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Abstract. This is a study of a dropout of radiation belt elec-
trons, associated with an isolated solar wind density pulse
on 20 September 2007, as seen by the solid-state telescopes
(SST) detectors on THEMIS (Time History of Events and
Macroscale Interactions during Substorms). Omnidirectional
fluxes were converted to phase space density at constant
invariantsM = 700 MeV G−1 andK = 0.014RE G1/2, with
the assumption of local pitch angleα ≈ 80◦ and using the
T04 magnetic field model. The last closed drift shell, which
was calculated throughout the time interval, never came
within the simulation outer boundary ofL∗

= 6. It is found,
using several different models for diffusion rates, that radial
diffusion alone only allows the data-driven, time-dependent
boundary values atLmax = 6 andLmin = 3.7 to propagate a
few tenths of anRE during the simulation; far too slow to
account for the dropout observed over the broad range of
L∗

= 4–5.5. Pitch angle diffusion via resonant interactions
with several types of waves (chorus, electromagnetic ion cy-
clotron waves, and plasmaspheric and plume hiss) also seems
problematic, for several reasons which are discussed.

Keywords. Magnetospheric physics (energetic particles,
trapped)

1 Introduction

Rapid, global dropouts in the radiation belts are currently
of much interest, as it has become evident that they are not
well understood. Somewhat parallel to the study of acceler-
ation events, there are two dominant paradigms, both plau-
sible: local precipitation due to pitch angle scattering by
wave–particle interactions, and outward radial transport (dif-
fusion) potentially combined with magnetopause shadowing.

The former was invoked by earlier studies of microbursts, but
more recent work, based on global observations as well as
unsuccessful attempts to detect precipitation, emphasizes the
latter. A thorough, up-to-date review of the situation is given
by Turner et al.(2012b).

This study of the 20 September 2007 dropout is based
on measurements by the solid-state telescopes (SST) de-
tectors on the five THEMIS (Time History of Events and
Macroscale Interactions during Substorms) spacecraft (An-
gelopoulos, 2008). Because pitch angle-resolved measure-
ments are not available for this early period in the THEMIS
mission (D. Turner, personal communication, 2013), this in-
vestigation is restricted to the radial diffusion mechanism,
both in its pure form and as often augmented with a simple,
semi-empirical local loss term (e.g.,Shprits et al., 2005).

2 Observations

Dropouts have been linked to sudden increases in solar
wind velocity, density, or dynamic pressurePdyn (Morley
et al., 2010; Shin and Lee, 2013). As seen in Fig. 1, dur-
ing 20 September (263 day of year), the solar wind velocity
rose moderately but the density spiked, leading to similar be-
havior in the dynamic pressure. This was accompanied by a
moderate increase in Kp and, at its peak, a sharp increase in
AE. The Dst index rose to about 38 and then decreased to
about−18. In this study, the main use of these large-scale
solar wind and magnetospheric quantities is in evaluating the
magnetic field model and radial diffusion coefficients.
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926 J. Albert: Diffusion simulations

Figure 1. Interplanetary and magnetospheric quantities for a time
interval surrounding 20 September 2007. Top to bottom: Dst, Kp,
solar wind velocity, solar wind density, solar wind dynamic pres-
sure, IMFBy , IMF Bz, and the integrated quantitiesW1–W6 (ma-
genta, red, blue, cyan, green, and black, respectively) used the T04
magnetic field model. The final panel shows the last closed drift
shell computed according to the T04 magnetic field model (black)
and the T96 model (red). Also shown in the final panel is the
plasmapause location according to several models as described in
Sect. 2.1.

2.1 Global setting

The underlying magnetic field model is used to calcu-
late adiabatic invariants associated with particle flux mea-
surements. THEMIS ephemeris data is provided in terms
of the McIlwain L parameter, calculated using the T96
(Tsyganenko, 1996) model (and International Geomagnetic
Reference Field – IGRF), but here the (Roederer)L∗ is used,
computed using the T04 (Tsyganenko and Sitnov, 2005)
model as implemented by the ONERA-DESP IRBEM library
(Boscher et al., 2013). These field models are driven by Dst,
Pdyn, and IMFBy andBz; T04 also uses the derived, time-
integrated quantitiesW1–W6, all shown in Fig. 1 (Qin et al.,
2007). Of particular interest is theL∗ value of the so-called
last closed drift shell (LCDS), beyond which particles are
not on closed drift shells but are assumed lost to the mag-
netopause on a drift timescale (referred to as magnetopause
shadowing). It is worth noting that the T96 and T04 models
include theShue et al.(1998) estimate of the magnetopause

location (in r), which typically lies outside the LCDS. Ac-
tually, the LCDS is not unique but depends on the particle
pitch angle. In fact, the situation is made much more complex
by the possibility of drift–orbit bifurcation (DOB), which
changes the second invariant (Öztürk and Wolf, 2007) and
invalidates most calculations ofL∗ but does not cause the
same rapid loss of confinement. Since low values of equa-
torial pitch angle are less subject to DOB, as an expedient
the LCDS is found (by iterative search) for a particle with
equatorial pitch angle of 40◦ at midnight. The bottom panel
of Fig. 1 shows the LCDS at one hour intervals, according to
the T04 model (black curve) and also according to T96 (red
curve). The LCDS for this time interval never comes within
L∗

= 6, so it should not be a direct factor in simulations with
an outer boundary atL∗ lower than this.

Also shown in the bottom panel of Fig. 1 is the plasma-
pause location, based on sequences of Kp according to esti-
mates ofCarpenter and Anderson(1992) (blue curve) and
O’Brien and Moldwin (2003) (green curve). Estimates of
O’Brien and Moldwin(2003) based on log(AE) (cyan curve)
or log(Dst) (yellow curve) are significantly higher during ex-
tended quiet intervals.

2.2 THEMIS observations

The SST flux data covers 12 energy ranges, from 26–36 keV
up to 800–4000 keV, listed in Table 1. The four highest en-
ergy channels (> 300 keV) use “double detector logic” but
the lower ones do not, and so are more vulnerable to pro-
ton contamination, despite extensive efforts at mitigation
(D. Turner, personal communication, 2013). Also, as men-
tioned, only spin-averaged (i.e., not pitch angle-resolved)
data are available for this period, so to proceed the flux mea-
surements are assumed to be dominated by locally mirroring
particles.

Locations of the five THEMIS spacecraft in Cartesian
GSM (geocentric solar magnetospheric) coordinates are
readily available at one minute intervals. Using the param-
eters discussed above, the IRBEM library was used to calcu-
late values ofL∗ at the spacecraft in the T04 field model, for
approximately locally mirroring particles (pitch angle 80◦)
at intervals of 5 min. (Input parameters were linearly inter-
polated in time as necessary.)

Figure 2 shows the spin-averaged flux vs. time atL∗
= 6

for a few values of energy. A dropout during 20 Septem-
ber (DOY 263) is quite evident for 408 and 720 keV, though
weaker for 203.5 keV. Figure 3 shows the time development
of flux vs.L∗ for fixedE = 720 keV.

Figure 4 shows zoomed-in plots of flux vs. time for a num-
ber of L andE values; the dropout occurs for allL∗ > 4.
Also shown in each plot is a line segment whose slope was
used to find the timescale of the assumed exponential de-
cay during the dropout. Note that forE < 100 keV, fluxes in-
creased rather than decreased. Because of the coarse time res-
olution, this is an overestimate of the timescale; the dropout
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Table 1.Minimum, maximum, and center values of the THEMIS SST energy channels.

Emin (keV) 26 36 46 58 73 113 165 241 335 481 640 800

Emax (keV) 36 46 58 73 113 165 242 345 481 642 800 4000

Ecenter 31 41 52 65.5 93 139 203.5 293 408 561.5 720 2400

Figure 2. Particle flux, in units of #/(cm2 s ster keV), from three
energy channels of the SST detectors on the THEMIS spacecraft, at
L∗

= 6.0± 0.2. The different spacecraft are identified by the color
coding.

could, in principle, have happened during any subinterval
of the indicated periods. The resulting timescales, forE >

100 keV, are shown in Fig. 5 and are smallest for the largest
values ofE andL∗.

3 Radial diffusion simulation

Radial diffusion simulations evolve phase space density as a
function of the adiabatic invariants, which must first be com-
puted. The magnetic field and normalized field line integral
I at the spacecraft location were obtained from IRBEM (also
assuming local pitch angle 80◦), and used to evaluate the adi-
abatic invariantsM andJ for each energy channel:

M = p2sin2α
mc2

2B
, J = 2pI, (1)

Figure 3. Observed particle fluxes vs.L∗ at fixedE, showing the
time evolution.

wherep2
= (E/mc2)(2+E/mc2) andE is the center value

of the channel. WithB in gauss,I in RE, and mc2
=

0.511 MeV, this givesM in MeV G−1 andJ in g (cm s−1) RE
(the units used byBrautigam and Albert, 2000). ThenK, in
units ofRE

√
G, is given by

K =
J/J0
√

M
, J0 = 1.08× 10−16. (2)

Figure 6 shows the resulting values ofM, J , K, andL∗ for
the five spacecraft.

To make the best use of the available coverage, attention is
focused on the valueM = 700 MeV G−1, which dictates the
value ofp2 or energy of the assumed locally mirroring par-
ticles. This also fixes the value ofJ , which cannot be speci-
fied independently; however, only measurements with calcu-
lated valuesJ ≈ 4× 10−17 (K ≈ 0.014), within a factor of
2, are used. The fluxj at the required energy is found by in-
terpolating logj in logE. The phase space density is given
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Figure 4.Particle fluxes just before and after the dropout. The color
coding denotes the individual spacecraft as in the previous figure.
The slopes of the dotted lines were used to determine timescales.

by f = j/(p/mc)2; the resulting values are shown in Fig. 7.
(Further multiplying by the constant 6.3× 10−10 would give
f in units of s3/km6.) Note thatf (L) shows a substantial
peak aroundL∗

= 5 prior to the dropout.
These THEMIS values were used to generate initial and

boundary values for radial diffusion simulations. A grid of
100 points was used, withLmin = 3.7 andLmax = 6.0. For
each grid pointLi , measurements with|L∗

−Li | < 0.1 within
a time window were considered; to mitigate missing the on-
set of the dropout, the minimum of thesef values was used.
At each grid point, for initial conditions the time window
was ±3 days wide, centered aboutt = 259.0 (16 Septem-
ber), while for subsequent, time-dependent boundary values
at Lmax andLmin the window width was±0.75 days. The
boundary conditions were updated every 15 min; if no mea-
surements were available within the time window, the pre-
vious values were retained. The resulting boundary values,
f (t), for Lmax andLmin are shown in Fig. 8 and show a sharp
drop atLmax lasting about 1.5 days.

Several different versions of radial diffusion coeffi-
cients were used, including the benchmark expressions
DBA used by Brautigam and Albert(2000) and Albert
et al. (2009). These represent historical estimates of

Figure 5. Decay timescales vs.L∗ for several values ofE, deter-
mined from the slopes indicated in the previous figure.

substorm-associated electrostatic fluctuations and solar
wind-driven electromagnetic ULF waves, both parameter-
ized by Kp. Ozeke et al.(2014) obtained diffusion coeffi-
cientsDOzeke from much more recent, ground-based mea-
surements and a different decomposition into electric and
magnetic terms, also parameterized by Kp. Finally, a simula-
tion of this interval (coveringt = 263.0 to 265.9) was done
using the Lyon–Fedder–Mobarry MHD (magnetohydrody-
namics) code, and radial diffusion coefficientsDMHD were
constructed from the fluctuating electric and magnetic fields
as in an earlier study described byElkington et al.(2012). As
shown in Fig. 9, all three expressions are quite similar over
this range ofL and time, at least forM = 700 MeV G−1,
although theDOzeke values seem systematically the small-
est. TheDMHD values are mostly smaller than theDBA val-
ues except for a short interval aroundt = 264.5 (noon of
21 September).

Numerical integration of the well-known 1-D radial diffu-
sion equation,

∂f

∂t
= L2 ∂

∂L

DLL

L2

∂f

∂L
, (3)

was carried out with standard numerical methods, using the
initial and time-dependent boundary values described above.
Figure 10 shows the results usingDBA , while for the run
of Fig. 11DMHD was substituted when available (t = 263.0
to 265.9). In both cases, the phase space density does not
decrease very much forL∗ < Lmax during the time that
f (Lmax) is depressed; outward radial diffusion occurs, but
not nearly at the rate required to agree with the data over
the rangeL∗

= 4 to 5.5 shown in Fig. 7. Even arbitrarily
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Figure 6. L∗ vs. time for the five THEMIS spacecraft, in the T04
magnetic field model. Also shown are the values of adiabatic in-
variantsM, J , andK covered by the energy channels of the SST
detector, assuming locally mirroring particles.

increasingDMHD by a factor of 3, as shown in Fig. 12, does
not help much. During this same time, the simulated phase
space density atL∗ < 4.5 actually increases.

These results are not surprising.Brautigam and Albert
(2000) andAlbert et al. (2009) found that radial diffusion,
even with data-driven boundary conditions, was unable to
reproduce CRRES (Combined Release and Radiation Ef-
fects Satellite) observations of dropouts (as well as rebuild-
ing) during the 9 October 1990 storm.Shprits and Thorne
(2004) concluded more generally that “simulations with vari-
able outer boundary conditions show that the depletion of the
main phase relativistic electron fluxes atL ≤ 4 can not be
explained only by variations in fluxes near geosynchronous
orbit and require local lifetimes as short as 0.5 day” and that
“even strong variations in the outer boundary are unable to
cause the observed depletion of relativistic electron fluxes
in the heart of the radiation belt (L ≤ 4) during the main
phase of the storm.”Su et al.(2010) also found that “com-
bined radial diffusion and adiabatic transport contributes in-
significantly to the main phase depletion of energetic elec-
tron fluxes within 5RE.” Similar conclusions are implicit in
Fig. 3a ofKim et al. (2011), Fig. 12 ofHwang et al.(2013)
and Fig. S3 ofTurner et al.(2012a).

Figure 7. Phase space density vs.L∗ for fixedM = 700 MeV G−1,
calculated from the observed fluxes, showing the time development.

4 Local loss processes

Shprits and Thorne(2004) added a simple loss term to the
diffusion equation, giving the venerable form

∂f

∂t
= L2 ∂

∂L

DLL

L2

∂f

∂L
−

f

τ
(4)

(Lyons and Thorne, 1973). Comparing observations to sim-
ulations with constant boundary conditions,Shprits et al.
(2005) obtainedτ = 3/Kp (in days) outside the plasmas-
phere as a reasonable, purely empirical fit, andτ = 5/Kp us-
ing variable boundary conditions. As a compromise,Hwang
et al. (2013) usedτ = 4/Kp, while Li et al. (2014) used
τ = 6/Kp. More physically,Shprits et al.(2007) andGu et al.
(2012) presented fits inL, E, and Kp to simple estimates of
the timescale of pitch angle diffusion by chorus waves. The
obvious problem with this approach is that it neglects energy
diffusion, which tends to increase flux levels in the multi-
keV range. Indeed, the increases seen in the THEMIS data
following the dropout are most likely attributable to chorus
acceleration (e.g.,Li et al., 2007; Albert et al., 2009).

Electromagnetic ion cyclotron (EMIC) waves can lead to
very rapid pitch angle diffusion of relativistic electrons, and
are expected to be proximate to the plasmapause (Summers
et al., 1998; Li et al., 2007). Borovsky and Denton(2009)
found from a study of geosynchronous data that dropouts,
attributed to EMIC waves, coincide with the formation of a

www.ann-geophys.net/32/925/2014/ Ann. Geophys., 32, 925–934, 2014
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Figure 8. Phase space density atL = 6.0 (red) andL = 3.7 (blue)
calculated from the observed fluxes, as functions of time, used as
boundary conditions for radial diffusion simulations.

plasmaspheric drainage plume, in conjunction with a dense
and hot plasma sheet.Usanova et al.(2012, 2013) found
from THEMIS and Cluster surveys that EMIC within plumes
correlates with solar wind dynamic pressure, though the oc-
currence rate is still in the 5–10 % range inside of geosyn-
chronous orbit. However, getting the minimum resonant en-
ergy below about 1 MeV requires very large values ofk‖.
Cold plasma theory provides a means for this, near ion stop
bands (e.g.,Albert, 2003), and some simulations have ex-
ploited this mechanism (e.g.,Li et al., 2007; Su et al., 2011a,
b). However, careful consideration of thermal effects (Silin
et al., 2011; Chen al., 2011, 2013) seems to invalidate this
for sub-MeV electrons. Recent observations of EMIC waves
and energy-dependent electron precipitation (Usanova et al.,
2014) seem to confirm this.

Pitch angle scattering by hiss has also been considered.
Lam et al.(2007) developed a statistical model of hiss from
CRRES data, parameterized by Kp, encompassing both the
plasmasphere and plumes; amplitudes were about 30 pT for
2≤ Kp < 4 and about 45 to 70 pT for Kp≥ 4. A radial dif-
fusion simulation found encouraging, though not decisive,
agreement with observed fluxes.Li et al. (2007) provided a
simple, convenient model which was originally presented for

Figure 9. Time-dependent radial diffusion coefficients, evaluated
at L∗5.5 and L∗

= 4.0, according to the empirical models of
Brautigam and Albert(2000) (blue curves) andOzeke et al.(2014)
(green curves), and an MHD simulation (Elkington et al., 2012) (red
curves), as described in the text.

Figure 10.Time development of phase space density from a simu-
lation using the radial coefficient ofBrautigam and Albert(2000).

Ann. Geophys., 32, 925–934, 2014 www.ann-geophys.net/32/925/2014/
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Figure 11.Time development of phase space density from a simu-
lation using the MHD-based radial coefficient described in the text.

a 2-D study atL = 4.5, but which was quickly adopted for
all L (e.g.,Shprits et al., 2009). A study bySummers et al.
(2008) of CRRES wave data restricted to plumes found con-
siderably smaller wave amplitudes, but it may be argued that
the plume crossings, mostly on the night side, were not fa-
vorably located.

Here, theLi et al. (2007) models of dayside chorus, night-
side chorus, and whistler mode hiss were used to calcu-
late quasi-linear pitch angle diffusion coefficients atL = 4.5
(with the additional assumption that wave normal angles had
a gaussian distribution, with a characteristic width of≤ 30◦).
For the case whereL = 4.5 is outside the plasmasphere, and
the hiss occurs in an extended plasmaspheric plume,Li et al.
(2007) modeled these three wave populations during a storm
main phase as covering 25, 25, and 15 % of a drift orbit. The
case ofL = 4.5 lying entirely within the plasmasphere was
also modeled, by considering the hiss model only (covering
the entire drift orbit). The lifetimes associated with these dif-
fusion coefficients are shown in Fig. 13. Both sets of values,
especially the hiss-only case, are of the order of magnitude
of the observed rates in Fig. 5, but the modeled lifetimes
increase with energy while the observed lifetimes decrease
with energy. Also, compared to the empirical values ofLam
et al. (2007) and Summers et al.(2008), the assumed hiss
amplitude of 100 pT seems rather high.

Figure 12.Time development of phase space density from a simu-
lation using the MHD-based radial diffusion coefficient multiplied
by 3.

Figure 13. Decay timescales atL = 4.5 from a model of plasmas-
pheric hiss (red), and from a combination of chorus waves and hiss
in a plasmaspheric plume (blue).

www.ann-geophys.net/32/925/2014/ Ann. Geophys., 32, 925–934, 2014
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5 Conclusions

Though this event was not a major storm, a significant
dropout occurred which does not seem to be reproducible by
the standard diffusion-based models. As discussed, though
outward radial diffusion is currently a fashionable paradigm,
it does not seem sufficient to explain decreases atL∗

∼ 4–5
for many events, including this one. Reasonable (though not
the most recent) models of chorus and hiss, combined with
quasi-linear theory, seem marginally effective enough, but it
is very worrisome that the dependence on energy seems qual-
itatively wrong. In fact the increasing loss rates as particle en-
ergy increases is suggestive of EMIC waves, but conversely,
as particle energy decreases the observed rates decrease too
slowly (if current ideas about the minimum resonant energy
are correct). Similar conclusions, based on different events,
were recently reached byMorley et al.(2010), Turner et al.
(2014), andHudson et al.(2014).

Possible resolutions include: qualitatively similar pro-
cesses evaluated with better models of radial diffusion
and cyclotron-resonant waves; non-diffusive radial trans-
port (Ukhorskiy et al., 2006); non-resonant interactions with
EMIC or other waves (Bortnik and Thorne, 2010); and non-
diffusive wave–particle interactions (e.g.,Albert, 2000; Al-
bert et al., 2012). It has been noted in many test particle sim-
ulations that nonlinear interactions with large amplitude, res-
onant whistler waves lead to a preferential, rapid decrease
in pitch angle, accompanied by decrease in energy (Albert,
2002; Tao et al., 2012); this could also be manifested as a
loss process.

Acknowledgements.This work was performed as part of a group ef-
fort organized by Richard Horne and Norma Crosby under the aus-
pices of the International Space Science Institute (ISSI), whose sup-
port and hospitality in 2011 and 2013 is gratefully acknowledged.
The THEMIS SST data were processed and provided by Drew
Turner. The OMNI data were obtained from the GSFC/SPDF OM-
NIWeb interface athttp://omniweb.gsfc.nasa.gov; magnetic field in-
put parameters derived from data on OMNIWeb were made avail-
able by Richard Denton and Zhengui Qin. Paul O’Brien provided
timely support of use of the IBREM library. Useful discussions were
had with Richard Selesnick and James McCollough. This work was
supported by the Space Vehicles Directorate of the Air Force Re-
search Laboratory and by the NASA LWS TR&T program.

Topical Editor E. Roussos thanks E. Woodfield and one anony-
mous referee for their help in evaluating this paper.

References

Albert, J. M.: Gyroresonant interactions of radiation belt particles
with a monochromatic electromagnetic wave, J. Geophys. Res.,
105, 21191, doi:10.1029/2000JA000008, 2000.

Albert, J. M.: Nonlinear interaction of outer zone elec-
trons with VLF waves, Geophys. Res. Lett., 29, 1275,
doi:10.1029/2001GL013941, 2002.

Albert, J. M.: Evaluation of quasi-linear diffusion coefficients for
EMIC waves in a multispecies plasma, J. Geophys. Res., 108,
1249, doi:10.1029/2002JA009792, 2003.

Albert, J. M., Meredith, N. P., and Horne, R. H.: Three-dimensional
diffusion simulation of outer radiation belt electrons during the
9 October 1990 magnetic storm, J. Geophys. Res., 114, A09214,
doi:10.1029/2009JA014336, 2009.

Albert, J. M., Tao, X., and Bortnik, J.: Aspects of nonlinear wave-
particle interactions, in: Dynamics of the Earth’s Radiation Belts
and Inner Magnetosphere, AGU Geophysical Monograph Series
199, 2012.

Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–
34, doi:10.1007/s11214-008-9336-1, 2008.

Borovsky, J. E. and Denton, M. H.: Relativistic-electron dropouts
and recovery: A superposed epoch study of the magneto-
sphere and the solar wind, J. Geophys. Res., 114, A02201,
doi:10.1029/2008JA013128, 2009.

Bortnik, J. and Thorne, R. M.: Transit time scattering of energetic
electrons due to equatorially confined magnetosonic waves, J.
Geophys. Res., 115, A07213, doi:10.1029/2010JA015283, 2010.

Boscher, D., Bourdarie, S., O’Brien, P., and Guild, T.: The In-
ternational Radiation Belt Environment Modeling (IRBEM) li-
brary, available at:http://sourceforge.net/projects/irbem(last ac-
cess: 20 August 2013), 2013.

Brautigam, D. H. and Albert, J. M.: Radial diffusion anal-
ysis of outer radiation belt electrons during the October
9, 1990 magnetic storm, J. Geophys. Res., 105, 291–309,
doi:10.1029/1999JA900344, 2000.

Carpenter, D. L. and Anderson, R. R.: An ISEE/whistler model of
equatorial electron density in the magnetosphere, J. Geophys.
Res., 97, 1097–1108, doi:10.1029/91JA01548, 1992.

Chen, L., Thorne, R. M., and Bortnik, J.: The controlling effect of
ion temperature on EMIC wave excitation and scattering, Geo-
phys. Res. Lett., 38, L16109, doi:10.1029/2011GL048653, 2011.

Chen, L., Thorne, R. M., Shprits, Y., and Ni, B.: An improved dis-
persion relation for parallel propagating electromagnetic waves
in warm plasmas: Application to electron scattering, J. Geophys.
Res., 118, 2185–2195, doi:10.1002/jgra.50260, 2013.

Elkington, S. R., Chan, A. A., and Wiltberger, M.: Global struc-
ture of ULF waves during the 24–26 September 1998 geomag-
netic storm, in: Dynamics of the Earth’s Radiation Belts and In-
ner Magnetosphere, AGU Geophysical Monograph Series 199,
2012.

Gu, X., Shprits, Y. Y., and Ni, B.: Parameterized lifetime of ra-
diation belt electrons interacting with lower-band and upper-
band oblique chorus waves, Geophys. Res. Lett., 39, L15102,
doi:10.1029/2012GL052519, 2012.

Hudson, M. K., Baker, D. N., Goldstein, J., Kress, B. T., Paral, J.,
Toffoletto, F. R., and Wiltberger, M.: Simulated magnetopause
losses and Van Allen Probe flux dropouts, Geophys. Res. Lett.,
41, 1113, doi:10.1002/2014GL059222, 2014.

Hwang, J., Lee, D.-Y., Kim, K.-C., Shin, D.-K., Kim, J.-H.,
Cho, J.-H., Park, M.-Y., and Turner, D. L.: Significant loss
of energetic electrons at the heart of the outer radiation belt
during weak magnetic storms, J. Geophys. Res., 118, 4221,
doi:10.1002/jgra.50410, 2013.

Kim, K.-C., Lee, D.-Y., Shprits, Y., Kim, H.-J., and Lee, E.:
Electron flux changes in the outer radiation belt by radial dif-
fusion during the storm recovery phase in comparison with

Ann. Geophys., 32, 925–934, 2014 www.ann-geophys.net/32/925/2014/

http://omniweb.gsfc.nasa.gov
http://dx.doi.org/10.1029/2000JA000008
http://dx.doi.org/10.1029/2001GL013941
http://dx.doi.org/10.1029/2002JA009792
http://dx.doi.org/10.1029/2009JA014336
http://dx.doi.org/10.1007/s11214-008-9336-1
http://dx.doi.org/10.1029/2008JA013128
http://dx.doi.org/10.1029/2010JA015283
http://sourceforge.net/projects/irbem
http://dx.doi.org/10.1029/1999JA900344
http://dx.doi.org/10.1029/91JA01548
http://dx.doi.org/10.1029/2011GL048653
http://dx.doi.org/10.1002/jgra.50260
http://dx.doi.org/10.1029/2012GL052519
http://dx.doi.org/10.1002/2014GL059222
http://dx.doi.org/10.1002/jgra.50410


J. Albert: Diffusion simulations 933

the fully adiabatic evolution, J. Geophys. Res., 116, A09229,
doi:10.1029/2011JA016642, 2011.

Lam, M. M., Horne, R. B., Meredith, N. P., and Glauert, S. A.: Mod-
eling the effects of radial diffusion and plasmaspheric hiss on
outer radiation belt electrons, Geophys. Res. Lett., 34, L20112,
doi:10.1029/2007GL031598, 2007.

Li, W., Shprits, Y. Y., and Thorne, R. M.: Dynamic evolu-
tion of energetic outer zone electrons due to wave-particle
interactions during storms, J. Geophys. Res., 112, A10220,
doi:10.1029/2007JA012368, 2007.

Li, Z., Hudson, M., and Chen, Y.: Radial diffusion compar-
ing a THEMIS statistical model with geosynchronous
measurements as input, J. Geophys. Res., 119, 1863,
doi:10.1002/2013JA019320, 2014.

Lyons, L. R. and Thorne, R. M.: Equilibrium structure
of radiation belt electrons, J. Geophys. Res., 78, 2142,
doi:10.1029/JA078i013p02142, 1973.

Morley, S. K., Friedel, R. H. W., Cayton, T. E., and Noveroske,
E.: A rapid, global and prolonged electron radiation belt dropout
observed with the Global Positioning System constellation, Geo-
phys. Res. Lett., 37, L06102, doi:10.1029/2010GL042772, 2010.

Morley, S. K., Friedel, R. H. W., Spanswick, E. L., Reeves, G. D.,
Steinberg, J. T., Koller, J., Cayton, T. E., and Noveroske, E.:
Dropouts of the outer electron radiation belt in response to solar
wind stream interfaces: Global Positioning System observations,
P. Roy. Soc. A, 466, 3329–3350, doi:10.1098/rspa.2010.0078,
2010.

O’Brien, T. P. and Moldwin, M. B.: Empirical plasmapause mod-
els from magnetic indices, Geophys. Res. Lett., 30, 1152,
doi:10.1029/2002GL016007, 2003.

Ozeke, L. G., Mann, I. R., Murphy, K. R., Rae, I. J., and Milling,
D. K.: Analytic expressions for ULF wave radiation belt ra-
dial diffusion coefficients, J. Geophys. Res., 119, 1587–1605,
doi:10.1002/2013JA019204, 2014.

Öztürk, K. M. and Wolf, R. A.: Bifurcation of drift shells near
the dayside magnetopause, J. Geophys. Res., 112, A07207,
doi:10.1029/2006JA012102, 2007.

Qin, Z., Denton, R. E., Tsyganenko, N. A., and Wolf, S.: Solar wind
parameters for magnetospheric magnetic field modeling, Space
Weather, 5, S11003, doi:10.1029/2006SW000296, 2007.

Shin, D.-K. and Lee, D.-Y.: Determining radial boundary conditions
of outer radiation belt electrons using THEMIS observations, J.
Geophys. Res., 118, 2888–2896, doi:10.1002/jgra.50334, 2013.

Shprits, Y. Y. and Thorne, R. M.: Time dependent radial diffusion
modeling of relativistic electrons with realistic loss rates, Geo-
phys. Res. Lett., 31, L08805, doi:10.1029/2004GL019591, 2004.

Shprits, Y. Y., Thorne, R. M., Reeves, G. D., and Friedel, R.:
Radial diffusion modeling with empirical lifetimes: compari-
son with CRRES observations, Ann. Geophys., 23, 1467–1471,
doi:10.5194/angeo-23-1467-2005, 2005.

Shprits, Y. Y., Meredith, N. P., and Thorne, R. M.: Parameteri-
zation of radiation belt electron loss timescales due to inter-
actions with chorus waves, Geophys. Res. Lett., 34, L11110,
doi:10.1029/2006GL029050, 2007.

Shprits, Y. Y., Subbotin, D., and Ni, B.: Evolution of electron fluxes
in the outer radiation belt computed with the VERB code, J. Geo-
phys. Res., 114, A11209, doi:10.1029/2008JA013784, 2009.

Shue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J.
K., Zastenke, G., Vaisberg, O. L., Kokubun, S., Singer, H. J.,

Detman, T. R., and Kawano, H.: Magnetopause location under
extreme solar wind conditions, J. Geophys. Res., 103, 17691,
doi:10.1029/98JA01103, 1998.

Silin, I., Mann, I. R., Sydora, R. D., Summers, D., and Mace, R.
L., Warm plasma effects on electromagnetic ion cyclotron wave
MeV electron interactions in the magnetosphere, J. Geophys.
Res., 116, A05215, doi:10.1029/2010JA016398, 2011.

Su, Z., Xiao, F., Zheng, H., and Wang, S.: Combined radial
diffusion and adiabatic transport of radiation belt electrons
with arbitrary pitch angles, J. Geophys. Res., 115, A10249,
doi:10.1029/2010JA015903, 2010.

Su, Z., Xiao, F., Zheng, H., and Wang, S.: Radiation belt elec-
tron dynamics driven by adiabatic transport, radial diffusion,
and wave-particle interactions, J. Geophys. Res., 116, A04205,
doi:10.1029/2010JA016228, 2011a.

Su, Z., Xiao, F., Zheng, H., and Wang, S.: CRRES observation
and STEERB simulation of the 9 October 1990 electron ra-
diation belt dropout event, Geophys. Res. Lett., 38, L06106,
doi:10.1029/2011GL046873, 2011b.

Summers, D., Thorne, R. M., and Xiao, F.: Relativistic theory of
wave-particle resonant diffusion with application to electron ac-
celeration in the magnetosphere, J. Geophys. Res., 103, 20487,
doi:10.1029/98JA01740, 1998.

Summers, D., Ni, B., Meredith, N. P., Horne, R. B., Thorne, R. M.,
Moldwin, M. B., and Anderson, R. R.: Electron scattering by
whistler-mode ELF hiss in plasmaspheric plumes, J. Geophys.
Res., 113, A04219, doi:10.1029/2007JA012678, 2008.

Tao, X., Bortnik, J., Thorne, R. M., Albert, J. M., and Li, W.: Ef-
fects of amplitude modulation on nonlinear interactions between
electrons and chorus waves, Geophys. Res. Lett., 39, L06102,
doi:10.1029/2012GL051202, 2012.

Tsyganenko, N. A.: Effects of the solar wind conditions on the
global magnetospheric configuration as deduced from data-based
field models, in European Space Agency Publication, ESA SP,
389, 181–185, 1996.

Tsyganenko, N. A. and Sitnov, M. I.: Modeling the dynamics of
the inner magnetosphere during strong geomagnetic storms, J.
Geophys. Res., 110, A03208, doi:10.1029/2004JA010798, 2005.

Turner, D. L., Shprits, Y., Hartinger, M., and Angelopoulos,
V.: Explaining sudden losses of outer radiation belt elec-
trons during geomagnetic storms, Nat. Phys., 8, 208–212,
doi:10.1038/nphys2185, 2012a.

Turner, D. L., Morley, S. K., Miyoshi, Y., Ni, B., and Huang, C.-
L.: Outer radiation belt flux dropouts: Current understanding and
unresolved questions, in Dynamics of the Earth’s Radiation Belts
and Inner Magnetosphere, AGU Geophysical Monograph Series
199, 2012b.

Turner, D. L., Angelopoulos, V., Morley, S. K„ Henderson, M. G.,
Reeves, G. D., Li, W., Baker, D. N., Huang, C.-L., Boyd, A.,
Spence, H. E., Claudepierre, S. G., Blake, J. B., and Rodriguez,
J. V.: On the cause and extent of outer radiation belt losses during
the 30 September 2012 dropout event, J. Geophys. Res., 119,
1530, doi:10.1002/2013JA019446, 2014.

Ukhorskiy, A. Y., Anderson, B. J., Brandt, P. C., and Tsy-
ganenko, N. A., Storm evolution of the outer radiation
belt: Transport and losses, J. Geophys. Res., 111, A11S03,
doi:10.1029/2006JA011690, 2006.

Usanova, M. E., Mann, I. M., Bortnik, J., Shao, L., and An-
gelopoulos, V.: THEMIS observations of electromagnetic ion

www.ann-geophys.net/32/925/2014/ Ann. Geophys., 32, 925–934, 2014

http://dx.doi.org/10.1029/2011JA016642
http://dx.doi.org/10.1029/2007GL031598
http://dx.doi.org/10.1029/2007JA012368
http://dx.doi.org/10.1002/2013JA019320
http://dx.doi.org/10.1029/JA078i013p02142
http://dx.doi.org/10.1029/2010GL042772
http://dx.doi.org/10.1098/rspa.2010.0078
http://dx.doi.org/10.1029/2002GL016007
http://dx.doi.org/10.1002/2013JA019204
http://dx.doi.org/10.1029/2006JA012102
http://dx.doi.org/10.1029/2006SW000296
http://dx.doi.org/10.1002/jgra.50334
http://dx.doi.org/10.1029/2004GL019591
http://dx.doi.org/10.5194/angeo-23-1467-2005
http://dx.doi.org/10.1029/2006GL029050
http://dx.doi.org/10.1029/2008JA013784
http://dx.doi.org/10.1029/98JA01103
http://dx.doi.org/10.1029/2010JA016398
http://dx.doi.org/10.1029/2010JA015903
http://dx.doi.org/10.1029/2010JA016228
http://dx.doi.org/10.1029/2011GL046873
http://dx.doi.org/10.1029/98JA01740
http://dx.doi.org/10.1029/2007JA012678
http://dx.doi.org/10.1029/2012GL051202
http://dx.doi.org/10.1029/2004JA010798
http://dx.doi.org/10.1038/nphys2185
http://dx.doi.org/10.1002/2013JA019446
http://dx.doi.org/10.1029/2006JA011690


934 J. Albert: Diffusion simulations

cyclotron wave occurrence: Dependence on AE, SYMH, and
solar wind dynamic pressure, J. Geophys. Res., 117, A10218,
doi:10.1029/2012JA018049, 2012.

Usanova, M. E., Darrouzet, F., Mann, I. M., and Bortnik, J.:
Statistical analysis of EMIC waves in plasmaspheric plumes
from Cluster observations, J. Geophys. Res., 118, 4946,
doi:10.1002/jgra.50464, 2013.

Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. M., Shprits,
Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A.,
Baker, D. N., Thaller, S. A., Reeves, G. D., Spence, H. E., Klet-
zing, C., and Wygant, J.: Effect of EMIC waves on relativis-
tic and ultrarelativistic electron populations: Ground-based and
Van Allen Probes observations, Geophys. Res. Lett., 41, 1375,
doi:10.1002/2013GL059024, 2014.

Ann. Geophys., 32, 925–934, 2014 www.ann-geophys.net/32/925/2014/

http://dx.doi.org/10.1029/2012JA018049
http://dx.doi.org/10.1002/jgra.50464
http://dx.doi.org/10.1002/2013GL059024

