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Abstract. Coagulation of electrons to form macro-electrons
or compounds in high temperature plasma is not generally
expected to occur. Here we investigate, based on earlier
work, the possibility for such electron compound formation
(non-quantum “pairing”) mediated in the presence of vari-
ous kinds of plasma waves via the generation of attractive
electrostatic potentials, the necessary condition for coagula-
tion. We confirm the possibility of production of attractive
potential forces in ion- and electron-acoustic waves, pointing
out the importance of the former and expected consequences.
While electron-acoustic waves presumably do not play any
role, ion-acoustic waves may potentially contribute to for-
mation of heavy electron compounds. Lower-hybrid waves
also mediate compound formation but under different con-
ditions. Buneman modes which evolve from strong currents
may also potentially cause non-quantum “pairing” among
cavity-/hole-trapped electrons constituting a heavy electron
component that populates electron holes. The number densi-
ties are, however, expected to be very small and thus not vi-
able for justification of macro-particles. All these processes
are found to potentially generate cold compound popula-
tions. If such electron compounds are produced by the at-
tractive forces, the forces provide a mechanism of cooling
a small group of resonant electrons, loosely spoken, corre-
sponding to classical condensation.

Keywords. Space plasma physics (magnetic reconnection;
wave–particle interactions; waves and instabilities)

1 Introduction

Plasmas consist of equal numbers of electrons and ions
forming quasi-neutral fluid-like matter at temperatures suf-
ficiently high for maintaining ionisation and with very large
numbers of electrons populating the Debye sphere. At such
high temperatures electrons and ions are mutually well sepa-
rated located at instantaneous distancesLN ∼ N−1/3, where
N ≡ Ne = Ni is the average plasma density in a singly
charged plasma. The electrostatic Coulomb fields of the
naked electric charges are confined to Debye spheres of ra-
diusλD by the collective effect of the many particles of oppo-
site charge passing around at their average tangential speeds
within radial distancesr . λD. The geometric shape of the
Debye spheres is very close to a sphere, deviating from it
only in very strong magnetic fields and for very high plasma
flow speeds. Outside the Debye sphere the residual particle
field decays exponentially while contributing to a thermal
fluctuation background field. From a particle point of view
each of the plasma particles is a charged Fermion. In classi-
cal plasmas at the high plasma temperatures the spin has no
importance, and the fermionic property of the particles plays
no role. In quantum plasmas, which for obeying quantum
properties must be dense, this property is rather important.
For, when two electrons form pairs, the spins add up and the
pair becomes a Boson of either zero or integer spin. Many
pairs can occupy the same energy level and, altogether, tend
to condensate in the lowest energy level permitted by suffi-
ciently low temperatures (cf., however, the Appendix). This
property is very well known from solid state physics (cf. e.g.
Fetter and Walecka, 1971; Huang, 1987).
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Pairing is not expected under any normal plasma con-
ditions. However, when a plasma wave passes across the
non-quantum plasma, the dielectric properties of the plasma
change. Electrons assuming a relative velocity with respect
to the phase velocity of the plasma wave finding themselves
exposed to the dielectric polarisation which adds to the De-
bye screening that compensates for the naked particle charge.
Such electrons may evolve an attractive electrostatic inter-
particle force acting on its neighbour electrons, an effect
different from classical wave trapping in the wave poten-
tial trough that causes wave saturation and other nonlinear
effects like solitons and holes. The attractive forces are di-
rect current (dc) forces. Experienced by two electrons of ap-
proximately same velocity, they bind these together to form
binary compounds, that is, classical “pairs”. Experienced
by many electrons of same velocity, they may form large
electron compounds the nature of which is that of massive
macro-particles of same charge-to-mass ratioe / m being
sufficiently strongly correlated to behave dynamically like
one single particle. Below we demonstrate that it is not the
electrons themselves which coagulate but their Debye clouds
such that the repulsive forces between the coagulating elec-
trons do grow only very weakly with the numberncom of
coagulations.

Depending on the numberncom of particles in the newly
formed conglomerate being odd or even, macro-electrons
in principle behave like Fermions or Bosons. At very low
temperatures Bosons are known to condensate to form a
dense population. At the high plasma temperatures, triv-

ially implying thermal wavelengthsλT =

√
2πh̄2/meT ≈

10−9√1 eV/T m of the order of atomic scales, such effects
are inhibited (for another strong counter argument see the
Appendix). Classical coagulation of particles caused by at-
tractive inter-particle forces is, however, permitted.

In the following we show that, under certain conditions
in high temperature plasmas, attractive potentials between
neighbouring electrons are indeed produced as is schemat-
ically shown in Fig.1. They are a necessary condition for
subsequent coagulation of electrons. The intention is to find
out whether it provides a natural mechanism justifying the
still unavoidable assumption of macro-particles in numerical
particle-in-cell simulations.

The finding is that, though electrons may possibly coag-
ulate, their numbers will in all cases remain very small be-
ing just of the order of a fraction of the resonant particles
which are a small fraction of the plasma population only, too
small to be taken as justification of the assumption of macro-
particles.

The conditions for generation of attractive electrostatic po-
tentials in the presence of plasma waves are derived as a nec-
essary condition for coagulation. The numbers of particles in
each of the electron compounds, the compound densities and
temperatures, require studying the sufficient conditions for

coagulation for each kind of waves, which requires knowl-
edge of the wave spectrum.1

2 Generation of wave-mediated attractive potentials

The method of calculating the potential around a test charge
in plasma was explicated sixty years ago (Neufeld and
Ritchie, 1955). Thirty years later it was revived (Nambu and
Akama, 1985) to include the effect of plasma waves and was
used in this form to suggest the coagulation of particles in
the presence of dust in plasmas in order to explain the for-
mation of dust structure, which for some while became an
industry (cf. e.g.Shukla and Melandsø, 1997; Shukla et al.,
2001; Nambu and Nitta, 2001, and references therein).

Following Neufeld and Ritchie(1955), the general ex-
pression for the electrostatic potential8(x, t) is obtained
from Poisson’s law∇

2ε(x, t)8(x, t) = −qN(x, t)/4πε0.
The density of a test particle traversing the plasma with ve-
locity v and chargeq = qt is Nt = (2π)3δ(r). In Fourier
space this yields for the potential (cf.Neufeld and Ritchie,
1955; Sitenko, 1967; Krall and Trivelpiece, 1973; the latter
two for textbook presentations)

8(x, t) = −
qt

8π2ε0

∫
dkdω

δ(ω − k · v)

k2ε(k,ω)
eik·r (1)

Herer = x − vt is the distance between the locationx′
= vt

of the particle and the reference point of measurement of the
potential disturbance.ω(k) is the frequency of a spectrum of
plasma wave eigenmodes, presumably present in the plasma
as background noise or wave excitations, with wave number
k. The functionε(k,ω) is the complete dielectric plasma re-
sponse function2 experienced by the particle including the
disturbance caused by the moving charge of the test particle.
(One may note that theδ function in the numerator can be
used to replace the wave-number component parallel to the
particle velocity in the Fourier exponential exp(ik · r) reduc-
ing it to anω integration.)

The problem as seen from the test charge is spherically
symmetrical. Thus it makes sense to formulate it in spherical
coordinatesr,k,�r ,�k both in wave number and real space,
with conventional notation for the angular volume elements.
Choosing an expansion into spherical harmonics (as done in

1We thank the referees for reminding us that generation of at-
tractive potentials is merely the necessary condition for coagula-
tion. Real coagulation will take place only if a number of sufficient
conditions is also met, a point that will be further discussed in the
Discussion and Conclusions section.

2It may be important to remark that in Poisson’s law no assump-
tion is made about the linearity or nonlinearity ofε(x, t) which,
hence, in principle is the general response function including all
electrostatic nonlinearities, which contribute to the dielectric prop-
erties of the plasma. Thus in full generality one should rather write
ε[k,ω,8(k)]. In discussing the Buneman mode later, we will in
passing make use of this more general form.
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Neufeld and Ritchie, 1955) one has for the exponential factor

eik·r
= 4π

∑
l

∑
m

il
√

π

2kr
J

l+ 1
2
(kr)Ym∗

l (�k)Y
m
l (�r). (2)

The notation for the spherical harmonicsYm
l (�k),Y

m
l (�r)

is again conventional in wave number and real space, and the
∗ indicates the conjugate complex version of the azimuthal
exponentials exp(imφk). The k,r dependence is taken care
of by the half integer Bessel functionsJl+1/2(kr).

The response functionε[k,ω(k)] is a function of fre-
quency and wave number and is taken in the electrostatic
limit. In the above representation it is a scalar function. When
electromagnetic contributions or an external magnetic field
would have to be taken into account, it becomes a tensor.
Only its longitudinal partεL = k · ε · k/k2 enters the expres-
sion for the potential, however. In addition, one would have
to consider a variation of the vector potential caused by the
test particle, if transverse waves are included.

In the absence of the latter, it is well known that the po-
tential of the test particle, in our case an electron of el-
ementary chargeq = −e, consists of its Coulomb poten-
tial 8C(r) = −q/4πε0r, which will be Debye screened by
the plasma particles becoming8D(r) = 8C(r)exp(−r/λD),
and a disturbance caused by the reaction of the plasma eigen-
modes to the presence of the charge – the eigenmodes that
are either present or are amplified by the moving test charge
for which the plasma appears as a dielectric to whose normal
modes the charge couples. These eigenmodes contribute via
adding each of them to the vacuum dielectric constant its par-
ticular susceptibilitiesχs(ω,k), wheres is the index identi-
fying the particle species which responds to the eigenmodes.
Hence, withs = e, i for electrons and ions, respectively:

ε(k,ω) = 1+ (kλD)−2
+ χe(k,ω) + χi(k,ω) (3)

Independent of the wave modes, the Debye term on the right
is included here in order to account for the presence of the
point like test charge. In a non-magnetised plasma the sus-
ceptibilities assume the form

χs(k,ω) = (kλDs)
−2 [1+ ζsZ(ζs)] , (4)

ζs = (ω − k · us)/kvs.

λDs is the Debye length of species s,Z(ζs) the plasma dis-
persion function,vs the thermal speed of species s, andus
is a possible bulk streaming velocity of species s which,
for our application, will for simplicity be put to zero but
has to be retained both for streaming and electric currents
J =

∑
sqsNsus.

One should note that Poisson’s law is quite general hold-
ing for both linear and nonlinear interactions. Restriction
to linear response functions only implies small disturbances
caused. For large nonlinear disturbances the linear response
function would have to be replaced by its nonlinear counter-
parts.
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Figure 1. Schematic comparison between the dc Coulomb (8C),
Debye (8D) and plasma wave modified (8a) potentials for the case
when the modified potential evolves an attractive domain. In all
cases considered the potential is repulsive inside the Debye sphere
at distances≤ λDe. In the presence of (electrostatic) plasma waves
investigated in this paper the dc potential8a outside but close to a
distanceλDe develops a region where it becomes negative. At large
distances the effect of the plasma wave decreases rapidly.

These expressions have been partially analyzed in the
available literature with focus on the effect of dust in plas-
mas (adding the susceptibility of dust particles inShukla and
Melandsø, 1997; Shukla et al., 2001, and others). In the fol-
lowing we follow some of the lines in these papers in view
of application to space plasma conditions and with the inten-
tion of checking the chances for classical electron “pairing”
and possible related effects like formation of macro-electron
compounds. Being aware that there is no quantum pairing,
we nevertheless keep the expression “pairing” in the follow-
ing for the reason that we consider attractive forces between
two electrons. This is trivially generalised later to account for
formation of coagulations of electrons.3

3An apparently strong argument against the effectiveness of at-
tractive potentials is based on the comparison of the strengths of the
attractive and the wave potentials. Attractive potentials are weak
and thus apparently negligible, in particular when the wave spec-
trum is unstably excited. This argument fails for two reasons. First,
at the location of the attractive potential the wave potential and the
resulting electric force act both on all electrons in the same direc-
tion; in contrast the attractive potential acts between electrons, com-
pletely independent of the direction of the wave electric field. It can-
not be compensated by the wave field. Second, the scale of the wave
electric field is given bykλDe � 1, that is, it is large against the
Debye length (Fig.1). In contrast, the attractive potentials between
electrons, as shown below, act on scales& λDe, only slightly larger
than the Debye length, a scale on which the wave potential is practi-
cally constant for all waves under consideration, and no force exists
which could compensate for the attractive force even then, when the
wave is strongly excited, reaches very high amplitudes and evolves
nonlinearly. Its nonlinear evolution being taken care already in the
general response functionε[ω,k,8(k)].

www.ann-geophys.net/32/975/2014/ Ann. Geophys., 32, 975–989, 2014
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2.1 Ion-acoustic “pairing” potential

Our first example is the response of the test charge poten-
tial to the presence of a spectrum of ion-acoustic waves in
a plasma, a problem originally treated cursorily byNambu
and Akama(1985). In this case the linear response function
is well known. Neglecting damping, its real part is given by

εia(ω,k) = 1+
1

k2λ2
De

−
ω2

i

ω2

(
1+ 3k2λ2

Di

)
, (5)

where in the round brackets we iterated the frequency by ap-
proximating it with the ion plasma frequencyωi , which pro-
duced the ion Debye lengthλDi . Puttingεia = 0 yields the
ion-acoustic dispersion relation

ω2
ia(k) =

ω2
i

1+ 1/k2λ2
De

[
1+

3Ti

Te

(
1+ k2λ2

De

)
(6)

+
k2λ2

De

1+ k2λ2
De

δN

N

]
The last term in the bracket on the right results from a possi-
ble nonlinear density modulationδN . It vanishes in the long-
wavelength regimek2λ2

De � 1. In order to proceed, we need
a treatable form ofε−1

ia . It is not difficult to show that this can
conveniently be written as

1

εia(ω,k)
=

k2λ2
De

1+ k2λ2
De

(
1+

ω2
ia(k)

ω2 − ω2
ia(k)

)
, (7)

which separates it into two parts. The first term is inde-
pendent of the presence of ion-acoustic waves. It is thus
completely spherically symmetric resulting in the known
Debye-screening potential field of the point charge (treated
in Neufeld and Ritchie, 1955). Its contribution to the poten-
tial at distancesr � λDe, large with respect to the Debye ra-
dius, is exponentially small. The nonlinear term in the wave
dispersion relation is of higher order and can be neglected
meaning that the nonlinear modulation of the wave spectrum
is of too large scale for causing a first-order effect in the po-
tential disturbance.

The dominant effect of the test electron interaction with
the ion-acoustic wave spectrum is contained in the wave-
mediated part. Its main contribution comes from the resonant
denominator in frequency space the contribution of which
dominates over that of the exponentially decreasing screened
repulsing Coulomb potential8D outside the Debye sphere.

Equation (7) inserted into the general expression for the
test particle potential Eq. (3) yields for the wave-induced
contribution

8ia(x, t) =
eλ2

De

16π2ε0

∫
dkdω ωia(k)eik·r

1+ k2λ2
De

(8)

×

[
δ(ω − k · v)

ω − ωia(k)
−

δ(ω − k · v)

ω + ωP ia(k)

]
.

The argument of theδ function depends on the direction of
electron velocityv = vz, which we arbitrarily chose inz di-
rection. It is then appropriate to treat the integral in cylin-
drical rather than spherical coordinates with wave number
kz parallel to the electron velocityv and k⊥ perpendicu-
lar to it. With ρ being the radius in the plane perpendicu-
lar to v, the argument of the exponential becomesik · r =

ikz(z−vt)+ ik⊥ρ sinφ. Referring to the definition of Bessel
functions, the integration with respect to the azimuthal angle
φ results in the Bessel function of zero order, and the expres-
sion for the potential reads

8ia(z,ρ, t) =
eλ2

De

16πε0

∫
dkzdk2

⊥
J0(k⊥ρ)ωia(kz,k⊥)

1+ k2
zλ

2
De+ k2

⊥
λ2

De

(9)

×

[
δ(ω − kzv)

ω − ωia(k)
−

δ(ω − kzv)

ω + ωia(k)

]
eikz(z−vt)dω.

8ia offers a possible change in sign which opens up the pos-
sibility for the potential of becoming attractive for another
electron, in which case two electrons may form pairs.

One first makes use of theδ functions to replacekz = ω/v

in the exponential and elsewhere by performing thekz inte-
gration. The two singularities atω = ±ωia require perform-
ing theω integration in the complexω = <(ω)+i=(ω) plane
via the principal values of the two integrals and the two
residua with integration contour now closed in the lower-half
plane, that is, forz − vt < 0 and damped ion-acoustic waves
=(ω) < 0. One readily shows that the principal value van-
ishes, for each integral contributes limε→0(lnε− lnε)+iπ =

iπ which cancel when subtracted. The residua yield the res-
onant result

8ia(z,ρ, t) =
eλ2

De

8vε0

∫
dk2

⊥
J0(k⊥ρ)ωia(v,k⊥)

1+ ω2
iaλ

2
De/v

2 + k2
⊥
λ2

De

(10)

× sin

[
ωia(v,k⊥)

(
z

v
− t

)]
for the wave–particle interaction part of the electrostatic
potential. In this expression the ion-acoustic frequency is
implicitly defined through the ion-acoustic dispersion rela-
tion. Replacingkz = ωia/v, the latter can be iterated, yield-
ing to lowest order in the long-wavelength regimek⊥λDe �

1 that ω2
ia(v,k⊥) ≈ ω2

i λ
2
Dek

2
⊥
[1+ ω2

ia/k2
⊥
v2)] ≈ c2

iak
2
⊥
/[1−

(me/mi)Te/Ktest]. HereKtest= mev
2/2 is the test particle

kinetic energy. This becomes simplyω2
ia(v,k⊥) ≈ k2

⊥
c2

ia/(1−

c2
ia/v

2) with cia ≈ ωiλDe the ion sound velocity.
The wave-number integral must be truncated at the Debye

radiusk⊥λDe ≤ 1 because inside the Debye sphere the point
charge potential dominates. This accounts for long wave-
lengths only. Then the integral becomes

8ia(z,ρ, t) ≈ C

1∫
0

dξ ξ2J0(ξ ρ̄)

1+ ξ2[1+ 1/(v2/c2
ia − 1)]

sin(βξ) (11)
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with ξ = k⊥/λDe, ρ̄ = ρ/λDe, and β = ζ(cia/v)(1−

c2
ia/v

2)−1/2, ζ = (z − vt)/λDe. The constant is
C = (e/4ε0λDe)(cia/v)(1− c2

ia/v
2)−1/2. Strictly speaking,

this integral with respect toξ is the sum of its principal value
and the contribution of the poles atξ± = ±i(1− c2

ia/v
2)1/2.

At sufficiently large particle speeds the pole contribution is
negligible, and only the principal value counts. This is seen
as follows. For resonant particlesv & cia the poles are purely
imaginary. Extending the singular integral over the entire do-
main implies that only the positive pole contributes, which is
obvious already from Eq. (8) since the exponential vanishes
at larger for positive imaginary part ofk⊥λDe = ξ only. In
performing the path integration the pole is surrounded in
negative direction. Taking the residuum yields a term

2πi|ξ+|
2J0

(
i|ξ+|ρ̄

)
sin

(
iβ|ξ+|

)
= (12)

− 2π |ξ+|
2I0

(
|ξ+|ρ̄

)
sinh

(
β|ξ+|

)
.

I0(x) is the zero-order modified Bessel function. It is obvious
that this entire term for particles close to resonance withv &
cia, |ξ+| ∼ O(v2

− c2
ia) is very small, confirming that it can

safely be neglected.
When calculating the principal part of the integral, we con-

sider the casek⊥ρ < 1, that is, radial distances perpendicu-
lar to the particle velocity less than the ion-acoustic wave-
length but large with respect to the Debye length. Shortest
distances are thus̄ρ = 1, yielding J0(ξ ρ̄) = J0(ξ) a func-
tion of the integration variable only, varying in the interval
0.77< J0(ξ) < 1.0. Its average is〈J0〉 ≈ 0.85, which we ex-
tract from the integral

8ia(z,1, t) ≈ C′

1∫
0

ξ2dξ sin(βξ) (13)

=
C′

β3

[(
1−

1

2
β2

)
cosβ + β sinβ − 1

]
with C′

= C〈J0〉. The integral is of the same form as in
Nambu and Akama(1985). The requirementζ = z − vt < 0
impliesβ < 0. The potential becomes negative whenever the
expression in the brackets is positive. The interesting case
is when the test particle moves at velocityv & cia exceeding
the wave velocity only slightly. Then|β| mod 2π > 1, and
the dominant term isβ2cosβ thus confirmingNambu and
Akama(1985) and yielding

8ia(z,1, t) ≈

(∣∣∣∣C′/β

∣∣∣∣)cosβ. (14)

The potential is attractive in all regions cosβ < 0 (i.e. β >

π/2). In the moving particle frame1 ≡ (z−vt)/λDe the po-
tential is attractive behind the particle in its wake in regions

1 < 0 for v & cia. Here the value of the potential is

8ia(1) ≈ −
e〈J0〉

4πε0λDe|1|

∣∣∣∣cos

[
cia1

(v2 − c2
ia)

1/2

]∣∣∣∣, (15)

π

2
.

cia

∣∣∣∣1∣∣∣∣√
v2 − c2

ia

.
3π

2
. (16)

The effective distance|z − vt | ∼ λDe over which the poten-
tial is attractive is thus given bỳatt/λDe ≈ (v2/c2

ia −1)1/2 >

2/π, mod 2π , that is, the attraction is strongest just outside
the Debye length which implies that two electrons one De-
bye length apart attract each other. In other words, two Debye
spheres mutually overlapping by one Debye radius attract
each other. For the resonant particle velocity this condition
yieldsvres> 1.1cia.

In order to attract another electron, it is clear that the two
electrons must move close to each other within a distance
1 > 1 in the region of negative8ia, both being in resonance
with the wave at velocitiesv & cia. In this case they can form
pairs effectively becoming Bosons of either zero or integer
spin. We may note that in a magnetic fieldB with the elec-
trons moving along the field, the ion-sound wave depends
on the propagation angle cosθ = k · B/kB. In this case we
have for the sound speedcia → ciacosθ , and the potential be-
comes a sensitive function ofθ , maximising alongB. More-
over, we can setρ = 0 and〈J0(0)〉 = 1 as only the distancez
alongB comes into play.

This attractive potential has to be compared to the wave
potential8w the particles are in resonance with. With the as-
sumptionkλDe � 1, we are in the long-wavelength regime
with the potential assumed being nearly constant over the
range of variability of the attractive potential. Thus the attrac-
tive force of the trapping wave potential is small. In negative
wave phases it adds to that of the particle by confining low-
energy electrons in the potential well. These electrons oscil-
late at the high trapping frequency with their average speeds
in resonance with the wave. Wave trapping, though being dif-
ferent in the average, helps attracting as in the attracting po-
tential only the average trapped speed〈v〉 ≈ cia counts. The
high jitter speed at trapping frequency of the electrons aver-
ages out.

Wave-trapped electrons are the best candidates for form-
ing pairs. Moreover, since a pair of charge 2e that has been
formed in the negative wave potential may well by the same
mechanism produce a negative pair potential8pair =

2
38ia

over the distance of 3λDe, it may attract other electrons
or pairs to form larger macro-particles of large mass and
charge but constant mass-to-charge ratio. In the extreme
(though possibly unrealistic) case, the maximum number of
coagulated electrons could about equal the number of elec-
trons trapped in the wave potential well, since all the neg-
ative potentials of the particles involved in producing at-
tractive potentials add to the wave potential. In effect this

www.ann-geophys.net/32/975/2014/ Ann. Geophys., 32, 975–989, 2014
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mechanism may produce macro-electrons of large mass and
charge which behave like a single particle and have such
properties as exploited in small mass-ratio numerical PIC
simulations.

2.2 Electron-acoustic “pairing” potential

Another wave of similar dispersion is the electron-acoustic
wave. It is excited wherever the plasma contains two elec-
tron populations of different temperatures and densities. Its
response function resembles that of ion-acoustic waves with
the only difference that two populations of electrons are in-
volved, and ions are assumed forming a fixed charge neutral-
ising background such that for the densitiesNi = Nc + Nh
where indices c, h refer to the cold and hot electron com-
ponents. Electron-acoustic waves are high-frequency waves
in the sense thatkvh,kvc � |ω − k · u)c|, wherevc,vh are
the thermal speeds of the different electron components. The
electron-acoustic dielectric response function in its simplest
form reads

εea(k,ω) = 1+
1

k2λ2
Dh

−
ω2

c

(ω − k · uc)2
. (17)

The Debye radius for sufficiently large temperature differ-
encesTh > Tc is completely determined by the hot compo-
nent, and for fixed ions there is no need to include the in
term.uc is the bulk streaming velocity of cold electrons. The
inverse of the dielectric function can again been brought into
the same form as for ion-acoustic waves

1

εea(k,ω)
≈

k2λ2
h

1+ k2λ2
h

(
1+

ω2
ea

(ω − k · uc)2 − ω2
ea

)
. (18)

This is exactly the same form as for ion-acoustic waves,
however, now with the electron-acoustic dispersion relation
ω2

ea= k2c2
ea/(1+ k2λ2

h) andc2
ea= v2

h(Nc/Nh). For this rea-
son, the analysis is the same as for the ion-acoustic wave.
The result has already been given byShukla and Melandsø
(1997) and is listed here for completeness only:

8ea∝

(
e/|z − ut |

)
cos

[
|z − vt |/λh(1− c2

ea/v
2)1/2

]
. (19)

The bulk speed of the electrons has been suppressed here.
As before, there are some ranges in which the wave po-
tential at the test charge can be negative and thus attract
other electrons. This will, however, only happen in a plasma
where two widely separated in temperature electron popula-
tions exist of which the colder one is streaming. Interestingly
this might be the case in conditions when Bernstein–Green–
Kruskal (BGK) electron hole modes are excited. In this case
the hole generates a dilute hot electron component which is
traversed by a rather cold component of beam electrons. Pos-
sibly in this case mutually attracting electrons become pos-
sible. Unfortunately, electron-acoustic waves have not been

detected in these cases, however, in numerical simulations
of electron hole formation. As electron-acoustic waves re-
quire strong forcing in order to overcome damping, electron-
acoustic waves are not a primary candidate for generating
attractive wave potentials.

2.3 Lower-hybrid “pairing” potential

A most important medium frequency wave is the lower-
hybrid mode (Huba et al., 1977; Yoon et al., 2002). It prop-
agates in a plasma under almost all conditions on scales be-
low the ion cyclotron radius and frequency. Hence the ions
behave non-magnetically while the electrons are completely
magnetised being tied to the magnetic field and drifting in the
electric field of the wave mode. Lower-hybrid waves can be
excited by density gradients, diamagnetic drifts and all kinds
of transverse currentsJ⊥ =

∑
sqsNsus⊥ in a plasma, where

us⊥ is the perpendicular drift velocity of species s. They are
primarily electrostatic, propagating at oblique angle with re-
spect to the magnetic field though being strongly inclined
with k‖ < k⊥. Their response function including the test par-
ticle Coulomb potential term reads

εlh(k,ω) = 1+
1

k2λ2
De

−
ω2

lh

ω2

[
1+

mi

me

k2
‖

k2
⊥

(20)

+
3k2

2k2
⊥

(
1+

ω2
e

ω2
ce

)
k2λ2

Di

]
,

k‖/k⊥ ≈
√

me/mi .

The lower-hybrid frequency is defined asω2
lh = ω2

i (1+

ω2
e/ω

2
ce)

−1. The term in brackets results from the large ar-
gument expansion of the derivative of the plasma dispersion
function Z′(ζi) = −2[1+ ζiZ(ζi)] with ζ = ω/(ωikλDi) the
argument for the immobile ions. This response function is
formally of the same structure as the ion-acoustic response
function Eq. (5). Thus defining

ω2
lh(k) =

ω2
lh

1+ 1/k2λ2
De

[
1+

mi

me

k2
‖

k2
⊥

(21)

+
3k2

2k2
⊥

(
1+

ω2
e

ω2
ce

)
k2λ2

Di

]
the whole formalism developed for ion-acoustic waves can
be applied to lower-hybrid waves. We write for the inverse
response function

1

εlh(ω,k)
=

k2λ2
De

1+ k2λ2
De

(
1+

ω2
lh(k)

ω2 − ω2
lh(k)

)
. (22)

Again, the Debye-screening term outside the brackets is of
no interest at distancesr > λDe. The contribution to the wake
potential comes from the integral in Eq. (9) with ωia(k) re-
placed byωlh(k) andkz ≡ k‖ = ω/v

√
µ, wherek‖ ∼ k⊥

√
µ,
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µ = me/mi , for nearly perpendicular wave propagation. Per-
forming the ω integration reproduces a form similar to
Eq. (10)

8lh(z,ρ, t) = (23)

eλ2
De

8vε0

∫
dk2

⊥
J0(k⊥ρ)ωlh(v,k⊥)

1+ λ2
Deω

2
lh(v,k⊥)/µv2 + k2

⊥
λ2

De

× sin

[
λDeωlh(v,k⊥)

√
µv

(z − vt)

λDe

]
but now including the more complicated lower-hybrid fre-
quency Eq. (21). We simplify the lower-hybrid frequency
by observingk2

‖
/µk2

⊥
∼ 1. In dense plasma the last term in

the brackets becomesk2
⊥
λ2

Di(ω
2
e/ω

2
ce) ∼ k2

⊥
r2
ce which is of

the order of the electron gyroradius-to-wavelength squared,
being small for completely magnetised electrons. Hence,
ω2

lhλ2
De ∼ 2V 2

A(ve/c)
2
≡ c2

lh will be used in the factor in front
of the sine function. The lower-hybrid wave in this case prop-
agates at the Alfvén speedVA corrected by the ratio of elec-
tron thermal to light velocity. In this approximation and with
ξ = k⊥λDe, we have for the lower-hybrid dispersion relation

λ2
Deω

2
lh(v,k) ≈

c2
lh ξ2(1+ ω2λ2

De/v
2ξ2)

1+ k2λ2
De

(
1+

k2
‖

µk2
⊥

)
(24)

≈
2c2

lh ξ2

1− c2
lh/v2

which is to be used in the above integral in the long-
wavelength approximationk⊥λDe ≡ ξ < 1 and v & clh,‖ =

clh/
√

µ > clh. The last version on the right results from it-
erating the frequencyω = ωlh(v,k). Within these approxi-
mations and restricting to the intervalξ . 1 for long wave-
lengths, the potential becomes

8lh(z, ρ̄, t) ≈ Clh

∫
ξ2dξ J0(ξ ρ̄)

1+ ξ2(1+ 2c2
lh,‖/v

2)
sin

(
βlhξ

)
(25)

≈ C′

lh

1/
√

3∫
0

ξ2dξ sin(βlhξ)

Clh =
C′

lh

〈J0〉
=

e

2ε0λDe

clh

(v2 − c2
lh)1/2

, (26)

βlh ≡
2clh,‖1

(v2 − c2
lh,‖)

1/2
< 0,

where1 ≡ (z − vt)/λDe. One may note that in the only in-
teresting long-wavelength regime the factor multiplyingξ2

in the denominator is at most 3. In order to neglect the en-
tire termξ2(1+ 2c2

lh/v2) � 1 and being able to analytically
solve the integral one thus requires that the upper limit of the
integral is taken asξ < 1/

√
3. Averaging the Bessel func-

tion over this interval again produces the numerical factor
〈J0〉. In the argument of the sine function the larger paral-
lel wave velocityclh,‖ = clh/

√
µ appears. It is due to the

higher phase velocities of the lower-hybrid waves parallel
rather than perpendicular to the magnetic field, while the test
electron moves along the magnetic field at velocityv & clh,‖

being in resonance with the wave.
With these assumptions the integration of the sine func-

tion with respect tok⊥ can be performed as before and an
attractive wake potential is obtained under similar conditions
as for the ion-acoustic wave Eq. (15):

8lh(1) ≈
C′

lh

3|βlh|
cos

βlh
√

3
(27)

≈
e〈J0〉

12ε0λDe

√
µ∣∣∣∣1∣∣∣∣

(
v2

− c2
lh,‖

v2 − c2
lh

) 1
2

× cos

[ 2clh,‖

∣∣∣∣1∣∣∣∣√
3

(
v2 − c2

lh,‖

)]
.

This potential becomes negative for12π < |βlh|/
√

3 <
3
2π mod 2π , in which case it attracts a neighbouring par-
allel electron. An attractive potential requiresv & clh/

√
µ ≈

43clh in an electron–proton plasma. As a consequence the
fraction under the square root does not shorten out but be-

comes small of the order ofo
(
1− c2

lh,‖/v
2
)

∼ O
(√

µ
)
. Un-

der the condition on the argument of the cos function the
amplitude of the potential is of the order of

C′

lh

3|βlh|
.

e〈J0〉

3
√

3ε0λDe

clh

v
(28)

which is small of the order of the ratioclh / v ∼
√

µ. Never-
theless, lower-hybrid waves may attract some resonant elec-
trons in parallel motion along the magnetic field. In the trans-
verse direction any electrons gyrate and thus are insensitive
to attraction. Any potential generated will just cause a cross-
field electron drift weakly contributing to local current fluc-
tuations.

2.4 Buneman mode-mediated inter-electron potential

A most important plasma wave is the current driven non-
magnetic Buneman mode (Buneman, 1958, 1959). It oc-
curs under conditions of collisionless shocks, in collision-
less guide field reconnection (Drake et al., 2003; Cattell et
al., 2005), and in auroral physics, in all cases producing
highly dynamical localised electron structures of the type of
BGK modes which trap electrons and cause violent effects
in plasma dynamics (Newman et al., 2001). Again account-
ing for the presence of test electrons, the dielectric response
function of the Buneman mode is

ε(ω,k) = 1+
1

k2λ2
De

−
ω2

i

ω2
−

ω2
e

(ω − ku)2
, (29)
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with u the current drift velocity of the electrons, andk the
one-dimensional wave number. For the Buneman mode one
hask ≈ ωe/u andωi � ω � ωe. Under these conditions the
(nonlinear) version of the Buneman response function be-
comes

εB(ω,k) = 1+
1

k2λ2
De

+
µ

2

(
ωe

ω

)3(
1+

3

2

δN

N

)
. (30)

The Buneman dispersion relation is obtained as

ω3
B(k) = −ω3

e
µ

2

k2λ2
De

1+ k2λ2
De

(
1+

3

2

δN

N

)
, (31)

where we retained the nonlinear modulation term propor-
tional to the density variationδN . In equilibrium it becomes
δN/N = −(ε0/4mic

2
iaN) |δEB|

2 which is proportional to the
Buneman electric field intensity causing hole formation. In
the following this term will be neglected. We note that the so-
lution ωB(k) = <(ωB) + i=(ωB) has a non-negligible imag-
inary part which must be taken into account. Inverting the
response function yields,

1

εB(ω,k)
=

k2λ2
De

1+ k2λ2
De

(
1+

ω3
B(k)

ω3 − ω3
B(k)

)
. (32)

2.4.1 Attractive potential in linear theory

The structure of this function is more complicated than in
the ion-acoustic case which is due to the higher power in fre-
quency and its imaginary part. This function is to be used
in Eq. (1). Again, the first term just reproduces the Debye
screening and can thus be dropped. In order to treat the in-
tegral of the second term, we again assume that the electron
moves inz direction at velocityv. Rewriting the integral in
cylindrical coordinates and replacingk‖ = ω/v as required
by the delta function, we find

8B(z,ρ, t) =
eλ2

De

16πε0

∫
dωdk2

⊥
J0(k⊥ρ)

1+ ω2λ2
De/v

2 + k2
⊥
λ2

De

(33)

×
ω3

B(k⊥,v) exp[iω(z − vt)/v][
ω3 − ω3

B(k⊥,v)

] .

Treating theω integral is complicated by the third power
of the frequency. It requires expansion of the last term
into a Laurent series. Since we know thatωB is a solu-
tion of the dispersion relation, the denominator can be ex-
panded aroundω = ωB yielding in the denominator 3ω2

B(ω−

ωB)
[
1+ (ω − ωB)/ωB +

1
2(ω − ωB)2/ω2

B

]
. The bracket can

then be further expanded. Ultimately applying the residuum
theorem, only the first term survives producing

8B(z,ρ, t) =
ieλ2

De

4ε0

∫
k⊥dk⊥

1+ ω2
Bλ2

De/v
2 + k2

⊥
λ2

De

(34)

× J0

(
k⊥ρ

)
ωB

(
k⊥,v

)
exp

[
iωB(z − vt)/v

]

and we must, for=(ω) > 0, require thatz − vt > 0 and in-
tegrate over the positive frequency half-space. Indeed, solv-
ing the dispersion relation still, for completeness, keeping the
nonlinear term, we obtain the usual Buneman frequency and
growth rate

<(ωB) ≈
ωe

(1+ 1/k2λ2
De)

1/3

( µ

16

) 1
3
(

1+
1

2

δN

N

)
, (35)

=(ωB) =
√

3 <(ωB).

Hence, electrons in resonance with the wave lag slightly be-
hind the wave. The integral may be written as a derivative
with respect toζ = (z− vt)ve/vλDe. Further simplifying the
denominator and defininḡω = ωe(µ/16)1/3(1+ δN/2N) ≈

0.03ωe(1+ δN/2N) the integral becomes

8B(z, ρ̄, t) ≈
e

4ε0λDe
∂ζ

1∫
0

ξdξJ0(ξ ρ̄) (36)

× exp
[
−ω̄ξ

2
3

(√
3− i

)
ζ
]
.

Changing variables and solving for the integral and restrict-
ing to the dominant term, we find that

8B(ζ,ρ = 0) ≈
3

4

e

ε0λDeω̄ζ
exp

(
− ζ ω̄

√
3

)
(37)

×

[
cos

(
ω̄ζ +

π

6

)
+ i sin

(
ω̄ζ +

π

6

)]
holding for ζ > 0. Only the real part of the potential has
physical relevance, the imaginary part causing a spatial undu-
lation alongζ of wavelength 6̄ω/11π . We thus find that the
potential can indeed become attractive when the cos func-
tion is negative, that is, in the interval1

3π . ω̄ζ . 4
3π and

for resonant electrons lagging slightly behind the wave. This
last condition can also be written

π

3
. 0.03

ve

v

|z − vt |

λDe
.

4π

3
. (38)

Such electrons are presumably trapped in the wave potential
well which confines them to the interior of holes generated by
the Buneman mode. For the distance on which the potential
is attractive the last expression yields∣∣∣∣(z − vt)

∣∣∣∣
att

& 10π (v/ve)λDe. (39)

For the Buneman mode one requires thatu > ve. Electron
holes arising from Buneman modes extend up to several
∼ λDe (Newman et al., 2001). They are thus well capable of
allowing trapped slow electrons of velocity in the narrow in-
terval ve < v < u to experience attracting inter-electron po-
tentials and, in principle, form classical “pairs” or larger
compounds.
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This attractive potential caused by the Buneman mode
is weak. This is obvious from the exponential factor
exp(−ω̄ζ

√
3). Inserting for µ and using the condition

Eq. (38) with ve/v < 1, it is found that this factor is of the
order of . 0.007. Moreover, though the imaginary part of
the potential plays no role in the sign of the potential, it im-
plies a periodic modulation of the electric field alongz which
is obtained when taking the derivativeEz ∝ −∂8B/∂ζ . This
modulation is, however, spatially damped away by the expo-
nential factor. Hence the potential becomes indeed weakly
attractive only in the near zone given by Eq. (38).

2.4.2 Undamped contribution of the singularity in ξ

For completeness we check for the resonant contribution of
the ξ integral. This is complicated by the wave-number de-
pendence of the Buneman dispersion relation induced by the
presence of the test charge. Iteratively, the remainingk de-
pendence of the Buneman dispersion relation is reduced to
k⊥ only. With this in mind, the denominator in Eq. (34) put
to zero becomes

ξ2
+ αBξ

4
3 + 1 = 0 (40)

whereαB = (µ/16)2/3(1+ i
√

3). Definingξ̄ = ξ2/3, this be-
comes a third-order equationξ̄3

+αBξ̄2
+ 1 = 0 the solution

of which is complicated by the complexity of the coefficient
αB. In general it has one real and two complex solutions. The
real solution is of no interest as it only contributes to a weak
deformation of the Debye sphere. In order to obtain the com-
plex solutions, we may refer to the smallness ofξ � 1 in
the long-wavelength regime and neglect the third-order term.
Solving for ξ̄ yields four solutions

ξ1,...,4 ≈ ±

(
±

√
α−3

B

) 1
2

= ±

(
1
i

)
a−1e−iπ/4 (41)

with a ≡ (µ/16)1/2. Checking with these solutions for the
exponential in Eq. (34) it can be shown that of the solutions
in the upper row only the solutionξ1 with the + sign con-
verges. Its pole lies in the lower-half plane. The pole of the
converging lower-row solutionξ3 lies in the upper half plane
and corresponds also to the+ sign. The denominator of the
integral can thus be written(ξ2

−ξ2
1,2)(ξ

2
−ξ2

3,4) where only
the solutionsξ1,ξ3 contribute. The integrand splits into the
two resonant terms

ξ2
1,2 − ξ2

3,4

αBξ4/3 + 1
=

[
1

(ξ − ξ1)(ξ − ξ2)
−

1

(ξ − ξ3)(ξ − ξ4)

]
. (42)

The first term on the right contributes a factor−2πi, the
second a factor 2πi which, when including the minus sign
in the bracket, yields a common factor−2πi. Moreover,
ξ2

1,2−ξ2
3,4 = −2i/a2. Hence a factor−2πia2/−2i = πa2 re-

sults. Sinceξ2 = −ξ1,ξ4 = −ξ3, a further factora/2 appears
which makes a final common factorπa3/2. In addition, the

two singular terms are multiplied: the first by eiπ/4 and the
second by e−iπ/4.

Solving for the residues at smallρ ≈ 0, one again obtains
a complex potential4 which, after some simple but lengthy
algebra, yields for the real and imaginary parts of the singular
integral contribution to the potential

<8
sg
B (ζ ) ≈ (43)

Acos
ζ

2

[
sinh

ζ
√

3
cos

π

12
− cosh

ζ
√

3
sin

π

12

]
− sin

ζ

2

[
sinh

ζ
√

3
cos

π

12
+ cosh

ζ
√

3
sin

π

12

]
,

=8
sg
B (ζ ) ≈

Acos
ζ

2

[
sinh

ζ
√

3
cos

π

12
+ cosh

ζ
√

3
sin

π

12

]
− sin

ζ

2

[
sinh

ζ
√

3
cos

π

12
− cosh

ζ
√

3
sin

π

12

]
,

whereA ≡ eπa2/4ε0
√

2λDe. For ζ positive and small, 0.
ζ < 1, that is, in the domain of largest interest, the dominant
term of the real part becomes

<8
sg
B (ζ ) ≈ −A sin(π/12)cos

(
1

2
ζ

)
cosh

(
ζ/

√
3
)

(44)

This contribution to the electrostatic potential is both at-
tractive and not exponentially damped. It thus represents an
important, in fact the dominant, contribution to the attrac-
tive electric force exerted by Buneman modes. In contrast to
ion-acoustic wave mediated potentials, the singularity of the
ξ integral in presence of the Buneman mode therefore adds
substantially to the attractive “pairing” potential in the near
zoneζ & 0 which acts on the slow electron component and
causes electron coagulation possibly leading to the formation
of electron compounds or macro-electrons in Buneman tur-
bulence. As before, the imaginary part of the potential con-
tribution merely causes a spatial undulation of the potential.

2.4.3 Weakly nonlinear Buneman mode

The Buneman mode is a strong wave in the sense that it
grows very fast, actually close to explosive growth. This has
a profound effect on the plasma which appears as hole forma-
tion, with δN 6= 0 reacting on the wave. In a simplified the-
ory this reaction is most easily described by taking the varia-
tion of the Buneman frequencyδω = δ<(ωB) with respect to
both density and wave number (Treumann and Baumjohann,
1997). The latter is varied with respect tokB = ωe/u, yield-
ing

δω ≈ <(ωB)

[
1

3

(
u

ve

)2

k2λ2
e +

1

2

δN

N

]
,

k < kB,

ve < u
(45)

4The caseρ 6= 0 produces a series of Bessel functions of com-
plex argument which just provides another severe mathematical
complication without adding to any further physical insight.
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It is customarily interpreted as an operator equation acting
on the Buneman mode electric field envelopeE(z, t). This
procedure results in a nonlinear Schrödinger equation5

[
i

∂

∂τ
+

1

2
∇

2
z̄ + η

∣∣∣∣E(z̄,τ )

∣∣∣∣2 ]
E(z̄,τ ) = 0 (46)

where τ = <(ωB)t, z̄ =
√

6ωez/u. The coefficient η =

ε0/8mic
2
iaN of the nonlinear term results from the density re-

sponse of the plasma to the presence of the finite amplitude
Buneman wave.

The stationary solution in the comoving frame of the
Buneman wave is, in this approximation, a caviton of am-
plitude E(z̄) = Em/cosh(z̄/L) of width L = 1/

(
Emη̄1/2

)
and maximum dip amplitudeEm. In this comoving frame
η̄ = ε0/8mi(cia −u)2N ≈ ε0/8miu

2N for u � cia. Electrons
trapped in the cavitons have velocities

v < (ε0/meN)
1
2 Em. (47)

Oscillating back and forth in the caviton, electrons in their
backward traveling phase of motion or near their turning
points at the boundaries of the cavitons are sensitive to attrac-
tion. Hole-passing electrons in either direction, on the other
hand, are not in resonance and thus do not experience any
attraction.

2.4.4 Strong nonlinearity: electron hole effect

These arguments hold for weakly modulated Buneman
modes. As noted above, the Buneman mode is, however, a
strong wave which during its evolution causes electron holes
to evolve from Bernstein–Green–Kruskal (BGK) modes
which cannot be described by the above approximate weakly
nonlinear theory. In this case the variation of the density

|δN/N | . 1 (48)

becomes itself of the order of the density.
Under this condition one may assume that in the Buneman

dispersion relation Eq. (35)

δN/N ≈ −η|E(z̄,τ )|2 (49)

in which case the effective plasma frequency

ω̄ = ωe

(
1−

∣∣∣∣δNN
∣∣∣∣) 1

2 ( µ

16

) 1
3

� ωe

( µ

16

) 1
3

(50)

5Strictly speaking, for the strongly growing Buneman mode one
should also account for the variation of the imaginary frequency
(growth rate). This results in a complex nonlinear Schrödinger

equation

[
i∂τ +

1
2∇

2
z̄

+

(
1+ i

√
3
)
η

∣∣∣∣E(z̄,τ )

∣∣∣∣2
]

E(z̄,τ ) = 0.

Equations of this kind are known from Landau–Ginzburg theory in
many-particle quantum statistics but have not yet been considered
in plasma physics.

becomes very small, yielding thatω̄ ≈ 0 in the exponential
damping factor in electron holes vanishes – this is a very im-
portant fact.

The attractive potential under the condition of elec-
tron hole generation becomes undamped, and the condition
Eq. (38) assumes full validity. This is the case when the
Buneman mode evolves into BGK-mode electron holes as
observed in several places in space, the aurora and strong
collisionless reconnection. It then becomes capable of con-
tributing to the proposed classical “pairing” or coagulation
of electrons inside an electron hole affecting the low-velocity
trapped-electron component. As before, passing electrons are
immune to any attractive potentials and coagulation.

2.5 Summary

In this paper we examined four types of plasma waves for
their capability of causing attraction between two electrons
in close distance. All four wave families can, under certain
conditions, contribute. Attraction is a purely classical ef-
fect which just resembles real quantum pairing of electrons
in electron–phonon interaction at low temperatures in solid
state physics. Nevertheless the mechanisms are similar in the
sense that they imply electron-wave interaction. This lets one
ask whether the multiple classical “pairing” (coagulation)6

may have observable effects. In the last section we present a
few speculative hypotheses in this direction.

3 Discussion and conclusions: possible effects

Of all the plasma waves checked, the most promising candi-
dates for “pairing” are ion-acoustic waves. These had been
proposed already byNambu and Akama(1985) in view of
application in non-magnetised dusty plasma. Such waves
populate the solar wind and magnetosheath where they might
produce attractive potentials and generate a minor compo-
nent of heavy cold coagulated electrons. Electron-acoustic
waves, because of their very strong damping, are no really
good promising candidate. Lower-hybrid waves propagating
into a nearly perpendicular direction have weak parallel po-
tentials only, though we have given arguments for attractive
potentials generated by them as well. Large amplitude linear
Buneman modes, a particularly important wave mode, suffer
from exponential damping.

However, Buneman modes when evolving into electron
holes from BGK modes, the density modulation becomes
large and – as argued above – the exponential damping factor

6Another term in place of multiple classical “pairing” or coag-
ulation would be “bunching”. However, bunching has the connota-
tion of particles being bunched into a common dynamical phase,
for instance in their gyrational motion in an external magnetic field
as used in free-electron laser and electron-cyclotron maser theory.
Since coagulation meant in this paper is a different process, we pre-
fer avoiding use of this term.
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is strongly reduced. In view of applications, this is the most
interesting case involving Buneman modes for it causes sus-
ceptible attractive potentials evolving in the interior of an
electron hole. Our calculations do, however, apply only to
single wave modes trapped inside a hole. In order to account
for the effect of the modulated wave spectrum it would be
necessary to integrate over the hole-trapped wave spectrum
under the restrictive condition imposed by the resonance con-
dition limited to the necessary condition for producing at-
tractive potentials. The latter two separate out just a small
group of particular resonant electrons from the trapped elec-
tron component for each of the wave numbersk in the spec-
trum of hole-trapped waves. Electrons at the bottom of the
hole potential are clearly not involved in the resonance and
attraction; they are at rest. This all implies that the number of
resonant electrons ready for attraction will be very small. It
consists of the fraction, sayαres� 1 of resonant particles sat-
isfying the attractive condition cut out of the trapped electron
distribution located in a shell of (negative) attractive poten-
tial just outside the Debye sphere being of spatial extension
r ∼ νλD with ν < 1. For a trapped electron densityN the
fraction of electrons per Debye sphere in this narrow shell
is ∼ νN . Of these just a fractionαres is in resonance. This
yields per Debye sphere a fraction of∼ ναresN � N avail-
able for compound formation. Clearly this fraction is very
small.

In principle, one could also think of electromagnetic
plasma waves causing attractive potentials. The candidates
would, however, only be electromagnetic waves possessing
sufficiently large magnetic field aligned electric fields. Natu-
rally, low-frequency electromagnetic waves have relativisti-
cally small electric components. Hence, the only candidates
could be highly oblique whistlers, which generally resemble
lower-hybrid modes and need not be discussed further, ki-
netic Alfvén waves which are known to possess large-scale
and comparably strong electric fields, in particular in the au-
roral region, but also on the ion-inertial scale near reconnec-
tion sites, and the extraordinary electromagnetic mode. Of
these, only kinetic Alfvén waves are worth being checked.
This will be reserved for a separate investigation. It requires
an electromagnetic treatment involving the magnetic vector
potential.

3.1 Mass and charge of prospective coagulations

In solid state physics, electron pair formation is related to
super-fluid and super-conducting behaviour of matter (Fet-
ter and Walecka, 1971; Huang, 1987; Ketterson and Song,
1999) in metals and semi-conductors which are based on the
fact that pairing electrons become Bosons with either vanish-
ing or integer spin. At low temperatures they are capable of
releasing their kinetic energy until condensing in their lowest
energy level which, in a magnetic field, is the lowest Landau
level 1

2h̄ωce (Landau, 1930).

Classical “pairing” produces compounds of electrons
which attract each other. Each electron may become sur-
rounded by other weakly bound electrons. This happens on
the scale of the Debye length (Fig.1). Such compounds have
large masses and charges

m∗ = ncomme, q∗ = −ncome (51)

with ncom the number of electrons in the compound, but con-
stant charge-to-mass ratioe / me. The mass increase affects
thermal speed, momentum and kinetic energy. The charge
will be compensated by the unchanged number of ions.

It remains an open question whether or not classical “pair-
ing” or coagulation will actually take place. As noted, the
presence of an attractive potential which is responsible for
the attractive force between neighbouring electrons, is just
the necessary condition for subsequent coagulation of elec-
trons to form classical pairs or larger electron compounds.
Real compound production requires, in addition, the observa-
tion of the sufficient conditions. These are more complicated
to investigate than the mere though already quite involved
generation of attractive potentials given in this paper.

The necessary (attractive potential) condition consists of
two parts. In brief, for an electron experiencing the attractive
potential force these are the resonance condition imposed on
the electron and the requirement that the electron is localised
at the right location in space where the potential is attractive.
The former depends on the wave mode. The latter, as has
been noted, says that for becoming attracted a resonant elec-
tron must be located at a radial distance from the attracting
electron outside but very close to the latter’s Debye sphere.
Inside the Debye sphere the potential is repulsive. At dis-
tance larger than the Debye sphere the attractive force rapidly
decays with distance. Attraction is, hence, limited to a thin
shell of some thicknessd located at radial distanceλDe from
the attracting electron. Solving the sufficient conditions not
only requires determining the attractive force (taking the ra-
dial gradient of the attractive potential) but also integrating
in momentum space over the resonant particle distribution in
presence of a given wave spectrum, and integrating spatially
over the attractive shell.

Such a calculation can only be done numerically and re-
mains to be a formidable task. Still, it does not yet provide
information about the (average) numberncom of particles in a
single compound. This number depends on how many Debye
spheres become correlated in the attraction process, a num-
ber which is not known a priori.

3.2 Electron cooling

Since only a small number of electrons participate in attrac-
tion, their distribution function is just a narrow cut out of
the distribution of all electrons available in the volume. Fig-
ure2 sketches the situation for the case of ion-acoustic waves
which may originally have been unstably excited in a ther-
mally imbalanced ion–electron plasmaTe > Ti as shown by
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Figure 2. Phase space of ion-acoustic waves excited by the ion-
acoustic instability. Shown are the one-dimensional background ion
Fi(v) and electronFe(v) distributions. Ion-acoustic wave with spec-
trum |E(ω/k)|2ia evolve at phase velocities above the minimum
of cia in the rangecs < ω/k < vd. The electron pair distribution
functionFcom(v) produced in the high-phase speed range is shown
schematically in blue. One may note the very low velocity spread
of the pair distribution indicating the much lower pair than original
electron background temperatureTpair � Te.

the two distributionsFi(v),Fe(v) in one-dimensional phase
space. This is the canonical case of ion-acoustic wave ex-
citation. The ion-acoustic wave spectrum exists in a narrow
phase velocity rangecs < ωia/k < vd as shown in red.cs is
the minimum of the ion-acoustic wave phase velocity. At-
tractive potentials can be generated only at finite wave ampli-
tudes and for electron velocitiesv & cia. The resulting low-
density pair distribution is shown in blue.

One may note the very narrow velocity spread of the at-
tracted distributionFcom(v) which is at most as wide as the
ion-acoustic wave spectrum corresponding to a rather low-
temperatureTcom � Te of the electrons participating in at-
traction and available for compound formation. Their maxi-
mum speed is sufficiently far belowvd . Compound distribu-
tions are cold.

Figure3 is for the Buneman case which holds foru & ve.
The excited spectrum in this case is as well extremely nar-
row with phase velocity spread of the same order as the lin-
early excited Buneman waves, that is,1v ∼ u−ve. Buneman
modes are excited foru & ve just above the electron thermal
speed. One may note that the reactively growing wave read-
ily reduces any speedu � ve to values marginally exceeding
ve. Consequently, the compound distribution which is at most
as wide as the Buneman spectrum, also has low-temperature
Tcom . me|u − ve|

2
� Te.

Buneman modes are known to evolve into electron holes.
In this case the hole-trapped electrons become heated in the
trapped wave spectrum. Clearly, the prospectively attracted
electrons or compounds formed will, in the long term, par-
ticipate in this heating. However, formation of attractive po-
tentials and attraction are almost immediate processes in the
interaction of resonant electrons with one of the propagat-
ing waves trapped in the hole. This process is much faster

F(v)
F (v)i
e

F     (v)com

v, ω/k0 ve vd

B
|E(ω/k)|

2

caviton/hole
formation

Figure 3. Phase space of Buneman modes excited with spectrum
|E(ω/k)|2

b
and wave numberk = ωe/vd evolving at phase veloci-

ties aboveve for u ≡ vd > ve. The spectrum is very narrow in phase
velocity. The electron pair distribution functionFcom(v) produced
(blue) has similar width as the spectrum and is thus much colder
than the original electron distribution. In caviton formation the spec-
trum extends to much larger phase velocities which, however, has
no remarkable effect on the pair distribution.

than any heating. It selects out a small number of resonant
electrons from the trapped electron distribution to form com-
pounds of at least two electrons resulting in a cold elec-
tron compound component. In the long term, when collision-
less heating sets in (due to phase mixing in the hole-trapped
Buneman wave spectrum), the compounds should also par-
ticipate in the heating becoming destroyed (due to internal
oscillations excited by the higher external temperature) when
the compound temperatureT > 2e8 exceeds the potential of
attraction forcing the compound electrons to join back into
the trapped population. From this point of view compound
formation of electrons in holes will occur preferably in the
initial state of the hole before the heating phase sets in. It is
thus questionable whether the cold trapped component will
survive at all. On the other hand, attractive potentials could
as well be generated at later times if only wave modes remain
trapped and survive after phase mixing. Hence, the case re-
mains unclear.

In all these scenarios the possibly generated compound
plasmas turn out to be of low temperature. Classical “pair-
ing” in collisionless plasma is a non-radiative cooling mech-
anism acting on a small number of resonant plasma electrons
being sensitive to the attractive potential.

3.3 Secondary electron-acoustic wave excitation

The first side-effect of cooling is that the plasma after “pair-
ing” consists of a two-temperature electron plasma of con-
stant charge-to-mass ratio and cold particle density less than
plasma density. Such a two-electron temperature plasma ex-
cites high frequency/high velocity electron-acoustic waves
which are radiated away from the coagulation region. In prin-
ciple the electron-acoustic waves could be observed if exci-
tation is strong enough to overcome the strong damping of
the electron-acoustic waves.
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3.4 Electron re-magnetisation in Buneman waves

In the case of the Buneman instability, coagulations form
from the slower electron component (Fig.3) with attrac-
tive fields being exponentially damped on large scales.
Hence attraction will preferentially be relevant inside BGK-
mode electron holes affecting the trapped electron compo-
nent in the cavity/hole which forms when the Buneman
mode evolves nonlinearly. The coagulations constitute a low-
density electron population of temperature substantially be-
low Te which remains hole trapped, unable to escape.

It is interesting to speculate on the importance of this kind
of Buneman-induced compound formation in reconnection.
Guide field simulations and observations strongly suggest
that the Buneman mode causes generation of electron holes
during reconnection (Drake et al., 2003; Cattell et al., 2005).
In the geomagnetic tail reconnection region, electron temper-
atures are lower than ion temperatures inhibiting ion-acoustic
wave excitation. Electrons in this case are nonmagnetic in-
side the electron diffusion reconnection site (electron ex-
haust) being accelerated in the cross-tail field. In presence of
a guide field this acceleration causes high guide field aligned
velocities exceeding the thermal electron speed, a situation
favouring the excitation of Buneman modes and generation
of chains of electron holes along the guide field.

Production of a surviving cold dilute compound-electron
plasma in the Buneman excited electron holes in the ion-
diffusion region and near the reconnection site implies re-
magnetisation of the hole-trapped nonmagnetic electrons un-
til their gyroradiusrcom

e drops below the inertial scale of
the plasma. This is easily confirmed by forming the ratio of
the compound gyroradius to the bulk electron inertial scale
λe = c/ωe. Accounting for the constancy of the compound
charge-to-mass ratio, this ratio can be written as

rcom
e

λe
≈

(
βe

Tcom

Te

) 1
2

, (52)

whereβe = 2µ0NTe/B
2 is the bulk plasma electron-β. Since

Tcom/Te is substantially less than one, the compound elec-
trons regain magnetisation in the reconnection electron ex-
haust where the bulk electrons remain to be nonmagnetic, an
effect which necessarily affects the evolution of reconnection
in several ways. One effect is that magnetised electrons trans-
port magnetic flux into the bulk-electron diffusion region
thereby enhancing reconnection. Their stronger magnetisa-
tion also modifies reconnection. Moreover, electron holes
forming chains along the guide field naturally contribute to
amplification and deformation of the guide field on the spa-
tial scale of the holes, a process which self-consistently gen-
erates localised non-zeroBz components in the current sheet
centre. However, because of the expected very low number
of compounds formed, the effect will be rather small if not
completely negligible.

In summary, though attractive potentials will certainly
arise in various wave particle interactions in plasma, the
number of electrons which may under favourable circum-
stances coagulate and cool down to low temperatures will in
all cases be very small and therefore ineffective for plasma
processes. Unfortunately, attraction though a natural process
does not provide any natural mechanism of large macro-
particle number generation. It would be interesting to inves-
tigate whether particle “bunching” in low-frequency electro-
magnetic waves (whistlers, kinetic Alfvén waves, etc.) might
be another option of imposing a common dynamic behaviour
on large numbers of electrons to perform correlated dynam-
ics and appear as macro-particles. Observation of very dilute
cold electrons in the presence of high levels of plasma wave
activity would, however, indicate ongoing attraction and co-
agulation.
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Appendix A: No macro-quantum condensation effects

Here we demonstrate that the classical condensate will not
undergo any quantum condensation (i.e. it will not become a
Bose–Einstein macro-condensate) inside a caviton. The low-
est reachable energy level is at the bottom of the caviton. This
can be taken as zero-energy level for the composed electrons.
Furthermore, composition temperatures are low, the order of
a fraction of an eV in the classical condensate. Assuming
that the composed electrons obey a Bose distribution in the
caviton potentialφ we thus write for their density

dncom

dε
=

1

4π2

(
4me

h̄2

) 3
2 ε

1
2

eβ(ε−2eφ−µ) − 1
. (A1)

The chemical potentialµ . 0 is compensated by the cavi-
ton potential at inverse temperatureβ0 which is calculated
from the total density of the trapped particles. The upper limit
of the integral can be assumed at infinity. Hence (Fetter and
Walecka, 1971)

T0 ≡ β−1
0 ≈ 1.6

h̄2

me
n

2
3
com ∼ 10−19n

2
3
com eV. (A2)

Since any densities are very low in space plasmas this limit
temperature on any Bose–Einstein condensation is practi-
cally zero in comparison to the estimated lowest compound
temperaturesTcom ∼ 0.1 eV. This precludes that in ordinary
space plasmas any composed electrons produced would form
macro-quantum Bose–Einstein condensates, indeed an intu-
itive reasoning. Under the extreme conditions in the plasma
of neutron star crusts with their high nuclear densities such
condensates could possibly occur if Buneman modes would
evolve along the neutron star magnetic field.
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