W_ithin a distance
A > 1in the region of negativé;, both being in resonance

with the wave at velocities = cja. In this case they can form
pairs effectively becoming Bosons of either zero or integer
spin. We may note that in a magnetic fighdwith the elec-
trons moving along the field, the ion-sound wave depends
on the propagation angle ads=k - B/kB. In this case we

. When calculating the prln_C|paI part O.f the integral, we €ON- have for the sound speefd — c¢jaC0s, and the potential be-
sider the casé | p < 1, that is, radial distances perpendicu- " ; e
comes a sensitive function 6f maximising alongB. More-

lar to the particle velocity less than the ion-acoustic wave- _ ~ .
length but large with respect to the Debye length. Shortestover' we can set =0 and{Jo(0)) = 1 as only the distance

. o o 7 along B comes into play.
distances are thup =1, yielding Jo(é5) = Jo(§) a func This attractive potential has to be compared to the wave
tion of the integration variable only, varying in the interval

0.77 < Jo(&) < 1.0. Its average i$Jy) =~ 0.85, which we ex- 28;?”:;3:3;"; the<<pirtﬁfzgemmt;is%?]arfv::\gfzhV\t/ghr;h?rT?j
tract from the integral p De < 1, g gth reg

with the potential assumed being nearly constant over the
1 range of variability of the attractive potential. Thus the attrac-
. tive force of the trapping wave potential is small. In negative
. ~ 2
Pia(z, L~ C /é dé sin(p%) (13) wave phases it adds to that of the particle by confining low-
0 energy electrons in the potential well. These electrons oscil-

Io(x) is the zero-order modified Bessel function. It is obvious
that this entire term for particles close to resonance with
Ciar [E4] ~ O (v? — c2) is very small, confirming that it can
safely be neglected.

C’ 1, . late at the high trapping frequency with their average speeds
- E[(l_ Eﬂ > cosp + psing — 1} in resonance with the wave. Wave trapping, though being dif-
ferent in the average, helps attracting as in the attracting po-
with C’ = C(Jo). The integral is of the same form as in tential only the average trapped spdefi~ ciz counts. The
Nambu and Akam#1985. The requirement =z — vt <0 high jitter speed at trapping frequency of the electrons aver-
implies8 < 0. The potential becomes negative whenever theages out.
expression in the brackets is positive. The interesting case Wave-trapped electrons are the best candidates for form-
is when the test particle moves at velocity ci exceeding  ing pairs. Moreover, since a pair of chargetBat has been
the wave velocity only slightly. Thefg| mod 2r > 1, and  formed in the negative wave potential may well by the same
the dominant term ig8?cosp thus confirmingNambu and ~ mechanism produce a negative pair potendighir = %@ia
Akama(1985 and yielding over the distance of Xe, it may attract other electrons
or pairs to form larger macro-particles of large mass and
, charge but constant mass-to-charge ratio. In the extreme
Pialz, 1,0~ (‘C /'BD cosp. (14) (though possibly unrealistic) case, the maximum number of
coagulated electrons could about equal the number of elec-
The potential is attractive in all regions gos< 0 (i.e. 8 > trons trapped in the wave potential well, since all the neg-
/2). In the moving particle frama = (z —vt)/Ape the po-  ative potentials of the particles involved in producing at-
tential is attractive behind the particle in its wake in regionstractive potentials add to the wave potential. In effect this

www.ann-geophys.net/32/975/2014/ Ann. Geophys., 32, 9989 2014



980 R. A. Treumann and W. Baumjohann: Electron coagulation

mechanism may produce macro-electrons of large mass andetected in these cases, however, in numerical simulations
charge which behave like a single particle and have suclof electron hole formation. As electron-acoustic waves re-
properties as exploited in small mass-ratio numerical PICquire strong forcing in order to overcome damping, electron-
simulations. acoustic waves are not a primary candidate for generating
attractive wave potentials.
2.2 Electron-acoustic “pairing” potential
2.3 Lower-hybrid “pairing” potential
Another wave of similar dispersion is the electron-acoustic
wave. It is excited wherever the plasma contains two elecA most important medium frequency wave is the lower-
tron populations of different temperatures and densities. Itshybrid mode Huba et al. 1977 Yoon et al, 2002. It prop-
response function resembles that of ion-acoustic waves witlagates in a plasma under almost all conditions on scales be-
the only difference that two populations of electrons are in-low the ion cyclotron radius and frequency. Hence the ions
volved, and ions are assumed forming a fixed charge neutrabehave non-magnetically while the electrons are completely
ising background such that for the densiti€s= N¢+ Np magnetised being tied to the magnetic field and drifting in the
where indices c, h refer to the cold and hot electron com-electric field of the wave mode. Lower-hybrid waves can be
ponents. Electron-acoustic waves are high-frequency wavesxcited by density gradients, diamagnetic drifts and all kinds
in the sense thaktuvh, kve < |w — k - u)c|, wherevg, vy, are of transverse currents, =) ¢gsNsus| in a plasma, where
the thermal speeds of the different electron components. Thag, is the perpendicular drift velocity of species s. They are
electron-acoustic dielectric response function in its simplestprimarily electrostatic, propagating at oblique angle with re-

form reads spect to the magnetic field though being strongly inclined
1 5 with kj < k1. Their response function including the test par-
cealk, ) = 1+ _ “e . (17) ticle Coulomb potential term reads
k223, (@—k-uc)?
. . . [ mi ki
The Debye radius for sufficiently large temperature differ- ejn(k, w) =1+ VR —2[1+ —— (20)
encesTh, > T is completely determined by the hot compo- kApe @ e k7
nent, and for fixed ions there is no need to include the in 3k? AN
term.uc is the bulk streaming velocity of cold electrons. The + Zk_i <1+ 0)—§e> k )‘Di]’
inverse of the dielectric function can again been brought into
the same form as for ion-acoustic waves ki/kL & v/me/mi.
1 K2 i, The lower-hybrid frequency is defined as? = »?(1+
ceak,w) 1+k2Aﬁ< (w—k-uc)?— w§a> (18) w3/w2)~L. The term in brackets results from the large ar-

gument expansion of the derivative of the plasma dispersion
This is exactly the same form as for ion-acoustic waves,function Z’(¢j) = —2[1+ ¢ Z(¢)] with ¢ = o/ (wikApj) the
however, now with the electron-acoustic dispersion relationargument for the immobile ions. This response function is
wZa=k2cZy/(1+k?1d) and cZ,= v2(N¢/Np). For this rea-  formally of the same structure as the ion-acoustic response
son, the analysis is the same as for the ion-acoustic wavdunction Eq. b). Thus defining
The result has already been given 8gukla and Melandsg

(1997 and is listed here for completeness only: 2 1) wﬁ] [ mi kﬁ 1)
w = —_——
T k2, mek?
Peg X (e/lz - ut|) cos[|z —vt|/an(l— cga/vz)l/z] (19) 352 w2
+— (1+ —;)kZAZDi]
2k e

The bulk speed of the electrons has been suppressed here.

As before, there are some ranges in which the wave pothe whole formalism developed for ion-acoustic waves can
tential at the test charge can be negative and thus attradte applied to lower-hybrid waves. We write for the inverse
other electrons. This will, however, only happen in a plasmaresponse function

where two widely separated in temperature electron popula-

tions exist of which the colder one is streaming. Interestingly 1 k2334 w (k)

this might be the case in conditions when Bernstein-Green—, (w, k) 1+k2)‘%e< w? — wIZh(k)>'
Kruskal (BGK) electron hole modes are excited. In this case

the hole generates a dilute hot electron component which ig\gain, the Debye-screening term outside the brackets is of
traversed by a rather cold component of beam electrons. Poso interest at distances> Ape. The contribution to the wake
sibly in this case mutually attracting electrons become pospotential comes from the integral in EQ) (with wia(k) re-
sible. Unfortunately, electron-acoustic waves have not beemlaced bywin (k) andk, = kj = w/v./it, wherek) ~ k1 /i,

(22)
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u = me/mi, for nearly perpendicular wave propagation. Per- higher phase velocities of the lower-hybrid waves parallel
forming the w integration reproduces a form similar to rather than perpendicular to the magnetic field, while the test

Eq. (10) electron moves along the magnetic field at velooiy cin, |
5 being in resonance with the wave.

Pin(z, p.1) = (23) With these assumptions the integration of the sine func-
eAZDe dki]o(kLp)w|h(v,kJ_) tion with respect tok, can be performed as before and an
8veo J 1422 w2 (v,k1)/uv?+k223 attractive wake potential is obtained under similar conditions

¢ € as for the ion-acoustic wave Eq.5):
[ Apewin(v,k1) (z —vt)
X sin v A Cj )
Vi De D (A) ~ 'h \/_ (27)

but now including the more complicated lower-hybrid fre- .

quency Eq. 21). We simplify the lower-hybrid frequency e(Jo) Ji v? —clh I

by observingc?/uk? ~ 1. In dense plasma the last term in Y 12eorpe | [\ 02_¢2

the brackets becomesg A3, (wZ/w?) ~ k2 rZ, which is of

the order of the electron gyroradius-to-wavelength squared,
being small for completely magnetised electrons. Hence, 2cih | A
wi A3, ~ 2V2(ve/c)? = cZ, will be used in the factor in front
of the sine function. The lower-hybrid wave in this case prop-
agates at the Alfvén spedfl corrected by the ratio of elec- 3<U2 - Cﬁ],”>
tron thermal to light velocity. In this approximation and with

& = k) Ape, Wwe have for the lower-hybrid dispersion relation This potential

X COS|:

|

becomes negative fofr < |Binl/v/3 <
2 E2(1+ w23, /v2%E2) H gn mod 2r, in which case it attracts a neighbouring par-
1+ (24)  allel electron. An attractive potential requires, cin/ /it ~
1+k2)\.2 . p q Clh \/—
De l 43¢pp in an electron—proton plasma. As a consequence the

A%ewﬁq (v, k)~

~ 26|h§2 fraction under the square root does not shorten out but be-
1—cfy/v2 comes small of the order of(l - cﬁ]’”/vz) ~ 0 (/1). Un-
which is to be used in the above integral in the long- der the condition on the argument of the cos function the
wavelength approximation  Ape=£& <1 andv > ¢ = amplitude of the potential is of the order of

qh/ﬁ > ¢h. The last version on the_ right results from_ it- Cl/h elJo)  ch
erating the frequencw = winh (v, k). Within these approxi- 3 S —
mations and restricting to the intengl< 1 for long wave- [Binl ™ 3/3eghpe ¥
lengths, the potential becomes which is small of the order of the ratign / v ~ /1. Never-

theless, lower-hybrid waves may attract some resonant elec-

(28)

2 -
Oz 5.1~ Clh/ sz d& Jo(ézp) . sin(,g'hg) (25)  tronsin parallel motion along the magnetic field. In the trans-
1+&(1+ 2C|h,\|/v ) verse direction any electrons gyrate and thus are insensitive
143 to attraction. Any potential generated will just cause a cross-
. field electron drift weakly contributing to local current fluc-
~ Ciy / §°ds sin(piné) tuations. ’ ’
0
c Ch e Ch (26) 2.4 Buneman mode-mediated inter-electron potential
h=-—>7= )
I 2_¢2y1/2 . . .
(Jo) €oADe (v° —cjp) A most important plasma wave is the current driven non-
_ 2cth,| A magnetic Buneman modaéineman 1958 1959. It oc-
Ph=-——5—5 <0 9
(02— cf, Y2 curs under conditions of collisionless shocks, in collision-

. ) less guide field reconnectiod(ake et al. 2003 Cattell et
whergA = (z —v1)/Ape. One may note that in the_onl_y N al, 2009, and in auroral physics, in all cases producing
teresting Iong—wave!ength regime the factor multiplyiffy highly dynamical localised electron structures of the type of
in the denominator is at most 3. In order to neglect the eNBGK modes which trap electrons and cause violent effects

tire term&(1+ 2cf; /v?) < 1 and being able to analytically plasma dynamicsNewman et al.2007). Again account-
solve the integral one thus requires that the upper limit of the, ng for the presence of test electrons, the dielectric response
integral is taken ag§ < 1/+/3. Averaging the Bessel func- function of the Buneman mode is

tion over this interval again produces the numerical factor

(Jo). In the argument of the sine function the larger paral—e(w k) =1+ 1 _ w_.2 _ wg (29)
lel wave velocitycih, | = cin//i¢ appears. It is due to the T k3, o (w—kw)?’
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with u the current drift velocity of the electrons, akdhe and we must, fofs(w) > 0, require that — vr > 0 and in-

one-dimensional wave number. For the Buneman mode ongegrate over the positive frequency half-space. Indeed, solv-
hask ~ we/u andw; < w K we. Under these conditions the ing the dispersion relation still, for completeness, keeping the
(nonlinear) version of the Buneman response function benonlinear term, we obtain the usual Buneman frequency and

comes growth rate
3
eB(a),k)=1+—2+—(—> (1+—_>~ (30) R %L LAE 1 }ﬁ 35
kz)‘De 2\ w 2N N (ws) 1+ 1/k2)”2De)l/3 (16) + 2N )’ (35)
The Buneman dispersion relation is obtained as S (wg) = V3N (wp)
3 3 M ADe 36N . . .
K=—-wd=—"Pe (1427 ") 31 -
wg(k) = —wg 5 1+k2)‘2De( TN (31)  Hence, electrons in resonance with the wave lag slightly be

hind the wave. The integral may be written as a derivative
where we retained the nonlinear modulation term propor-with respect ta: = (z — vt)ve/vAipe. Further simplifying the
tional to the density variatiodV. In equilibrium it becomes  denominator and defining = we(i/16)Y3(1+ N /2N) ~

8N /N = —(eo/4mic2N) |8 Eg|? which is proportional to the  0.03we(1 + 8N /2N) the integral becomes

Buneman electric field intensity causing hole formation. In

the following this term will be neglected. We note that the so- v 1
lution wg (k) = R(wp) +iI(wg) has a non-negligible imag- ®g(z,0,1) ~ oy ¢ /gdg]o(sﬁ) (36)
inary part which must be taken into account. Inverting the 0Abe
response function yields,
P y xexp[—é)éé (\/\7’)—1') ;].

1 &g, w3 (k)
=—De (14 B ) (32)
eB(w, k) 14+k%A5, w’ — wg(k)

2.4.1 Attractive potential in linear theory

Changing variables and solving for the integral and restrict-
ing to the dominant term, we find that

The structure of this function is more complicated than in dg(z, p =0) ~ §;_ exp(— ;@@) (37)
the ion-acoustic case which is due to the higher power in fre- 4 €0rpe®t

quency and its imaginary part. This function is to be used _ b4 A b4

in Eq. (1). Again, the first term just reproduces the Debye X [COS(")‘: + _) les'n(“’Z + _)}

screening and can thus be dropped. In order to treat the in-

tegral of the second term, we again assume that the electropolding for ¢ > 0. Only the real part of the potential has
moves inz direction at velocityv. Rewriting the integral in ~ physical relevance, the imaginary part causing a spatial undu-
cylindrical coordinates and replacirlg = w/v as required lation along¢ of wavelength &/11r. We thus find that the

by the delta function, we find potential can indeed become attractive when the cos func-
, ) tion is negative, that is, in the intervglr < @¢ < 37 and
e dwdks Jo(k1 p) . : ; .
dp(z, p, 1) = —28 ZL 5 (33) for resonant electrons lagging slightly behind the wave. This
16meo ) 14 w?rfe/v? 4 kS Afe last condition can also be written
3 .
wp (k1 ,v) explio(z —vt)/v] _
x B . T < goglelizvil AT (38)
[wS _ w% k., v)i| 3 vV ADe 3

) ) ) ) ) Such electrons are presumably trapped in the wave potential
Treating thew integral is complicated by the third power || which confines them to the interior of holes generated by

of the frequency. It requires expansion of the last termihe Buneman mode. For the distance on which the potential
into a Laurent series. Since we know thag is a solu- g attractive the last expression yields

tion of the dispersion relation, the denominator can be ex-

panded aroun@ = wg yielding in the denominaton%(w— > 107 (v/ve)pe. (39)

att

(z—v1)

wg) |1+ (0 — wg)/ws + 3(» — wB)?/wd |. The bracket can
then be further expanded. Ultimately applying the residuum

. . . For the Buneman mode one requires that ve. Electron
theorem, only the first term survives producing

holes arising from Buneman modes extend up to several
ie/\%e k) dky 34 ~ Ape (Newman et al.2001). They are thus well capable of
deo J 14 wdrdo/v2+k202, (34) allowing trapped slow electrons of velocity in the narrow in-
terval ve < v < u to experience attracting inter-electron po-
X Jo<kJ_p> wB <kL, v) eXp[in(z — vt)/v] tentials and, in principle, form classical “pairs” or larger
compounds.

®g(z,p0,1) =
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This attractive potential caused by the Buneman modewo singular terms are multiplied: the first b{7& and the
is weak. This is obvious from the exponential factor second by &”/4.
exp(—a¢~/3). Inserting for x and using the condition Solving for the residues at small~ 0, one again obtains
Eq. (38) with ve/v < 1, it is found that this factor is of the a complex potenti&lwhich, after some simple but lengthy
order of < 0.007. Moreover, though the imaginary part of algebra, yields for the real and imaginary parts of the singular
the potential plays no role in the sign of the potential, it im- integral contribution to the potential
plies a periodic modulation of the electric field alanghich RSI(£) ~ (43)
is obtained when taking the derivatii&g oc —9®g/d¢. This B

modulation is, however, spatially damped away by the expo- Acoss [sinhi cos _ coshe sinl}
nential factor. Hence the potential becomes indeed weakly 2 J3 12 J3 12
attractive only in the near zone given by E&8)

Y g y EB8X —sin% [sinh% cosll2+cosh% sinll2 ,
2.4.2 Undamped contribution of the singularity in & o390) 3 3

SP(¢) ~

For completeness we check for the resonant contribution of ' T ¢ .o
the £ integral. This is complicated by the wave-number de- AC°S§ [S'”hﬁ COS5+ 003h73 S'”l—z}
pendence of the Buneman dispersion relation induced by the ¢ ¢ - ¢ -
presence of the test charge. Iteratively, the remaitimlg- —sin= [sinh— C0S— — cosh—— sin—} ,
pendence of the Buneman dispersion relation is reduced to 2 V3 12 V3 12

k1 only. With this in mind, the denominator in EB4) put  \where A = era?/4egv/2Ape. For ¢ positive and small, &

to zero becomes ¢ <1, thatis, in the domain of largest interest, the dominant
term of the real part becomes

£24apE3 +1=0 (40) P

. 1
whereag = (11/16)%3(1+i+/3). Defining = £2/3, this be- ROZ(C) ~ —A sin(r/12) cos(zg“) cosh({/«/ﬁ) (44)
comes a third-order equati@m + ag&2 + 1 = 0 the solution ] o ) o
of which is complicated by the complexity of the coefficient Th|s.contr|but|on to the glectrostatlc potential is both at-
ag. In general it has one real and two complex solutions. Theffactive anq not exponenua}lly damped.. It thus represents an
real solution is of no interest as it only contributes to a weakimportant, in fact the dominant, contribution to the attrac-
deformation of the Debye sphere. In order to obtain the comlive electric force exerted by Buneman modes. In contrast to
plex solutions, we may refer to the smallnessgok 1 in ion-acoustic wave mediated potentials, the singularity of the

the long-wavelength regime and neglect the third-order termé integral in presence of the Buneman mode therefore adds
Solving for¢ yields four solutions substantially to the attractive “pairing” potential in the near

zone¢ 2 0 which acts on the slow electron component and
3 1 _ causes electron coagulation possibly leading to the formation
£l 4R i(i a§3> = i( i )a‘le‘”’/4 (41)  of electron compounds or macro-electrons in Buneman tur-
bulence. As before, the imaginary part of the potential con-
tribution merely causes a spatial undulation of the potential.

with a = (1/16)1/2. Checking with these solutions for the
exponential in Eq.34) it can be shown that of the solutions 5 4 3 Weakly nonlinear Buneman mode
in the upper row only the solutiogy with the + sign con-
verges. Its pole lies in the lower-half plane. The pole of the The Buneman mode is a strong wave in the sense that it
converging lower-row solutiogs lies in the upper half plane  grows very fast, actually close to explosive growth. This has
and corresponds also to thesign. The denominator of the  a profound effect on the plasma which appears as hole forma-
integral can thus be writtef§? — &2 ,)(62 — €2 ) where only  tion, with SN # O reacting on the wave. In a simplified the-
the solutionsty, &3 contribute. The integrand splits into the ory this reaction is most easily described by taking the varia-
two resonant terms tion of the Buneman frequendw = §N(wp) with respect to

2 2 both density and wave numbéfréumann and Baumjohann
512~ 534 — [ 1 _ 1 } . (42)  1997). The latter is varied with respect tg = we/u, yield-
agf¥P+1 [ -8DE—&) (E-8)E —£) ing

The first term on the right contributes a factePri, the 1 2 1SN
Sw%m(a)g)[ 3 (1) kzkg ’ k < kg,

second a factor:2 which, when including the minus sign +5— (45)

. - 2 N

in the bracket, yields a common facter2ri. Moreover,

512,2—532,_4 = —2i/a®. Hence afactor-2ria?/—2i = mwa®re- 4The casev # 0 produces a series of Bessel functions of com-
sults. Since, = —&1, &4 = —&3, a further factor /2 appears  plex argument which just provides another severe mathematical
which makes a final common factaw®/2. In addition, the  complication without adding to any further physical insight.

Ve< U
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It is customarily interpreted as an operator equation actingpecomes very small, yielding that~ 0 in the exponential
on the Buneman mode electric field enveldpé, 7). This  damping factor in electron holes vanishes — this is a very im-
procedure results in a nonlinear Schrédinger equation portant fact.

The attractive potential under the condition of elec-
tron hole generation becomes undamped, and the condition
Eqg. 38) assumes full validity. This is the case when the
Buneman mode evolves into BGK-mode electron holes as
where = R(wp)t, Z=+/6wez/u. The coefficienty = observed in several places in space, the aurora and strong
60/8micéN of the nonlinear term results from the density re- collisionless reconnection. It then becomes capable of con-
sponse of the plasma to the presence of the finite amplitudéributing to the proposed classical “pairing” or coagulation
Buneman wave. of electrons inside an electron hole affecting the low-velocity

The stationary solution in the comoving frame of the trapped-electron component. As before, passing electrons are
Buneman wave is, in this approximation, a caviton of am-immune to any attractive potentials and coagulation.
plitude E(Z) = Em/coshz/L) of width L =1/(Eni'/?)
and maximum dip amplitudé&y,. In this comoving frame 2.5 Summary
n= 60/8mi(Cia—u)2N R eo/8miu2N for u > cja. Electrons

2
1
[i% i éVZZ + ‘E(Z,r) }E(Z,r)=0 (46)

trapped in the cavitons have velocities In this paper we examined four types of plasma waves for
their capability of causing attraction between two electrons
v < (GO/meN)%Em~ (47) in close distance. All four wave families can, under certain

conditions, contribute. Attraction is a purely classical ef-
Oscillating back and forth in the caviton, electrons in their fect which just resembles real quantum pairing of electrons
backward traveling phase of motion or near their turningin electron—phonon interaction at low temperatures in solid
points at the boundaries of the cavitons are sensitive to attracstate physics. Nevertheless the mechanisms are similar in the
tion. Hole-passing electrons in either direction, on the othersense that they imply electron-wave interaction. This lets one
hand, are not in resonance and thus do not experience argsk whether the multiple classical “pairing” (coagulatién)
attraction. may have observable effects. In the last section we present a

. _ few speculative hypotheses in this direction.
2.4.4 Strong nonlinearity: electron hole effect

These arguments hold for weakly modulated Bunemany piscussion and conclusions: possible effects
modes. As noted above, the Buneman mode is, however, a

strong wave which during its evolution causes electron holegyf g|| the plasma waves checked, the most promising candi-
to evolve from Bernstein-Green—Kruskal (BGK) modes gates for “pairing” are ion-acoustic waves. These had been
which cannot be described by the above approximate Weak'broposed already biambu and Akam#1985 in view of

nonlinear theory. In this case the variation of the density  gppjication in non-magnetised dusty plasma. Such waves
populate the solar wind and magnetosheath where they might

SN/NIS 1 (48) produce attractive potentials and generate a minor compo-
becomes itself of the order of the density. nent of heavy cold coagulated electrons. Electron-acoustic
Under this condition one may assume that in the Bunemaryvaves, because of their very strong damping, are no really
dispersion relation Eq36) good promising candidate. Lower-hybrid waves propagating
into a nearly perpendicular direction have weak parallel po-

SN/N ~ —n|E(Z,7)|? (49) tentials only, though we have given arguments for attractive
potentials generated by them as well. Large amplitude linear

in which case the effective plasma frequency Buneman modes, a particularly important wave mode, suffer

1 L . from exponential damping.

® = we <1_ IN )2 (ﬁ)é < we(if (50) However, Buneman modes when evolving into electron
N 16 16 holes from BGK modes, the density modulation becomes

- : , large and — as argued above — the exponential damping factor
Strictly speaking, for the strongly growing Buneman mode one

should also account for the variation of the imaginary frequency

(growth rate). This results in a complex nonlinear Schroédinger
2

8Another term in place of multiple classical “pairing” or coag-
ulation would be “bunching”. However, bunching has the connota-
E(G.1)=0. tioq of partigles bging bgnched in.to a common dynamicallphlase,
for instance in their gyrational motion in an external magnetic field
Equations of this kind are known from Landau—Ginzburg theory in as used in free-electron laser and electron-cyclotron maser theory.
many-particle quantum statistics but have not yet been considere&ince coagulation meant in this paper is a different process, we pre-
in plasma physics. fer avoiding use of this term.

equation | id; + %Vz + (1+i\f3)n ‘E(Z,r)
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is strongly reduced. In view of applications, this is the most Classical “pairing” produces compounds of electrons
interesting case involving Buneman modes for it causes suswhich attract each other. Each electron may become sur-
ceptible attractive potentials evolving in the interior of an rounded by other weakly bound electrons. This happens on
electron hole. Our calculations do, however, apply only tothe scale of the Debye length (Fi. Such compounds have
single wave modes trapped inside a hole. In order to accouniarge masses and charges

for the effect of the modulated wave spectrum it would be

necessary to integrate over the hole-trapped wave spectruffi* = com?e,  gx = —lcom¢ (51)

under the restrictive condition imposed by the resonance COMNGith neom the Number of electrons in the compound, but con-
dition limited to the necessary condition for producing at- g, charge-to-mass ratig/ me. The mass increasé affects

tractive poter_1tials. The latter two separate out just a smalf, o speed, momentum and kinetic energy. The charge
group of particular resonant electrons from the trapped elec\—Ni” be compensated by the unchanged number of ions.

tron component for each of the wave numbkfs the spec- It remains an open question whether or not classical “pair-
trum of hole-trapped waves. Electrons at the bottom of themg,, or coagulation will actually take place. As noted, the

hole p9te_”“a' are clearly not_lnvol_ved n the resonance an?presence of an attractive potential which is responsible for
attraction; they are at rest. This all implies that the number ofy, o 4ttractive force between neighbouring electrons, is just

resonant electrons ready for attraction will be very small. It} necessary condition for subsequent coagulation of elec-
consists of the fraction, sayes < 1 of resonant particles sat- o« 16 form classical pairs or larger electron compounds.
isfying the attractive condition cut out of the trapped electron g o 5| compound production requires, in addition, the observa-
distribution located in a shell of (negative) attractive poten-yjon of the sufficient conditions. These are more complicated
tial just ou_tside the Debye sphere being of spatia_l extension, investigate than the mere though already quite involved
r~vip With v < 1. For a trapped electron density the  ganaration of attractive potentials given in this paper.
fraction of electrons per Debye sphere in this narrow shell”™ g necessary (attractive potential) condition consists of
is ~vN. Of these just a fractionyes is in resonance. This 4 harts. In brief, for an electron experiencing the attractive
yields per Debye sphere a fraction-efvaresN < N avail-  hqrantial force these are the resonance condition imposed on
able for compound formation. Clearly this fraction is very the electron and the requirement that the electron is localised
small. o ) _atthe right location in space where the potential is attractive.
In principle, one could also think of electromagnetic o former depends on the wave mode. The latter, as has
plasma waves causing attractive potentials. The candidat€§een, noted, says that for becoming attracted a resonant elec-
would, however, only be electromagnetic waves possessingqn myst be located at a radial distance from the attracting
sufficiently large magnetic field aligned electric fields. Natu- electron outside but very close to the latter's Debye sphere.
rally, low-frequency electromagnetic waves have relativisti- Inside the Debye sphere the potential is repulsive. At dis-

cally small electric components. Hence, the only candidateg, ce |arger than the Debye sphere the attractive force rapidly
could be highly oblique whistlers, which generally resemble o055 with distance. Attraction is, hence, limited to a thin

lower-hybrid modes and need not be discussed further, ki'shell of some thickness located at radial distanceye from

netic Alfvén waves which are known to possess large-scalgne attracting electron. Solving the sufficient conditions not
and com_parably strong elecmc f_|elds_, in particular in the au'only requires determining the attractive force (taking the ra-
roral region, but also on the ion-inertial scale near reconneCyia| gradient of the attractive potential) but also integrating
tion sites, and the extraordinary electromagnetic mode. Ofy, omentum space over the resonant particle distribution in

these, only kinetic Alfvén waves are worth being checked.presence of a given wave spectrum, and integrating spatially
This will be reserved for a separate investigation. It requiresy or the attractive shell.

an electromagnetic treatment involving the magnetic vector Such a calculation can only be done numerically and re-

potential. mains to be a formidable task. Still, it does not yet provide
information about the (average) numlaggm, of particles in a
single compound. This number depends on how many Debye
In solid state physics, electron pair formation is related toSPheres become correlated in the attraction process, a num-
super-fluid and super-conducting behaviour of matieat{  P€r which is not known a priori.
ter and Waleckal971, Huang 1987 Ketterson and Song .
1999 in metals and semi-conductors which are based on the?"2 Electron cooling
fact that pairing electrons become Bosons with either vanishsjnce only a small number of electrons participate in attrac-
ing or integer spin. At low temperatures they are capable ofjon, their distribution function is just a narrow cut out of
releasing their kinetic energy until condensing in their lowestyne gistribution of all electrons available in the volume. Fig-
energy level which, in a magnetic field, is the lowest Landauy,re > sketches the situation for the case of ion-acoustic waves
level 5fiwce (Landay 1930. which may originally have been unstably excited in a ther-
mally imbalanced ion—electron plasriia> 7; as shown by

3.1 Mass and charge of prospective coagulations
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| R
F_(v) / caviton/hole
com .
(V) formation
com
F(v)
0 ¢ vy v, w/k 0 Vevy v, w/k

Figure 2. Phase space of ion-acoustic waves excited by the ion-Figure 3. Phase space of Buneman modes excited with spectrum
acoustic instability. Shown are the one-dimensional background ioriE(w/k)Ig and wave numbet = we/vg evolving at phase veloci-
F;(v) and electrorFe(v) distributions. lon-acoustic wave with spec- ties aboveve for u = vy > ve. The spectrum is very narrow in phase
trum |E(w/k)|i2a evolve at phase velocities above the minimum velocity. The electron pair distribution functiaf:om(v) produced

of cija in the rangecs < w/k < vg. The electron pair distribution  (blue) has similar width as the spectrum and is thus much colder
function Feom(v) produced in the high-phase speed range is shownthan the original electron distribution. In caviton formation the spec-
schematically in blue. One may note the very low velocity spreadtrum extends to much larger phase velocities which, however, has
of the pair distribution indicating the much lower pair than original ho remarkable effect on the pair distribution.

electron background temperatufigyir < Te.

than any heating. It selects out a small number of resonant
electrons from the trapped electron distribution to form com-

the two distributions¥i (v), Fe(v) in one-dimensional phase pounds of at least two electrons resulting in a cold elec-
space. This is the canonical case of ion-acoustic wave extron compound component. In the long term, when collision-
citation. The ion-acoustic wave spectrum exists in a harromess heating sets in (due to phase mixing in the hole-trapped
phase velocity ranges < wia/k < vs as shown in redesis ~ Buneman wave spectrum), the compounds should also par-
the minimum of the ion-acoustic wave phase velocity. At- ticipate in the heating becoming destroyed (due to internal
tractive potentials can be generated only at finite wave amplioscillations excited by the higher external temperature) when
tudes and for electron velocities?, cia. The resulting low-  the compound temperatufe> 2¢® exceeds the potential of
density pair distribution is shown in blue. attraction forcing the compound electrons to join back into

One may note the very narrow velocity spread of the at-the trapped population. From this point of view compound
tracted distributionFcom(v) which is at most as wide as the formation of electrons in holes will occur preferably in the
ion-acoustic wave spectrum corresponding to a rather lowinitial state of the hole before the heating phase sets in. It is
temperaturelcom < Te Of the electrons participating in at- thus questionable whether the cold trapped component will
traction and available for compound formation. Their maxi- survive at all. On the other hand, attractive potentials could
mum speed is sufficiently far below;. Compound distribu-  as well be generated at later times if only wave modes remain
tions are cold. trapped and survive after phase mixing. Hence, the case re-

Figure3 is for the Buneman case which holds o> ve. mains unclear.
The excited spectrum in this case is as well extremely nar- |n all these scenarios the possibly generated compound
row with phase velocity spread of the same order as the linplasmas turn out to be of low temperature. Classical “pair-
early excited Buneman waves, thatdsy ~ u —ve. Buneman  ing” in collisionless plasma is a non-radiative cooling mech-
modes are excited for 2 ve just above the electron thermal anism acting on a small number of resonant plasma electrons
speed. One may note that the reactively growing wave readpeing sensitive to the attractive potential.
ily reduces any spead>> ve to values marginally exceeding
ve. Consequently, the compound distribution which is at most3.3  Secondary electron-acoustic wave excitation
as wide as the Buneman spectrum, also has low-temperature
Teom < melu — ve|? < Te. The first side-effect of cooling is that the plasma after “pair-

Buneman modes are known to evolve into electron holesing” consists of a two-temperature electron plasma of con-
In this case the hole-trapped electrons become heated in thetant charge-to-mass ratio and cold particle density less than
trapped wave spectrum. Clearly, the prospectively attracteghlasma density. Such a two-electron temperature plasma ex-
electrons or compounds formed will, in the long term, par- cites high frequency/high velocity electron-acoustic waves
ticipate in this heating. However, formation of attractive po- which are radiated away from the coagulation region. In prin-
tentials and attraction are almost immediate processes in theiple the electron-acoustic waves could be observed if exci-
interaction of resonant electrons with one of the propagat{ation is strong enough to overcome the strong damping of
ing waves trapped in the hole. This process is much fastethe electron-acoustic waves.
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3.4 Electron re-magnetisation in Buneman waves wherege = 210N Te/ B2 is the bulk plasma electro- Since
Teom/ Te is substantially less than one, the compound elec-
In the case of the Buneman instability, coagulations formtrons regain magnetisation in the reconnection electron ex-
from the slower electron component (Fig) with attrac-  haust where the bulk electrons remain to be nonmagnetic, an
tive fields being exponentially damped on large scales.effect which necessarily affects the evolution of reconnection
Hence attraction will preferentially be relevant inside BGK- in several ways. One effect is that magnetised electrons trans-
mode electron holes affecting the trapped electron compoport magnetic flux into the bulk-electron diffusion region
nent in the cavity/hole which forms when the Buneman thereby enhancing reconnection. Their stronger magnetisa-
mode evolves nonlinearly. The coagulations constitute a lowtjon also modifies reconnection. Moreover, electron holes
density electron population of temperature substantially beforming chains along the guide field naturally contribute to
low 7e which remains hole trapped, unable to escape. amplification and deformation of the guide field on the spa-
Itis interesting to speculate on the importance of this kindtjal scale of the holes, a process which self-consistently gen-
of Buneman-induced compound formation in reconnection.erates localised non-ze® components in the current sheet
Guide field simulations and observations strongly suggestentre. However, because of the expected very low number
that the Buneman mode causes generation of electron holest compounds formed, the effect will be rather small if not
during reconnectionfrake et al.2003 Cattell et al, 2005. completely negligible.
In the geomagnetic tail reconnection region, electron temper- |n summary, though attractive potentials will certainly
atures are lower than ion temperatures inhibiting ion-acoustiGrise in various wave particle interactions in plasma, the
wave excitation. Electrons in this case are nonmagnetic innumber of electrons which may under favourable circum-
side the electron diffusion reconnection site (electron ex-stances coagulate and cool down to low temperatures will in
haust) being accelerated in the cross-tail field. In presence || cases be very small and therefore ineffective for plasma
a guide field this acceleration causes high guide field aligneghrocesses. Unfortunately, attraction though a natural process
velocities exceeding the thermal electron speed, a situatiogoes not provide any natural mechanism of large macro-
favouring the excitation of Buneman modes and generatiomarticle number generation. It would be interesting to inves-
of chains of electron holes along the guide field. tigate whether particle “bunching” in low-frequency electro-
Production of a surviving cold dilute compound-electron magnetic waves (whistlers, kinetic Alfvén waves, etc.) might
plasma in the Buneman excited electron holes in the ionhe another option of imposing a common dynamic behaviour
diffusion region and near the reconnection site implies re-on |arge numbers of electrons to perform correlated dynam-
magnetisation of the hole-trapped nonmagnetic electrons unics and appear as macro-particles. Observation of very dilute
til their gyroradiusrg®™ drops below the inertial scale of cold electrons in the presence of high levels of plasma wave

the plasma. This is easily confirmed by forming the ratio of activity would, however, indicate ongoing attraction and co-
the compound gyroradius to the bulk electron inertial scaleagulation.

Ae = ¢/we. Accounting for the constancy of the compound
charge-to-mass ratio, this ratio can be written as

1
com 5
re Teom \ 2
~ , 52
- </3e - ) (52)
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Appendix A: No macro-quantum condensation effects

. . 2 5 2
Here we demonstrate that the cl_assu_:al f;on_densate will noiw0 — ﬂo—l ~ 1.6h—n§0m~ 107195 eV. (A2)
undergo any quantum condensation (i.e. it will not become a Mme

Bose—Einstein macro-condensate) inside a caviton. The low-_. . ) o
estreachable energy level is at the bottom of the caviton. Thiémce any densities are very l_OW N space plasmas .th'S I|m|_t
can be taken as zero-energy level for the composed electronggmperature on any Bose—Emstel_n condensation is practi-
Furthermore, composition temperatures are low, the order o?a"y Z€ro in comparison to the estimated lowest compound

a fraction of an eV in the classical condensate. Assummgtempera:turegcom~ 0.1eV. Thd's Frecludes tr:jat |ndord|n%r¥
that the composed electrons obey a Bose distribution in thegPace plasmas any composed € ectrons pro uced wouldform
caviton potentiats we thus write for their density macro-quantum Bose—Einstein condensates, indeed an intu-

itive reasoning. Under the extreme conditions in the plasma

dn 1 /am 3 o3 of neutron star crusts with their high nuclear densities such
dcom =13 <h_2e) e (A1) condensates could possibly occur if Buneman modes would
€ T - =

evolve along the neutron star magnetic field.

The chemical potentigh < 0 is compensated by the cavi-
ton potential at inverse temperatuse which is calculated
from the total density of the trapped particles. The upper limit
of the integral can be assumed at infinity. HenEet{er and
Walecka 1971
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