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Abstract. In this paper we develop a new method for the
analysis of excitation and propagation of planetary electro-
magnetic waves (PEMW) in the ionosphere of the Earth.
The nonlinear system of equations for PEMW, valid for any
height, from D to F regions, including intermediate altitudes
between D and E and between E and F regions, is derived. In
particular, we have found the system of nonlinear one-fluid
MHD equations in theβ-plane approximation valid for the
ionospheric F region (Aburjania et al., 2003a, 2005). The se-
ries expansion in a “small” (relative to the local geomagnetic
field) non-stationary magnetic field has been applied only at
the last step of the derivation of the equations. The small
mechanical vertical displacement of the media is taken into
account. We have shown that obtained equations can be re-
duced to the well-known system with Larichev–Reznik vor-
tex solution in the equatorial region (see e.g.Aburjania et al.,
2002). The excitation of planetary electromagnetic waves by
different initial perturbations has been investigated numeri-
cally. Some means for the PEMW detection and data pro-
cessing are discussed.

Keywords. Ionosphere (modeling and forecasting)

1 Introduction and formulation of the problem

In recent years a considerable effort has been made for
treating waves propagation problems in the inhomogeneous
Earth’s ionosphere (see e.g.Clark et al., 1971; Rapoport
et al., 2004, 2009; Sorokin and Fedorovich, 1982; Alperovich

and Fedorov, 2007). In particular, the theory of “neutral-
loaded” MHD waves in the ionospheric plasma (including
motion of neutrals (see e.g.Sorokin and Fedorovich, 1982)),
as well as the phenomena of “mass loading” in space plas-
mas (Szegö et al., 2000) has been developed. Vortex struc-
tures in the Earth atmosphere, ionosphere and magneto-
sphere have been studied byOnishchenko et al.(2008, 2013);
Onishchenko and Pokhotelov(2012); Saliuk and Agapitov
(2013); Saliuk et al.(2012); Verkhoglyadova et al.(2001).
Earlier studies have shown that MHD waves, propagat-
ing along a magnetic field line through the magnetosphere
between the magneto-conjugated ionospheres could trans-
form into horizontally propagating hydromagnetic waves
(see e.g.Tolstoy, 1967). Herron(1966) has found that these
waves can be captured into the ionospheric waveguide at
the Alfvén speed minimum in the F region. Further devel-
opment of these ideas brought the concept of vortex plane-
tary electromagnetic waves (Kaladze et al., 2003; Khantadze,
1973; Aburjania et al., 2002, 2003a, 2005; Aburjania and
Chargazia, 2011; Rapoport et al., 2011, 2012c). The devel-
oped theory of PEMW is supported by a number of ob-
servational results of planetary-scale electromagnetic pertur-
bations (see e.g.Aburjania and Chargazia, 2011; Burmaka
et al., 2006). However, further theoretical and experimen-
tal investigations were necessary to reveal both “slow” and
“fast” PEMWs in the ionosphere region (Khantadze, 1973;
Aburjania et al., 2003a; Kaladze et al., 2003; Aburjania
and Chargazia, 2011). Southwood and Kivelson(1993) have
found that travelling ionospheric vortices (TIVs) can be
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imposed by magnetospheric sources, for instance, by the flux
transfer events (FTE). Therefore, they are important for un-
derstanding the coupling mechanisms between the magneto-
sphere and ionosphere.

The purpose of the present study is to develop the gen-
eral theory of excitation of nonlinear PEMWs in the iono-
sphere of the Earth. Previous studies of PEMW (see e.g.
Khantadze, 1973; Aburjania et al., 2003a; Kaladze et al.,
2003; Aburjania and Chargazia, 2011) were limited by as-
suming that the relationships between the components of

the conductivity tensor
_
σ characterises only strongly pro-

nounced D, E or F regions with “purely” isotropic, gyrotropic

and non-gyrotropic but anisotropic
_
σ , respectively (see e.g.

Guglielmi and Pokhotelov, 1996). By taking into account
such assumptions, analytical solutions of the system of equa-
tion for PEMW in the form of vortexes or solitons were de-
rived (see e.g.Aburjania et al., 2002). However, to under-
stand the effects of non-stationarity and inhomogeneities in
the nonlinear dissipative ionosphere, more general methods
are necessary. Additionally, this approach is important for
systematic detection of PEMW by joint satellite and ground-
based observations campaigns.

The paper has the following structure. The formulation of
the problem and initial equations for PEMWs are outlined in
Sect. 1. In Sect. 2 we build the nonlinear system of equations
for PEMW. The nonlinear equations for PEMW at arbitrary
heights from D to F regions in the “linear Ohm’s law” ap-
proximation outlined in Sect. 3. The applications to the “po-
lar” and “equatorial” regions are outlined in Sect. 4. In Sect. 5
we implement an algorithm with accounting for the non-
linearity in the ionospheric current (nonlinear Ohm’s law)
for the F region of the ionosphere. In Sect. 6, based on the
spectral-grid approximation (seeArakawa, 1997) the non-
linear PEMW, vortex and soliton structures have been anal-
ysed numerically. Different scenarios of PEMW excitation
for various geophysical conditions at the near-pole region in
the approximation of the “linear Ohm’s law” are presented.
Section 7 is the discussion and conclusion.

2 Formulation of the problem.
Equations for PEMWs in the magnetosphere–
ionosphere–atmosphere–lithosphere (MIAL) system

Let us consider the ionosphere as a spherical layer around
the Earth (see Fig.1). Based onβ-plane approximation, fluid
incompressibility and by neglecting gravity, the system of
MHD equations, for the motions in theβ-plane, can be writ-
ten as (Landau et al., 2004; Sorokin and Fedorovich, 1982;
Guglielmi and Pokhotelov, 1996; Kaladze et al., 2003)

∂U

∂t
+ (U∇)U =

F A

ρ0
+ 2[U × �0] −

∇P

ρ0
− γU ; (1)

curlE = −c−1
(

∂H

∂t

)
; curlH = 4πc−1j ; (2)

Fig. 1. Coordinate system of the model.X axis pierces the plane of
figure.R is the radius of the Earth,�0 is the angular velocity of the
Earth rotation;λ = 0 andλ = π/2 correspond to equator and pole,
respectively.

divH = 0; divU = 0; (3)

j = σ||Ẽ|| + σPẼ⊥ + σH

[
h × Ẽ

]
. (4)

Here c is the speed of light;U , ρ0 are the velocity and
density of media at heightz of the chosenβ-plane, respec-
tively; �0 is the rotation parameter;γ is the effective me-
chanical damping parameter;E, H are the electric and mag-
netic fields; Ẽ = E + c−1 [U × H ] is the electric field in
the moving media;j is the electric current density;F A =

c−1
[
j × H

]
is the Ampere force.

Here, we apply approximations of an incompressible fluid
and absence of stratification due to gravity, respectively to
perturbations. Nevertheless, hydrostatic equilibrium (in other
words stratification) is accounted for with steady-state pa-
rameters such as density of the neutral and ion components.
We use, in general, the approximation used before in the
set of papers devoted to PEMW (Aburjania et al., 2003a, b;
Kaladze et al., 2003). Practically, stratification is accounted
for, but only respectively to stationary distribution of the den-
sity, as a result of hydrostatic steady state (Gill , 1982). We
account for this, in the frames of the method of frozen coef-
ficients, by comparing the structures at 300 km and 600 km
with different parameters (see Sect. 6). At the same time,
because the mechanical motion of the perturbations is slow
comparatively to the sound velocity, approximation of in-
compressibility is used respectively to perturbations. As a re-
sult, gravity force is included only into the hydrostatic steady
state and not into the dynamics of perturbations. This is why
the term proportional to (free-fall acceleration) is absent in
the RHS of Eq. (15) for velocity perturbationU ′

z. We in-
cluded into the consideration the vertical velocity perturba-
tion U ′

z, but vertical displacement depends only onX, Y and
is still small enough, providing that change of the ionospheric
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parameters due to vertical displacement is negligibly small,
not to violate the condition of incompressibility for the per-
turbations. Respectively, the relation of “zero divergence” is
valid and the corresponding presentation of the velocityX,
Y components through ONE functionξ (see Eq.12) are ap-
plicable for the horizontal components of velocity, even if a
small vertical component corresponding to relatively small
vertical displacement is also included in our model. There-
fore, our model is internally consistent. The errors made by
assuming that the magnetic and rotation axes coincide is of
the same order as the errors inherent in theβ-plane approxi-
mation (see e.g.Aburjania et al., 2005; Kaladze et al., 2003).
For the above scales of disturbances, the consequences of the
misalignment of both axes, which is about 0.2 rad, are be-
yond the accuracy of theβ-plane approximation and, there-
fore, cannot change the results qualitatively. Note that the
variation of ion mass, reflecting the changing in composition,
is included into the model through the elements of conduc-
tivity tensor in the Eq. (4).

Before introducing the terms of conductivity tensor in the
Eq. (4), let us specify the magnetic field. We define the ve-
locity U and total magnetic fieldH by the relations:

U = U0 + U ′
; H = H 0 + H ′

; h ≡ H/H ;

h0 ≡ H 0/H0; h′
≡ H ′/H0. (5)

HereU0 andH 0 are the stationary velocity and geomagnetic
field; U′ andH′ are the small perturbations of the velocity
and magnetic field;h, h0 are the unit vectors that determine
the directions of the total and stationary geomagnetic field;

H0 andH =

√
(H 0 + H ′)2 are the values of stationary ge-

omagnetic and total magnetic field;h′ determines the direc-
tion of the non-stationary part of the magnetic field. We also
assume that

√
h′2 � 1. By taking into account the geometry

of the model (see Fig.1), dipole approximation of the ge-
omagnetic field, and Eq. (3), the stationary (wind) velocity
and magnetic field can be written as follows:

U0 =
(
U0x(y),U0y(x),0

)
;

H 0 =
(
0,H0y(y,z),H0z(y,z)

)
;

H0 =

√
H 2

0y + H 2
0z; (6)

h0 = (0,h0y,h0z); h0y,z ≡
H0y,z

H0
.

Herex, y andz are directed along the parallel, meridian and
vertical, respectively;λ = 0 andλ = π/2 are the latitudes
which correspond to the equator and pole, respectively (see
Fig. 1). In approximationz/R � 1 the components of the
stationary geomagnetic fieldH0y andH0z, and the rotation
parameter�0 can be represented as (see e.g.Kaladze et al.,
2003)

H0y ≈ Heq

(
1−

2z

R

)
cosλ;

H0z ≈ −2Heq

(
1−

z

2R

)
sinλ;

Heq = H0y (λ = 0,z = 0) ;

�0 =
(
0,�0y,�0z

)
= �0 (0,cosλ,sinλ) . (7)

Note that the chosen coordinate dependence of the sta-
tionary velocity in Eqs. (6) also satisfy the second equation
in Eqs. (3). Therefore, as it follows from the relations for
the stationary geomagnetic field Eqs. (7), with accuracy to
z/R � 1, we obtain (Kaladze et al., 2003)

∂H0z

∂z
+

∂H0y

∂y
= 0;

∂H0z

∂y
=

∂H0y

∂z
;

∂

∂y
=

1

R

∂

∂λ
. (8)

The elements of conductivity tensor are defined by the well-
known formulas (see e.g.Guglielmi and Pokhotelov, 1996;
Sorokin and Fedorovich, 1982; Kaladze et al., 2003):

σ|| =
en

H

(
ωH i

νi
+

ωHe

νe

)
;

σP =
en

H

(
ωHeνe

ω2
He+ ν2

e

+
ωH iνi

ω2
H i + ν2

i

)
;

σH =
eh

H

(
ω2

He

ω2
He+ ν2

e

−
ω2

H i

ω2
H i + ν2

i

)
. (9)

Here σ||, σP, σH are the parallel, Pedersen, and Hall con-
ductivities, respectively;ωHe,i are the electron and ion gyro-
frequencies (defined by the value of the total magnetic field
H ); νe is the sum of collision frequencies of electrons with
neutrals and ions;νi is the collision frequency of ions with
neutrals. Considering Eq. (4) as algebraic equation for elec-
tric field E and by taking into account the second equation
in Eqs. (2), the electric field in the moving mediãE can be
expressed in terms of the magnetic fieldH as

Ẽ =
c

4πσeff
{curlH − q1 [h × curlH ] + q2 (h · curlH )h} (10)

and, therefore, we can exclude the electric field from the sys-
tem of MHD equations for PEMW. Here

σeff =
σ 2

P + σ 2
H

σP
; q1 =

σH

σP
; q2 =

σeff

σ||

− 1.

The coefficientsq1 and q2 correspond to the “transverse”
electric field (defined by the Hall current) and to the “lon-
gitudinal” electric field, respectively.

The dependence of the elements of conductivity tensor
σeff, coefficientsq1,2 on height are shown in the Fig.2.
The limiting case of isotropic D region of the ionosphere
corresponds to the low altitudes, whereq1 = 0, q2 = 0. In
the E region (whereq1 � q2), we arrive at the gyrotropic
medium (Guglielmi and Pokhotelov, 1996). In case of the
F region, where|q1| � |q2|, the ionospheric plasma becomes
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Fig. 2.The dependence of ionosphere conductivitiesσ0, σH, σP andσeff as a function of height,z, are shown in(a). The values of coefficients
q1,2 vs. height,z, are plotted at(b). q1 andq2 are coefficients in the expressions, corresponding to the “transverse” electric field, determined
by Hall current and “longitudinal” electric field (see Eq.10).

anisotropic and non-gyrotropic (Fig.2a). The present model
is also applicable for intermediate heights (i.e. for the heights
between D and E, and between E and F regions), where the
relationships mentioned above betweenq1 andq2 are not sat-
isfied (see also Fig.2b). The elements of conductivity tensor
(see Eq.9) depend on total magnetic fieldH (see Eq.8)
which is the function of the non-stationary magnetic field
H ′ (see Eq.5). Therefore, the electric current Eq. (4) and
electric field Eq. (10) become nonlinear. Due to such non-
linearity, hereafter we will call Eq. (4) as “nonlinear Ohm’s
law”. In the linear limit (i.e. in Eq. (4)) h is replaced by

h0 and the elements of the conductivity tensor(
_
σ ) are re-

placed by corresponding linear values, the Eq. (4) become
linear. In this case, hereafter, we will call Eq. (4) as “lin-
ear Ohm’s law”. Practically, it corresponds to replacement
of H by H0 in Eqs. (9) in all dependent on magnetic field
terms. Theβ-plane approximation require implementation of
“the method of frozen coefficients” (see e.g.Aburjania et al.,
2003a; Kaladze et al., 2003) and satisfying of the following
assumptions

∂H ′

∂z
= 0;

∂U ′

∂z
= 0; ∇ρ = 0. (11)

Second and third relations in Eq. (11) correspond to the case
of neglecting gravity stratification. However, by taking into
account equations for the stationary geomagnetic field, that
is, Eqs. (7) and (8), we should require∂H0y,z/∂z 6= 0 and,
therefore,∂h0/∂z 6= 0, ∂h′/∂z 6= 0 (see also Eqs.5 and7).
By using the conditions of incompressibility, that is, Eq. (3)
and first two relations in Eq. (11), the horizontal components
of the non-stationary velocity and magnetic field can be pre-
sented as

U ′
x =

∂ξ

∂y
; U ′

y = −
∂ξ

∂x
; H ′

x =
∂Az

∂y
; H ′

y = −
∂Az

∂x

and

�z ≡
(
curlU ′

)
z
= −1⊥ζ ;

ζ ≡
(
curlH ′

)
z
= −1⊥Az, (12)

where1⊥ =
∂2

∂x2 +
∂2

∂y2 . Note that in contrast to the previous
PEMW models (seeAburjania et al., 2002, 2003a; Aburjania
and Chargazia, 2011; Aburjania et al., 2005; Kaladze et al.,
2003) in this case the perturbed velocityU ′

z is not equal
to zero. By taking thez component of the first equation in
Eqs. (2) and then taking thez component after applying op-
eration curl to the same equation, and taking into account the
second relation in Eqs. (12) yields equations of the form:

∂H ′
z

∂t
= −c · curlzẼ + curlz [U × H ] ; (13)

∂ζ

∂t
= −c · curlz

(
curlẼ

)
+ curlz (curl[U × H ]) . (14)

The electric field in the moving mediãE in Eqs. (13) and (14)
is defined by the Eq. (10). Similarly to Eqs. (13) and (14),
one can obtain the corresponding equations from Eq. (1), by
taking into account Eq. (11), the first relation in Eq. (12) and
the approximation of “frozen coefficients”:

∂U ′
z

∂t
= −(U∇)U ′

z +
FAz

ρ0
+ 2[U × �0]z − γU ′

z; (15)

∂�z

∂t
= −curlz [(U∇)U ] +

curlz (F A)

ρ0

+2 · curlz [U × �0] − γ�z. (16)

Note that with such approximations (see also the last equa-
tion in Eq.11) the pressure vanishes from Eqs. (15) and (16).
Also, we assume that non-stationary parts are revealed from
the LHS of Eqs. (13) and (14). The system of Eqs. (13)–(16),
along with the first and second equations in (12), complete
the close nonlinear system for PEMW. This system is valid
for any heights from the D to F regions of the ionosphere.
Due to ionospheric motions, additional terms associated with
an electric field and Ampere force, which is physically asso-
ciated with the Lorentz force, come up in the nonlinear equa-
tions for the magnetic field and velocity (see Eqs.13and15).
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Another nonlinear term is associated with convective non-
linearity. In theβ-plane and frozen coefficients approxima-
tions, the vertical curl operations are applied to Eqs. (13) and
(14) yielding Eqs. (15) and (16), respectively. Therefore, the
inhomogeneity contributes, along the meridional and verti-
cal directions, in the linear and nonlinear parts of Eqs. (14)
and (15) simultaneously. Herewith, in the approximation of
an incompressible fluid, the entire nonlinearity has the vec-
tor form and described by the Jacobian of the correspond-
ing variables (see also the last part of Sect. 3). It can be
explained as follows. An incompressible medium is free of
shear perturbation, and therefore, some possible distortion
is described by the effective “torsion”. Qualitatively such a
“mechanical” interpretation remains valid, despite the pres-
ence of electromagnetic forces, since the Ampere force in
Eqs. (15) and (16) is similar to the Coriolis force, while the
magnetic field is similar to the vector rotation.

In the next sections we will analyse the consequences fol-
lowing from the system of Eqs. (13)–(16). Firstly, we will
use an approximation of the “linear Ohm’s law”. The nonlin-
earities in the second terms in the RHSs of Eqs. (13) and (14)
and in the first and second terms in the RHSs of Eqs. (15) and
(16) are taken into account. Next the procedure of deriva-
tion of the total nonlinearity, including one in the “Ohm’s
law” and terms with the electric field in Eqs. (13) and (14)
will be outlined in general. Finally, the developed numerical
method and computational results for the near-polar region
in the “linear Ohm’s law” approximation will be presented.

3 Nonlinear equations for PEMW at arbitrary altitudes
from D to F regions in the “linear Ohm’s law”
approximation

Let us use the approximation of “linear Ohm’s law”. By in-
troducing the scalesL, t0, U0 for the length, time and ve-
locity, respectively, and the scalesHsc, ζsc, Azsc, �zsc, ξsc,
�0sc for the normalisation ofHx,y,z, ζ , Az, Uz, �z, ξ , �0y,z,
respectively, the normalisation could be presented in the fol-
lowing form:

(x,y,z, t) →
(
x̄, ȳ, z̄, t̄

)
=

(
x

L
,
y

L
,

z

L
,

t

t0

)
;(

Hx,y,z,ζ,Az,Uz,�z,ξ,�0y,z

)
→(

H̄x,y,z, ζ̄, Āz, Ūz, �̄z, ξ̄, �̄0y,z

)
=(

Hx,y,z

Hsc

,
ζ

ζsc
,

Az

Azsc
,
Uz

U0
,

�z

�zsc
,

ξ

ξsc
,
�0y,z

�0sc

)
;

σeff → (σefft0) .

Here ζsc = Hsc/L, Azsc = HscL, �zsc = U0/L, ξsc = U0L,
�0sc= t−1

0 . Next, let us introduce dimensionless parame-
ter α0 = U0t0/L and the Alfvén speedVA0 = Hsc/

√
4πρ0.

Note, thatα0 = 1, whenL = U0t0. By omitting “dash” above
normalised variables we obtain the system of normalised
equations inβ-plane coordinates. This system includes four

evolutional equations forζ , Hz, Uz, �z, and two Poisson
equations forAz andξ and has the following form:

DtHz = F2QH + F2H + FNLH ;

Dtζ = F1Qζ + F2ζ + FNLζ ;

DtUz = F3U + FNLU ;

Dt�z = F� + FNL�;

1⊥Az = −ζ ; 1⊥ξ = −�z. (17)

Here

F1Qζ = C1a1⊥ζ + C1b1⊥

∂Hz

∂x
+ C1c

∂2Hz

∂y2

+C1d

∂2Hz

∂y∂x
+ C1e

∂

∂y
1⊥Hz + C1f

∂ζ

∂x

+C1g1⊥Hz + C1h

∂ζ

∂y
; (18)

F2ζ = C2a1⊥

∂ξ

∂y
+ C2b

∂2ξ

∂y2

+C2c�z + C2d

∂Uz

∂x
;

FNLζ = C3a1⊥J (Az,ξ) ; (19)

F2QH = C4a1⊥Hz + C4bζ + C4cUz + C4d

∂ζ

∂y

+C4e

∂Hz

∂x
+ C4f

∂2Hz

∂x2
+ C4g

∂ζ

∂x
; (20)

F2H = C5a

∂Uz

∂y
+ C5b

∂ξ

∂x
+ C5cUz;

FNLH = α0J (Uz,Az) + α0J (ξ,Hz) ; (21)

F3U = C6a

∂Hz

∂y
+ C6b

∂ξ

∂y
− γUz;

FNLU = α0

(
VA0

U0

)2

J (Hz,Az) + α0J (ξ,Uz) ; (22)

F� = C7aζ + C7b

∂Hz

∂x
+ C7c

∂ζ

∂y
+ C7d

∂ξ

∂x

+C7e

∂Uz

∂y
+ C7f Uz − γ�z; (23)

FNL� = J (ξ,�z) + α0
V 2

A0

U2
0

J (ζ,Az)

Dt ≡
∂

∂t
+ U0x (y)

∂

∂x
+ U0y (x)

∂

∂y
; (24)

J (a,b) ≡
∂a

∂x

∂b

∂y
−

∂a

∂y

∂b

∂x
.

Equation (17) along with Eqs. (18)–(24) form a com-
plete set of nonlinear equations describing PEMW at any
height betweenD and F . In particular, we can apply this
theory to the heights below 150 km, where, as it follows
from Fig. 2b, the difference ofq1 from 0 and q2 from
−1 is significant. CoefficientsCij are presented in Ap-
pendix A.F1Qζ,2Qv describe the electromagnetic losses. The
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termsFNLζ,NLH,NLU,NL� contain vector nonlinearities in
the form of Jacobians. Note that in Eqs. (18)–(23), some
coefficients (see Eqs.A1–A5) contain derivatives of vector
componentsh0, H 0 and�0 with respect toy andz. These
coefficients describe the contribution of the curvature of the
Earth in the electromagnetic and mechanical forces.

4 Nonlinear equations for PEMW in the “linear Ohm’s
law” approximation. Application to the “polar” and
“equatorial” regions

The application to the near-pole region (i.e. for the limit
λ → π/2) is shown in Appendix B (see Eqs.B1–B5). The
numerical results for this region are presented in Sect. 6. In
the limiting caseλ → 0 (i.e. for the “equatorial” region) from
the system of Eqs. (17), accounting for relations (18)–(24)
we obtain the system of normalised Eqs. (C1)–(C5) which
is shown in Appendix C. Note, that in the approximation
U ′

z = 0, ζ = 0, q1 = 0, q2 = −1, σeff → ∞ (i.e. losses are
absent), the Eqs. (C1)–(C5) reduces to the system for�z,
H ′

z andξ :

Dt�z = α0

(
VA0

U0

)2 ∂H0y

∂y

∂H ′
z

∂x
+ 2

∂�0z

∂y

∂ξ

∂x

+J (ξ,�z) + α0

(
VA0

U0

)2

J (ζ,Az) ; (25)

DtHz =
∂H0z

∂y

∂ξ

∂x
+ α0J

(
ξ,H ′

z

)
; (26)

�z = −1⊥ξ. (27)

This system is identical to the system obtained byAburjania
et al. (2002). Therefore, Eqs. (25)–(27) yield vortices, de-
scribed by the Larichev–Reznik solution, including the
Bessel function in the core and the McDonald function at
the periphery of the nonlinear structure (Aburjania et al.,
2002). The numerical simulation of the excitation of PEMW
at the middle longitudes is out of scope of this paper. Nev-
ertheless, due to the presence of large stationary horizon-
tal magnetic field, the corresponding estimates of the spa-
tio/temporal scales can be found by applying Eqs. (C1)–
(C5) for the near-equatorial region for both. For example,
atZ = 300 km, the characteristic temporal scale is 103 s, the
spatial scale is a few thousand km, and the velocity scale
is a few km s−1. These values are in qualitative agreement
with observational results of nearly longitudinal propagation
of slow MHD/PEMW disturbances (Burmaka et al., 2006;
Aburjania and Chargazia, 2011).

5 An inclusion of nonlinearity of the ionospheric
current: the case of F region

Let us outline the procedure of inclusion of the current non-
linearity into Eqs. (3)–(5). Estimations show that the condi-
tion of the weak nonlinearity (i.e.H ′/H0 � 1) is satisfied

with a good accuracy. Therefore, we can expand the second-
order nonlinearity in terms of the small parameterH ′/H0.
The unit vector of the whole magnetic field Eq. (5) and Ped-
ersen conductivity Eq. (9) are modified as follows:

h =
H 0 + H ′√
(H 0 + H ′)2

' h0 +
[
h′

− h0
(
h0h

′
)]

+ O
(
h′2
)
;

σ−1
P ≈ σ−1

P0

[
1+ µP

(
2h0h

′
+ O

(
h′2
))]

,

whereσ−1
P0 is the corresponding value of Pedersen conduc-

tivity for the linear case,µP is a multiplier of order of unity.
In the framework ofβ-plane approximation and “method of
frozen coefficients” we are forced to put hereafter∇σP0 = 0
and∇µP = 0. To simplify, let us consider the F region, where
σeff → σP, q1 → 0,q2 → −1 (see also Fig.2). The nonlinear
additional term to the electric field,δẼNL, can be revealed
from the RHS of the Eq. (10):

δẼNL =
c

4πσP0
(G1 + G2 + G3 + G4) , (28)

where

G1 = 2(1− µP)
(
h0h

′
)(

curlH ′
· h0

)
h0;

G2 = 2µP
(
h0h

′
)
curlH ′

;

G3 = −
(
curlH ′

· h0
)
h′

;

G4 = −
(
curlH ′

· h′
)
h0. (29)

By substituting the relations (28) and (29) into Eqs. (13) and
(14), we obtain the additional nonlinear terms in the RHS of
the first two equations in the system (17), for example,

δH ′

zNL = −
c2

4πσP0
curlz (G1 + G2 + G3 + G4) ; (30)

δζNL = −c · curlz (curl(G1 + G2 + G3 + G4)) .

Note the corresponding nonlinearities are derived, but due to
bulkiness of expressions they are not presented here.

6 Numerical model and the results of modelling

To analyse generation and propagation of PEMW in the near-
pole region numerically, we used the normalised set of equa-
tions:

Dtζ = C1a1⊥ζ + F1;

DtHz = C4a1⊥Hz + F2;

DtUz = F3;

Dt�z = F4;

1⊥Az = −ζ ; 1⊥ξ = −�z;

F1 ≡ C1C

∂Hz

∂y2
+ C1d

∂2Hz

∂x∂y
+ 1⊥J (Az,ξ)

+C2b

∂2ξ

∂y2
+ C2C�z;
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(a) Hz(t= 0) (b) Hz(t= 0.5) (c) ζ(t= 0.5)

(d) Hx(t= 0.5) (e) Hy(t= 0.5)

Fig. 3: Excitation of PEMW by means of vertical component of magnetic field. Spatial distributions of normalised components
of magnetic field (Hx,Hy,Hz) and ζ at different times are shown at hight Z = 300 km (night time). X and Y are normalised
by R= 6.4× 103 km. Components of magnetic field H are normalised by H0 = 3× 104 nT. Dimensionless size of the source
are ∆x= 0.25 and ∆y = 0.17; ∆X0H = ∆Y0H = 0 and θ = 0. PEMW was excited by initial perturbation of Hz (Hz(t=
0)max = 0.01).

Table 1: The ionosphere night time parameters.

Z, km σP , s−1 σH , s−1 σ||, s−1 H0, Gauss ρ0, g/cm3 VA0, km/s

300 1.1× 105 5× 102 2× 1011 0.3 3.8× 10−14 4.4
600 1× 103 1× 10−2 3× 1011 0.3 3.3× 10−16 46

heights within F region of the ionosphere. At higher height,
i.e. at Z = 600 km the characteristic time for retain PEMW
is smaller, i.e. < 102 s. This is due to the smaller value of
the Pedersen conductivity

(
σP ∼ 103s−1

)
and higher Alfvén

speed. Excitations of PEMW at daytime at Z = 600 km are
negligibly small and not shown here.

The results are presented for the initial normalised value of
the magnetic field H̄z = 0.01, what corresponds to a dimen-
sional value Hz ∼ 100 nT, that is possible for PEMW vor-
tices (Aburjania et al., 2005). The chosen value of normalised
vortex ζ̄ = (curlH)z ∼ 0.01 means that the corresponding
vertical current is, by order of magnitude, Jz ∼ 10−7A/m2.
It should be noted that the considered vertical currents are
smaller than currents accompanying some typical events of
the magnetosphere-ionosphere coupling. An example of such

a current is one accompanying magnetic ULF disturbances
in the night time auroral region, caused by magnetic im-
pulse events (Pilipenko et al., 1999). Further, as it is seen
from the comparison of Figs. 5 and 6, the values of Hz and
ζ at Z = 300 km, after passing corresponding characteristic
time, are, depending on a type of excitation, comparable to
or few times larger than at Z = 600 km (compare Figs. 3, 4,
5a-c and Figs. 6a-d. The same concerns also the values of
horizontal velocities (compare Fig. 5f with Fig. 6d). Note
that the Alfvén velocity, used for normalisation of the ve-
locity components, is about one order of value larger at alti-
tude Z = 600 km than at Z = 300 km (see Table 1). Respec-
tively, the time scale t0 is much less at altitude Z = 600 km
(t0 ∼ 150s) than atZ = 300 km (t0 ∼ 1400s). The shapes of
the excited PEMW also depend on the type of initial pertur-

Fig. 3. Excitation of PEMW by means of vertical component of magnetic field. Spatial distributions of normalised components of magnetic
field (Hx ,Hy ,Hz) andζ at different times are shown at hightZ = 300 km (night-time).X andY are normalised byR = 6.4× 103 km.
Components of magnetic fieldH are normalised byH0 = 3× 104 nT. Dimensionless size of the source are1x = 0.25 and1y = 0.17;
1X0H = 1Y0H = 0 andθ = 0. PEMW was excited by initial perturbation ofHz (Hz(t = 0)max= 0.01).

F2 ≡ C4bζ + C4cUz + J (Uz,Az) + J (ξ,Hz) ;

F3 ≡ α0

(
VA0

U0

)
J (HzAz) + α0J (ξUz) − γUz;

F4 ≡ C7aζ + C7f Uz + J (ξ,�z)

+α0

(
V 2

A0

U2
0

)
J (ζ,Az) − γ�z. (31)

This system consists of four evolution equations forζ , Hz,
Uz, and�z, and two Poisson equations forAz andξ . Note
that the corresponding system of equations, which includes
the coefficientCij in the limit λ → π/2, is presented in the
Appendix B. All functions are set to zero at the boundaries of
numerical domain. The full numerical box isLx = 20R km
wide andLy = 20R km high (whereR is the Earth radius).
We have chosen a sufficiently big numerical domain to avoid
an nonphysical numerical influence (i.e. possible reflection)
of the boundaries. To solve the Poisson equations, we applied
fast Fourier transform (FFT) (Press et al., 1997).

The evolution equations have been solved by splitting with
respect to the physical factors (Marchuk, 1994). This method
can be called a spectral – grid Arakawa type method. Specif-
ically, the first fractional step in splitting is related to the
diffusion-like process (terms1⊥ζ and1⊥Hz in the first and
second Eq.31). To find the functionζ we solved:∂ζ/∂t =

C1a1⊥ζ + F1. Before applying FFT, the functionF1 has
been calculated with finite differences. We kept the same
numerical grid(x,y) for the finite differences and for spec-
tral FFT. Roache(1998) and Arakawa(1997) have shown
that simplest approximations of the spatial derivatives in the

Jacobians are not conservative and may lead to essential er-
rors at long times. Therefore, the Arakawa approximation for
the Jacobians has been used only at the first fractional step.
The second fractional step is related to the convection terms
in all evolution equations. For example, for the functionζ it
is ∂ζ/∂t = −

(
U0x∂ζ/∂x + U0y∂ζ/∂y

)
. Since the wind ve-

locitiesU0x,y are at least one order smaller than the Alfvén
velocity, the simplest corner-like upwind scheme can be ap-
plied there (see e.g.Roache, 1998).

This method demonstrated a good stability and flexibil-
ity. This is further development of our techniques proposed
before for modelling of solitons and bullets in nonlinear gy-
rotropic structures (see e.g.Rapoport et al., 2002; Slavin et
al., 2003; Zaspel et al., 2001), and solitons and strongly non-
linear waves in metamaterial structures (see e.g.Boardman
et al., 2010, 2011a, b; Rapoport et al., 2012a, for details). The
conductivities dependence on height and time of the day has
been calculated based on data fromAlperovich and Fedorov
(2007) (see Fig.2a). Based on that, we found coefficientsq1,
q2 which are included in the RHS of the first four parts of
Eqs. (17) (see also relations (18)–(24) and Appendix A). The
height dependence of theq1, q2 is shown in Fig.2b.

During each simulation PEMW was excited by initial per-
turbation of the vertical components of magnetic vortexζ

and magnetic fieldHz. The spatial distributions of these func-
tions in the form of Gaussian are as follows:

ζ (t = 0) = ζ (t = 0)maxexp

[
−

(
x

1xζ

)2

−

(
y

1yζ

)2
]

;
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Table 1.The ionosphere night-time parameters.

Z, km σP, s−1 σH, s−1 σ||, s−1 H0, Gauss ρ0, g cm−3 VA0, km s−1

300 1.1× 105 5× 102 2× 1011 0.3 3.8× 10−14 4.4
600 1× 103 1× 10−2 3× 1011 0.3 3.3× 10−16 46Yu. Rapoport: Excitation Of Planetary Electromagnetic Waves In The Inhomogeneous Ionosphere 9

(a) ζ(t= 0) (b) ζ(t= 0.3) (c) Hz(t= 0.3)

(d) Hx(t= 0.4) (e) Hy(t= 0.4)

Fig. 4: Excitation of PEMW by means of vertical component of magnetic vortex. The spatial distributions of normalised ζ and
components of magnetic field (Hx,Hy,Hz) are taken at hight Z = 300 km (night time). Amplitudes of initial excitations are
equal to ζ(t= 0)max = 0.01 and Hz (t= 0)max = 0. Dimensionless size of the source are ∆xζ = ∆yζ = 0.17. The scaling of
X , Y and normalised values of H are the same as in Fig. 3.

bations. In particular, an initial perturbation in the form of a
bell-like vertical component of the magnetic vortex (Fig. 4a)
leads to the formation of the same shape of vertical magnetic
field (Fig. 4c). An excitation by means of the initial bell-like
vertical component of the magnetic field (Fig. 3a) results in a
quadrupole magnetic vortex (Fig. 3c). The combined excita-
tion by means of initial vertical components of both magnetic
field and vortex (Figs. 5a-c) cases, besides a simple deforma-
tion of the horizontal components of the magnetic field and
velocities (Figs. 5c, e, f) causes, also a qualitative change in
the shape of ζ. Precisely, the spatial distribution of ζ pos-
sesses two ’dips’, around the central maximum (Figs. 5c).
Fig. 5g demonstrates a new and interesting behaviour of ve-
locity Uz at Z = 300 km, during night time conditions, with
a remarkable nonlinearity and due to a presence of combined
source; that is, if both Hz and ζ are present at t= 0. We use
the initial perturbations of normalised Hz and ζ with maxi-
mum values equal to 0.05, which corresponds to a magnetic
field of order of 1000 nT. However this rather extreme value
is still in a range of possible amplitudes for PEMW vortex
structures and in agreement with evaluations by Aburjania
et al. (2005). The corresponding value of the vertical current
is of order of J ∼ 3× 10−7A/m2. Based on results which
are shown on Fig. 5g, we can conclude, that under such con-

ditions, a vertical displacement of a medium during a char-
acteristic time of order of 103 s reaches the value of order
of 100 m. However, the vertical displacement corresponding
to the combined sources at Z = 600 km is negligibly small
(not shown here). Note that in case of combined source (i.e.
both Hz and ζ), the nonlinear ’effective source’ of excitation
of Uz in the near-pole region is provided, which is evident
from Eq. (B3). It is further recalled that, at the middle lat-
itudes, both linear and nonlinear excitations of the vertical
velocity component are possible (see the third Equation in
(17) and relation (22)). A rough estimation shows that the
vertical displacement at height Z = 300 km reaches a value
of order of 1 km. We have found that, within the ionosphere F
region (i.e. at Z = 300 km) the pulse-like PEMW can retain
their structure up to 103 s. At the higher altitudes (Z = 600
km) PEMW could only be observed during the night time
and they preserve their shapes up to 102 s due to the much
smaller Pedersen conductivity in the magnetosphere than in
the ionosphere. The magnetic field of PEMW has the char-
acteristic values: Hz of order one to few nT, Hx,y of order
of few to 10 nT. These values are well above the sensitiv-
ity of the modern magnetometers, and therefore, they can be
detected (Prattes et al., 2011, see also Section 7).

Fig. 4. Excitation of PEMW by means of vertical component of magnetic vortex. The spatial distributions of normalisedζ and components
of magnetic field(Hx ,Hy ,Hz) are taken at hightZ = 300 km (night-time). Amplitudes of initial excitations are equal toζ(t = 0)max= 0.01
andHz (t = 0)max= 0. Dimensionless size of the source are1xζ = 1yζ = 0.17. The scaling ofX, Y and normalised values ofH are the
same as in Fig.3.

Hz (t = 0) = Hz (t = 0)maxexp

[
−

(
1x0H + x cos(θ)

1xζ

)2

−

(
1y0H + y sin(θ)

1yζ

)2
]

.

Hereζ (t = 0)max, Hz (t = 0)max and1xζ , 1yζ are the max-
imum values and widths of spatial distributions inX, Y di-
rections forζ and Hz, respectively.1x0H , 1y0H are the
shift values of the maximum ofHz distribution from the
coordinate system origin (which coincides with the pole)
andθ is the rotation angle in respect to theX axis. If θ is
equal to zero, the corresponding axis coincides withX axis.
In this section, we consider the excitations of PEMW by
means of vertical component of magnetic vortex (ζ (t = 0) 6=

0, Hz (t = 0)max = 0 see Figs.4, 6), vertical component of
magnetic field (Hz (t = 0)max 6= 0, ζ (t = 0) = 0, see Fig.3),
and both vertical components of magnetic field and vortex
(Hz (t = 0)max 6= 0, ζ (t = 0) 6= 0, see Fig.5). Only in the
last case, the shifted spatial distribution of the magnetic field
is used (1x0H 6= 0, 1y0H 6= 0, θ 6= 0). Corresponding val-
ues of amplitudes, shifts and angle are shown in the captions
to Figs.3–6.

The results of numerical simulations for parameters of
ionosphere at different heights (see Table1) are shown in
Figs.3–6. The initial perturbations with bell-like spatial dis-
tribution have been taken forζ , Hz, or both variables simul-
taneously. The spatial scale is the Earth’s radius, that is,R =

6.4× 103 km and the temporal scale ist0 = R/VA0 ≈ 1.5×

103 s forZ = 300 km. At the night-time andZ = 600 km the
temporal scale ist0 = R/VA0 ≈ 1.5× 102 s. The wind ve-
locity U0x,y = 0.01VA0, and their influence is negligible at
the considered time intervals. The propagation of the excited
PEMWs depend significantly on daytime, height and exci-
tation sources. The calculation for the night-time is shown
on Figs.3–6 (the daytime case is not shown); dependences
on height forZ = 300 km andZ = 600 km are shown on
Figs.3–5 and Fig.6, respectively. The excitations of PEMW
separately by vertical magnetic fieldHz and magnetic vor-
tex ζ are presented in Figs.3–4. Figures5 and 6 illus-
trate the results of calculations for the combined source. In
these cases, initial perturbations of both vertical magnetic
field and magnetic vortex component remain bell shapes,
but the corresponding spatial distributions are shifted and
rotated relatively to each other. Note that atZ = 300 km at
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(a) ζ(t= 0) (b) Hz(t= 0) (c) ζ(t= 0.3)

(d) Hz(t= 0.3) (e) Hy(t= 0.3) (f) Ux(t= 0.3)

(g) Uz(t= 0.5)

Fig. 5: The spatial distributions of normalised magnetic vortex ζ, components of magnetic field (Hy,Hz) and velocity (Ux,Uz)
are taken at hight Z = 300 km (night time). PEMW was excited by initial perturbation of Hz and ζ (Hz(t= 0)max = 0.05 and
ζ(t= 0)max = 0.05). For the case (g) Hz(t= 0)max = 0.03 and ζ(t= 0)max = 0.03. For (a-f) ∆xζ = ∆yζ = 0.17, ∆xH =
∆yH = 0.17; ∆x0H = ∆y0H = 0 and θ = 0; for (g) ∆xζ = ∆yζ = 0.35, ∆xH = ∆yH = 0.25; ∆x0H = ∆y0H = 0.2 and θ =
45◦. The scaling of X , Y and normalised values of H are the same as in Figs. 3. The velocity component Uz is normalised by
VA = 4.4 km/s.

Fig. 5. The spatial distributions of normalised magnetic vortexζ , components of magnetic field(Hy ,Hz) and velocity(Ux ,Uz) are taken
at hightZ = 300 km (night-time). PEMW was excited by initial perturbation ofHz andζ (Hz(t = 0)max= 0.05 andζ(t = 0)max= 0.05).
For the case(g) Hz(t = 0)max= 0.03 andζ(t = 0)max= 0.03. For(a–f) 1xζ = 1yζ = 0.17,1xH = 1yH = 0.17;1x0H = 1y0H = 0 and
θ = 0; for (g) 1xζ = 1yζ = 0.35,1xH = 1yH = 0.25; 1x0H = 1y0H = 0.2 andθ = 45◦. The scaling ofX, Y and normalised values of

H are the same as in Fig.3. The velocity componentUz is normalised byVA = 4.4 km s−1.

day conditions, the values of magnetic field perturbations are
about half of order less than at night, because the Pedersen
conductivity in F region at night is larger and the effective
diffusion, respectively, smaller, than at daytime (Alperovich
and Fedorov, 2007). The PEMW excited by the pulse-like
initial perturbation can exist for about∼ 500 s (see Figs.3–
5) and even up to 103 s, for the heights withinF region of
the ionosphere. At higher height (i.e. atZ = 600 km) the
characteristic time for retain PEMW is smaller (i.e.< 102 s).
This is due to the smaller value of the Pedersen conductiv-
ity

(
σP ∼ 103 s−1

)
and higher Alfvén speed. Excitations of

PEMW at daytime atZ = 600 km are negligibly small and
not shown here.

The results are presented for the initial normalised value of
the magnetic fieldH̄z = 0.01, what corresponds to a dimen-
sional valueHz ∼ 100 nT, that is possible for PEMW vor-
tices (Aburjania et al., 2005). The chosen value of normalised
vortex ζ̄ = (curlH)z ∼ 0.01 means that the corresponding

vertical current is, by order of magnitude,Jz ∼ 10−7 A m−2.
It should be noted that the considered vertical currents are
smaller than currents accompanying some typical events
of the magnetosphere–ionosphere coupling. An example of
such a current is one accompanying magnetic ULF distur-
bances in the night-time auroral region, caused by magnetic
impulse events (Pilipenko et al., 1999). Further, as it is seen
from the comparison of Figs.5 and6, the values ofHz and
ζ at Z = 300 km, after passing corresponding characteristic
time – depending on a type of excitation – are comparable to
or few times larger than atZ = 600 km (compare Figs.3,
4, 5a–c and6a–d). The same also concerns the values of
horizontal velocities (compare Fig.5f with Fig. 6d). Note
that the Alfvén velocity, used for normalisation of the ve-
locity components, is about one order of value larger at alti-
tudeZ = 600 km than atZ = 300 km (see Table1). Respec-
tively, the timescalet0 is much less at altitudeZ = 600 km
(t0 ∼ 150 s) than atZ = 300 km(t0 ∼ 1400 s). The shapes of
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(a) ζ(t= 0) (b) ζ(t= 0.06)

(c) Hx(t= 0.06) (d) Ux(t= 0.06)

Fig. 6: The spatial distributions of normalised ζ, Hx and Ux components of magnetic field and velocity are taken at hight
Z = 600 km (night time). PEMW was excited by vertical component of magnetic vortex ζz (ζ(t= 0)max = 0.01). The scaling
of X , Y and normalised value of Hx is the same as in Figs. 3. The velocity component Ux is normalised by VA = 46 km/s.

7 Discussion and Conclusions

The new nonlinear model of vortex PEMWs for arbitrary
height, which does not necessarily belong to only one of the
’typical’ D, E or F regions has been developed. In contrast
with previous models, the present model is suitable for either
of these regions, or to ’intermediate’ regions between D and
E and E and F layers within the ionosphere. Secondly we ob-
tained the general set of equations for PEMW in a weakly
nonlinear ionosphere, based on ’nonlinear Ohm’s law’. Also,
an extra variable (vertical component of velocity) is included
in the corresponding nonlinear system. Within this approach,
a new spectral - grid Arakawa type method has been devel-
oped for the numerical realisation of the PEMW model. This
method utilises splitting of the calculations into two steps
by physical factors. The pure transfer is realised by a finite-
difference scheme at the second half-step, while all other ef-
fects are presented by means of two dimensional purely real
sine FFT at the first half-step. This method provides high sta-
bility and accuracy, in spite of the simultaneous presence of
vector nonlinearity and a number of derivatives in different
combinations. The analytical and numerical simulation yield
the spatial and temporal characteristic scales of PEMW ex-
citations, which, by the orders of values, agree with of ob-
servations (Burmaka et al., 2006; Aburjania & Chargazia,

2011), and the connection between the spatial shapes of ex-
cited structures and the initial perturbations of PEMW. The
developed model can be useful in the preparation of an ex-
perimental methodology for registration and identification of
PEMWs and their sources by ground and space-based in-
struments. In the latter case, there are well-established meth-
ods. With regard to measurements of mechanical movements,
they require additional effort, since speed is low, that is com-
bined with the relatively small magnitudes of these displace-
ments. Here it is appropriate to provide selected data on the
possibilities of relevant methods for ionospheric disturbances
measurements. The DOPE (Doppler Pulsation Experiment)
HF Doppler sounder located near Tromso, Norway has a
spatial resolution of the order of 4 km, for F-region reflec-
tion height of 250 km and a sounder frequency of 4.45 MHz
(see e.g. Wright et al., 1997). The method of GPS differen-
tial TEC (see e.g. Borries et al., 2007) has a spatial resolu-
tion of about 50-100 m. At last, the CHInese MAGnetometer
(CHIMAG) fluxgate magnetometer chain has an accuracy of
8 pT at a temporal resolution of 1 Hz (see e.g. Prattes et al.,
2011). The spatial dimensions of the objects under consid-
eration and vertical displacements are of the order of 1000
km and 1 km, respectively, and the magnetic fields are of the
order of 10 nT at a frequency of about 0.01 Hz. In view of
this it can be concluded that based on the multipoint synchro-

Fig. 6.The spatial distributions of normalisedζ , Hx andUx compo-
nents of magnetic field and velocity are taken at hightZ = 600 km
(night-time). PEMW was excited by vertical component of mag-
netic vortexζz (ζ(t = 0)max= 0.01). The scaling ofX, Y and nor-
malised value ofHx is the same as in Fig.3. The velocity compo-
nentUx is normalised byVA = 46 km s−1.

the excited PEMW also depend on the type of initial pertur-
bations. In particular, an initial perturbation in the form of a
bell-like vertical component of the magnetic vortex (Fig.4a)
leads to the formation of the same shape of vertical magnetic
field (Fig.4c). An excitation by means of the initial bell-like
vertical component of the magnetic field (Fig.3a) results in a
quadrupole magnetic vortex (Fig.3c). The combined excita-
tion by means of initial vertical components of both magnetic
field and vortex (Fig.5a–c) cases, besides a simple deforma-
tion of the horizontal components of the magnetic field and
velocities (Fig.5c, e, f) causes, also a qualitative change in
the shape ofζ . Precisely, the spatial distribution ofζ pos-
sesses two “dips”, around the central maximum (Fig.5c).

Figure 5g demonstrates a new and interesting behaviour
of velocity Uz at Z = 300 km, during night-time conditions,
with a remarkable nonlinearity and due to a presence of
combined source; that is, if bothHz and ζ are present at
t = 0. We use the initial perturbations of normalisedHz and
ζ with maximum values equal to 0.05, which corresponds
to a magnetic field of order of 1000 nT. However this rather
extreme value is still in a range of possible amplitudes for
PEMW vortex structures and in agreement with evaluations
by Aburjania et al.(2005). The corresponding value of the
vertical current is of order ofJ ∼ 3×10−7 A m−2. Based on
results which are shown on Fig.5g, we can conclude, that
under such conditions, a vertical displacement of a medium
during a characteristic time of order of 103 s reaches the
value of order of 100 m. However, the vertical displacement
corresponding to the combined sources atZ = 600 km is

negligibly small (not shown here). Note that in case of com-
bined source (i.e. bothHz and ζ ), the nonlinear “effective
source” of excitation ofUz in the near-pole region is pro-
vided, which is evident from Eq. (B3). It is further recalled
that, at the middle latitudes, both linear and nonlinear exci-
tations of the vertical velocity component are possible (see
the third Eq.17 and relation22). A rough estimation shows
that the vertical displacement at heightZ = 300 km reaches
a value of the order of 1 km. We have found that, within
the ionosphere F region (i.e. atZ = 300 km) the pulse-like
PEMW can retain their structure up to 103 s. At the higher al-
titudes (Z = 600 km) PEMW could only be observed during
the night-time and they preserve their shapes up to 102 s due
to the much smaller Pedersen conductivity in the magneto-
sphere than in the ionosphere. The magnetic field of PEMW
has the characteristic values:Hz of the order of one to a few
nT, Hx,y of the order of a few to 10 nT. These values are
well above the sensitivity of the modern magnetometers, and
therefore, they can be detected (Prattes et al., 2011, see also
Sect. 7).

7 Discussion and conclusions

The new nonlinear model of vortex PEMWs for arbitrary
height, which does not necessarily belong to only one of
the “typical” D, E or F regions, has been developed. In con-
trast to previous models, the present model is suitable for ei-
ther of these regions, or to “intermediate” regions between
D and E and E and F layers within the ionosphere. Sec-
ondly, we obtained the general set of equations for PEMW
in a weakly nonlinear ionosphere, using “linear” and then
“nonlinear” Ohm’s law. Also, an extra variable (vertical com-
ponent of velocity) is included in the corresponding non-
linear system. Within this approach, a new spectral – grid
Arakawa type method has been developed for the numerical
realisation of the PEMW model. This method utilises split-
ting of the calculations into two steps by physical factors.
The pure transfer is realised by a finite-difference scheme at
the second half-step, while all other effects are presented by
means of two-dimensional purely real sine FFT at the first
half-step. This method provides high stability and accuracy,
in spite of the simultaneous presence of vector nonlinear-
ity and a number of derivatives in different combinations.
The analytical and numerical simulation yield the spatial and
temporal characteristic scales of PEMW excitations, which,
by the orders of values, agree with observations (Burmaka
et al., 2006; Aburjania and Chargazia, 2011), and the con-
nection between the spatial shapes of excited structures and
the initial perturbations of PEMW. The developed model can
be useful in the preparation of an experimental methodol-
ogy for registration and identification of PEMWs and their
sources by ground- and space-based instruments. In the latter
case, there are well-established methods. With regard to mea-
surements of mechanical movements, they require additional
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effort, since speed is low, that is combined with the relatively
small magnitudes of these displacements. Here it is appro-
priate to provide selected data on the possibilities of relevant
methods for ionospheric disturbances measurements. The
DOPE (Doppler Pulsation Experiment) HF Doppler sounder
located near Tromsø, Norway has a spatial resolution of the
order of 4 km, for F region reflection height of 250 km and a
sounder frequency of 4.45 MHz (see e.g.Wright et al., 1997).
The method of GPS differential TEC (see e.g.Borries et al.,
2007) has a spatial resolution of about 50–100 m. At last, the
CHInese MAGnetometer (CHIMAG) fluxgate magnetome-
ter chain has an accuracy of 8 pT at a temporal resolution
of 1 Hz (see e.g.Prattes et al., 2011). The spatial dimensions
of the objects under consideration and vertical displacements
are of the order of 1000 km and 1 km, respectively, and the
magnetic fields are of the order of 10 nT at a frequency of
about 0.01 Hz. In view of this it can be concluded that based
on the multipoint synchronised measurements using differ-
ential GPS TEC and chains of magnetometers and advanced
data processing methods, it is possible to identify PEMWs in
the ionosphere.

It should be noted that large-scale experiments to study
the phenomenon of PEMW have not been carried out yet.
And this, despite the fact that, according toAburjania et al.
(2005), PEMWs are natural ionospheric oscillations, and
therefore, they are a primary link in the chain of the iono-
sphere’s response to disturbances both from below and from
above (earthquakes, hurricanes, high-frequency ionosphere
heating, magnetosphere’s and solar wind impacts).

The theoretical background of relevant experiments, there-
fore, includes (a) classification of various modes of hydro-
magnetic waves in the ionosphere (Aburjania et al., 2002,
2003b; Aburjania and Chargazia, 2011); (b) estimations of
wave parameters in linear theory (Aburjania et al., 2002,
2003b; Rapoport et al., 2007; Aburjania and Chargazia,
2011); and (c) systematisation of estimates to prepare a mea-
surement scheme (Aburjania et al., 2002, 2003b; Aburjania
and Chargazia, 2011). In particular, it has been found that
the phase speed is of the order of 1 km s−1 to 103 km s−1 and
even higher, depending on height, while the wavelength is of
order 103 to 104 km. The most promising estimate relates to
the magnitude of magnetic disturbances caused by PEMW:
it is of the order of up to 102 nT and in certain cases – up
to 103 nT in situ for vortex structures propagating along the
F layer (Aburjania et al., 2005).

There are a number of experiments devoted to mea-
surements of the excitation of ULF hydromagnetic waves
by different sources in the ionosphere (see e.g.Burmaka
et al., 2006). Wave disturbances of the geomagnetic field
associated with distant rocket launches were measured us-
ing the modified ionosonde “Basis”, the fluxgate magne-
tometer, and the radar of incoherent scattering at the Iono-
sphere observatory, near Kharkov, Ukraine. In total, mea-
surements of ionospheric wave disturbances from about 140
distant missile launches were carried out for about 10 yr.

The observations were made at various distances from the
launching sites (Baikonur, Plesetsk, et al.): from 700 km to
about 104 km. It was found that (a) perturbations with a
speed of 10–20 km s−1 are quite often observed at distances
of up to 2300 km from the rocket; (b) there were 3 groups
of speeds of disturbances: 0.5–0.7 km s−1, 2–3 km s−1, and
10–25 km s−1; (c) there were 3 groups of periods of domi-
nant geomagnetic micropulsations: about 6, 10, and 20 min,
their amplitudes on the ground attained a value of 3–5 nT; (d)
the launch-resulted waves were most pronounced at altitudes
150–350 km; (e) relative amplitudes of disturbances of the
electron concentration reached 5–7 %. The analysis of such
observations shows that the difficulty in identifying waves is
that the frequencies of typical PEMW packets belong to the
ULF band and may be buried in the noise that exists there.
To be able to detect PEMW packets in this background, it
seems possible to use sophisticated data analysis techniques
that have worked well in the study of seismic and oceanic
wave processes: directional spectra estimation (see e.g.Sun
et al., 2005); study of a packet modification due to the co-
action of nonlinearity, dispersion, and dissipation; using the
concept of so called “coda waves” (see e.g.Sèbe et al., 2005).
These techniques become more efficient when we take into
account the internal multi-scale nature of the processes under
study. For example, wavelet packet transform where appro-
priate statistical decision rule is applied to subset of wavelet
coefficients (Lyubushin, 2007) gives a tool to detect complex
changes, say, in magnetometer recordings.

Finally, it should be emphasised that the present state
of theoretical and modelling studies in the area of PEMW
puts on the agenda the question of systematic experiments
on the identification of PEMWs under various geomag-
netic conditions, on revealing their sources, correlations with
space weather events and catastrophic events throughout the
atmosphere–ionosphere system. This requires the organisa-
tion of measurements accounting for the large-scale (103–
104 km) character of the PEMWs on the base of a planetary
size network of ionospheric/magnetospheric observatories.

The proposed theory can be extended by includ-
ing the connection between particular coupling processes
in the “magnetosphere–ionosphere–atmosphere–lithosphere
(MIAL)” system and corresponding sources of full-spectrum
MHD waves/PEMW in the form of the effective “external
currents/fields”.

Here we sum up the results of the present work.

1. A new nonlinear analytical model of PEMW, valid in
the localβ-plane approximation for arbitrary altitudes
in D, E, and F ionospheric regions, as well as for in-
termediate altitudes is developed. We propose for the
first time for the PEMW the method of consistently
utilising the “nonlinear Ohm’s law” and the series ex-
pansion in the relatively small non-stationary part of
the magnetic field.

www.ann-geophys.net/32/449/2014/ Ann. Geophys., 32, 449–463, 2014



460 Yu. Rapoport et al.: Excitation of planetary electromagnetic waves in the inhomogeneous ionosphere

2. A new numerical method for the simulations of the
evolution of PEMW is developed. This is a highly
stable and efficient hybrid finite difference-spectral
method, based on splitting by physical factors.

3. The shapes of the excited PEMW depend on the types
of initial conditions or sources. In particular, the exci-
tation of PEMW by an initial bell-like vertical compo-
nent of the magnetic vortex leads to the formation of
a bell-like vertical magnetic field. The excitations by
means of an initial bell-like vertical component of the
magnetic field results in a quadrupole magnetic vortex.

4. We have found that diffusion processes are rather im-
portant in the spreading of PEMW excitation in the
F region of the ionosphere, while in most previous
papers, such asAburjania et al.(2005), this factor
was underestimated. The vertical component of the
velocity of PEMW is not essential for an altitude
of Z = 600 km. At altitudeZ = 300 km this compo-
nent provides a vertical displacement of∼ 100 m on a
timescale∼ 103 s at the high latitudes, while the esti-
mate of vertical displacement is∼ 1 km at the middle
latitudes, where both linear and nonlinear wave excita-
tion of PEMW is possible.

5. The components of the magnetic field of PEMW are
of the order of one to a few nT for the vertical com-
ponent and from a few to tens of nT for the horizontal
component; therefore, it can be measured by modern
instruments.

Future practical applications of the model described here
may include detection of PEMWs and other MHD waves in
the context of a space weather monitoring system.
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Appendix A

The coefficient included in general set of equations for
PEMW (17)–(24)

The coefficients included in general set of equations for
PEMW (17)–(24) are

C1a = s0

[
1− < h2

0z >
]
; C1b = −s0q2h0yh0z;

C1c = 2s0q1
∂h0y

∂y
;
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]
;

C2a = −α0H0y;

C2b = −2α0
∂H0y

∂y
; C2c = α0

∂H0z

∂z
;

C2d = −α0
∂H0y

∂z
; C2e = −2α0

∂H0y

∂y
;

C3a = α0; s0 = α2
0
(c/U0)

2

4πσeff
; (A2)

C4a = s0; C4b = −s0q1
∂h0y

∂y
; C4c = α0

∂H0y

∂y
;

C4d = −s0q1h0y; C4e = −s0q1
∂h0z

∂y
; C4f = −s0q2h

2
0y;

C4g = −s0h0yh0z;

C5a = α0H0y; C5b = α0
∂Hz0

∂y
; C5c = α0

∂H0y

∂y
; (A3)

C6a = α0

(
VA0

U0

)2

H0y; C6b = (�0sct0)2�0y; (A4)

C7a = α0

(
VA0

U0

)2 ∂H0y

∂y
; C7b = α0

(
VA0

U0

)2
∂H0z

∂y
;

C7c = α0

(
VA0

U0

)2

H0y; C7d =
∂(2�0z)

∂y
;

C7e = 2�0y; C7f =
∂
(
2�0y

)
∂y

. (A5)

Here�0sc andU0 are scales of angular frequency and ve-
locity, respectively.α0 =

V0t0
L0

, whereV0, t0 andL0 are char-
acteristic scales of velocity, time and length. Note that the
value< h2

0z > is a phenomenologically averaged value of the
square of the directional vector componenth2

0z in the region
of existence of PEMW perturbation located in a region near
a pole (but not exactly on a pole). Due to< h2

0z > < 1, the
termC1a > 0, thus providing damping ofζ (see first equation
in Eqs.17).

Appendix B

Equations for the near-pole region

For the near-pole region, we obtain from Eqs. (17)–(24) with
the coefficients determined by formulae (A1)–(A5) in the
limit λ → π/2, the set of equations:

Dtζ = α2
0
(c/ϑ0)

2

4πσeff

{
11ζ

(
1+ q2

〈
h2

0z

〉)
+ 2q1

∂h0y

∂y

∂2hz

∂y2

−2q2
∂
(
h0zh0y

)
∂y

∂2hz

∂x∂y

}
+ +α01⊥J

(
Az,ξ

)
−2α0

∂H0y

∂y

∂2ξ

∂y2
+ α0

∂H0z

∂z
�z; (B1)

DtHz = α2
0
(c/U0)

2

4πσeff

{
1⊥Hz − q1

∂h0y

∂y
ζ

}
+ α0

∂H0y

∂y
Uz

+α0J (Uz,Az) + α0J (ξ,Hz) ; (B2)

DtUz = α0

(
VA0

U0

)2

J (Hz,Az) + α0J (ζ,Uz) − γUz; (B3)

Dt�z = α0

(
VA0

U0

)2 ∂H0y

∂y
ζ + 2

∂�0y

∂y
Uz + J (ζ,Uz)

+α0

(
VA0

U0

)2

J (ζ,Az) − γ�z; (B4)

1⊥Az = −ζ ; 1⊥ξ = −�z. (B5)

Here

∂H0z

∂z
=

Heq

R
= −

∂H0y

∂y
;

∂�0y

∂y
=

�0

R
;

∂h0y

∂y
= −

1

2R
;

∂2H0y

∂y∂z
=

2Heq

R2
;

∂2h0z

∂y2
= −

1

2R2
;

h0z = 1;
∂
(
h0zh0y

)
∂y

=
1

2R
.

Appendix C

Equations for the near-equator region

In the near-equator region, we obtain the following set of nor-
malised equations from the system of Eqs. (17) accounting
for the relations (18)–(24) in the limiting caseλ → 0:

Dtζ = α2
0
(c/U0)

2

4πσeff
Q + α01⊥J (Az,ξ)

−α0

[
H0y1⊥

∂ξ

∂y
+

∂H 2
0y

∂y2

∂2ξ

∂y2
+

∂H0y

∂z

∂Uz

∂x

]
; (C1)

DtHz = α2
0
(c/U0)

2

4πσeff

{
1⊥Hz − q1

[
h0y

∂ζ

∂y
+

∂h0z

∂y

∂Hz

∂x

]
+q2h

2
0y

∂2Hz

∂x2

}
+ α0

[
H0y

∂Uz

∂y
+

∂H0z

∂y

∂ξ

∂x

]

Ann. Geophys., 32, 449–463, 2014 www.ann-geophys.net/32/449/2014/



Yu. Rapoport et al.: Excitation of planetary electromagnetic waves in the inhomogeneous ionosphere 463

+α0J (Uz,Az) + α0J (ξ,Hz) ; (C2)

DtUz =

[
α0

(
VA0

U0

)2

H0y

∂Hz

∂y
+ 2�0�0y

∂ξ

∂y

]

+

[
α0

(
VA0

U0

)2

J (Hz,Az) + α0J (ξ,Uz)

]
− γUz; (C3)

Dt�z = α0

(
VA0

U0

)2[∂H0y

∂ȳ

∂Hz

∂x̄
+ H0y

∂ζ

∂y

]
+

[
2
∂�0z

∂y

∂ξ

∂x
+ 2�0y

∂Uz

∂x

]
+J (ξ,�z) + α0

(
VA0

U0

)2

J (ζ,Az) − γ�z; (C4)

1⊥Az = −ζ ; 1⊥ξ = −�z, (C5)

where

Q = 1⊥ζ − q1

[
15

R2

∂Hz

∂x
−

∂

∂y
1⊥Hz

]
+q2

[
11

R2
ζ +

4

R

∂2Hz

∂x∂y

]
;

H0y = Heq;
∂H0z

∂y
= −

2Heq

R
;

∂2�0z

∂y
=

2�0

R
;

�0y = �0
∂H0y

∂z
= −

2Heq

R
;

∂h0z

∂y
= −

2

R
;

∂H0z
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= −

2Heq

R
; h0y = 1.
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