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DiscussionsRay tracing of whistler-mode chorus elements: implications for
generation mechanisms of rising and falling tone emissions
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Abstract. Using a well-established magnetospheric very-
low-frequency (VLF) ray tracing method, in this work
we trace the propagation of individual rising- and falling-
frequency elements of VLF chorus from their generation
point in the equatorial region of the magnetosphere through
to at least one reflection at the lower-hybrid resonance point.
Unlike recent work by Bortnik and co-workers, whose em-
phasis was on demonstrating that magnetospheric hiss has
its origins in chorus, we here track the motion in the equa-
torial plane of the whole chorus element, paying particular
regard to movement across field lines, rotation, and com-
pression or expansion of the wave pulse. With a generation
point for rising chorus at the equator, it was found the ele-
ment wave pulse remained largely field aligned in the gen-
eration region. However, for a falling tone generation point
at 4000 km upstream from the equator, by the time the pulse
crosses the equator the wavefield had substantial obliquity,
displacement, and compression, which has substantial impli-
cations for the theory of falling chorus generation.

Keywords. Space Plasma Physics (Nonlinear phenomena;
Wave–particle interactions; Waves and instabilities)

1 Introduction

Chorus is a radio science phenomenon that has long stim-
ulated theoretical research, and with the advent of new and
excellent satellite observations, such as from the CLUSTER
and THEMIS satellites (Santolik et al., 2003; Li et al., 2011),
it is once again a topic of great interest because of its role
in energizing MeV electrons in the magnetosphere (Horne
and Thorne, 2003; Katoh and Omura, 2007b) and also as
an agency for precipitation of these energetic electrons into

the ionosphere (Hikishima et al., 2010b). Chorus comprises
self-sustaining very-low-frequency (VLF) radio emissions
observed in the earth’s magnetosphere, predominantly out-
side the plasmapause, and seen at all local times but with
a pronounced minimum at dusk. Chorus divides into two
categories – lower-band chorus in the band 0.2–0.5�e/2π ,
where�e/2π is the local electron gyrofrequency, and upper-
band chorus in the band 0.5–0.7�e/2π (Hayakawa et al.,
1984). Some recent observations, however, from THEMIS
(Kurita et al., 2012) report individual elements spanning
the frequency range 1–2.5 kHz and completely crossing half
the equatorial gyrofrequency. Chorus may be spectrally un-
structured but more normally consists of series of rising-
frequency or falling-frequency elements not unlike triggered
emissions.

Satellite observations from CLUSTER (Santolik and
Gurnett, 2003; Santolik et al., 2003) indicate that chorus is
usually observed propagating away from the equator point-
ing to a generation region at or near the equator, though more
rarely on CLUSTER chorus is seen propagating towards the
equator (Pickett et al., 2004).

There is general agreement amongst theoreticians and sim-
ulationists that the underlying generation mechanism is the
electron cyclotron resonance with the narrow band or band
limited VLF wavefield with ak vector either parallel or
quasi-parallel to the ambient magnetic field, the free energy
driving the instability coming from the anisotropy of the en-
ergetic electron distribution function in the keV–MeV range.
Since chorus (and triggered VLF emissions for that matter)
are obviously nonlinear phenomena, then resonant particle
behaviour must also be nonlinear. In fact such nonlinear-
ity takes the form of resonant particle trapping (Omura et
al., 2008; Nunn et al., 1997). Since the ambient medium is
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666 K. Yamaguchi et al.: Ray tracing of whistler-mode chorus elements

inhomogeneous through thez dependence ofB0(z) and also
through the sweeping frequency, electrons become phase
locked at a phase angle dependent on the net inhomogene-
ity, and such particles undergo large changes in energy and
magnetic moment resulting in an “electron hole” or “hill”
coinciding with the location of the particle trap in velocity
space. (Omura et al., 2008; Nunn et al., 1997).

Since resonant energies increase rapidly away from the
equator and strongB0 gradients away from the equator pre-
vent nonlinear trapping, then the theory is in agreement with
observations in predicting an equatorial or near-equatorial
generation region.

Since current theory and simulations predict and assume
parallel propagation in the generation region on the grounds
that growth rates are maximum fork‖B, the next critical
question is whether propagation is observed to in fact be par-
allel there. Observations (Santolik et al., 2009) do indicate
that this is the case, though there seem to be exceptions. In
this regard, a recent paper (Li et al., 2011) finds consistently
high degrees of obliquity in the case of falling-frequency
emissions, but near parallelism in the case of risers, which
is a finding requiring further investigation.

The self-consistent nonlinear wave–particle interaction
problem in a parabolic inhomogeneity is clearly quite com-
plex, and to this effect much effort has been expended on
numerical simulation. Omura and co-workers (Katoh and
Omura, 2007a; Hikishima et al., 2009, 2010a, b; Omura et
al., 2008, 2009) have developed numerically intensive broad-
band particle-in-cell (PIC) codes that have successfully sim-
ulated rising chorus starting from broadband noise, and also
reproduced successive rising elements. The codes only pro-
duce risers for which the generating point is located at the
equator and the nonlinear generation region itself extends
some 1000s of kilometers downstream from there. This is
in excellent agreement with CLUSTER observations.

A second approach is due to Nunn and co-workers and is
a Vlasov hybrid simulation (VHS) narrow-band code with a
processing bandwidth of∼ 100 Hz, originally designed for
the triggered emission problem but applicable at least to in-
dividual chorus elements but not to the entire chorus problem
(Nunn et al., 1997, 2009). In a more recent development, the
code has been used to verify the theoretical result in Katoh
and Omura (2007a) that the sweeping frequency is due en-
tirely to the advective term, and it was shown that for a riser
the negative nonlinear component of resonant particle current
Jb parallel to the waveB field sets up the necessary negative
frequency gradient to give a rising tone. (Omura and Nunn,
2011; Nunn and Omura, 2012).

The VHS code is able to reproduce risers, fallers, and
hooks, but faller simulation is difficult and achieved by hav-
ing large linear growth rates which drive the wave profile up-
stream, which is in the opposite direction to group velocity
and along the magnetic field line. When a faller is triggered,
the generating region is always upstream from the equator
where the net inhomogeneity factorS is positive, whereas

S is negative downstream from the equator where the riser
generating region is to be found.

Both PIC and VHS codes assume exact parallel propa-
gation and permit long-range coherent wave–particle inter-
actions across the whole simulation region,∼ 8000 km long
and crossing the equator. In Nunn and Omura (2012) it was
argued that in view of the tendency of chorus waves to be-
come more oblique as they propagate away from the gen-
eration region, it was unrealistic to assume such coherency.
Accordingly, the simulation box was restricted to the region
upstream from the equator where inhomogeneity is positive.
Under these circumstances the code readily and consistently
produced falling tones, and furthermore the currentJb was
positive, setting up a positive frequency gradient which gave
a falling tone.

It is clear then that the assumption of exactly parallel prop-
agation in theory and simulation is at odds with experimental
reality and a more unified approach is needed in which propa-
gation conditions are taken into account. Accordingly, in this
work we ray trace, forward in time, individual chorus ele-
ments, starting from their generation point. We will be partic-
ularly interested in the extent to which the actual wave pulses
undergo compression, rotation, and displacement from the
field line in that region surrounding the equator where non-
linear wave–particle interaction may take place. The other
key issue is the degree of obliquity which thek vectors ac-
quire in propagating from their generation point and while
they are still in the interaction zone.

2 The ray tracing computations

Ray tracing of VLF waves in the magnetosphere is a
well-established investigative technique (Haselgrove, 1954;
Kimura, 1966), and has been developed continuously ever
since (Horne, 1989; Hiroyasu and Masashi, 1987). It has
been employed more recently for three-dimensional ray trac-
ing studies of VLF waves in the earth’s magnetosphere (Chen
et al., 2009). The basic ray tracing equations may be written
in the form (Hiroyasu and Masashi, 1987)
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and
dρφ
dt

=
1

r sinθ

(
1

µ

∂µ

∂φ
− ρφ

dr

dt
sinθ − rρφ

dθ

dt
cosθ

)
, (6)

where{r,θ,ϕ} are the usual spherical coordinates and refrac-
tive indexµ is given by the cold plasma dispersion relation
of Stix,

Aµ4
+Bµ2

+C = 0, (7)

where the familiar coefficientsA, B, C are defined in Stix
(1992). The vector{ρr ,ρθ ,ρϕ} represents the components of
the wave vectork in spherical coordinates. These calcula-
tions will employ the ray tracing code due to Kimura and
Goto (2010).

For simplicity, we assume a dipole magnetic field model
and confine ourselves to a two-dimensional simulation in the
plane containing both magnetic poles and at a specific lon-
gitude. The cold plasma density model used is the diffusive
equilibrium (DE) model and is illustrated in Fig. 1b (Richard-
son and Sittler, 1990; Persoon et al., 2009).

The DE profiles are evaluated along each individual field
line as follows.

We first introduce the function geopotential heightz.

z=
r0

r
(r − r0) , (8)

wherer0 is a reference radius distance, and also scale height
Hi ,

Hi =
kTi

Mig (r0)
, (9)

wherek, Ti , Mi , andg(R0) are Boltzmann’s constant, tem-
perature and mass of theith ion, and gravity acceleration at
r0, respectively.

We assume that electron density at any altitude is deter-
mined by the charge balance with the positive ions. Defining

Nr (z)=

[∑
i

ηiexp

(
−
z

Hi

)] 1
2

, (10)

whereηi is the percentage ofith ion, then, absolute electron
density is expressed as

Ne (z)=Nθ

[∑
i

ηiexp

(
−
z

Hi

)] 1
2

, (11)

whereNθ is total ion density at the reference level. The rel-
ative density of theith ion with respect to electron density is
given by

Qi (z)=

ηiexp
(
−

z
Hi

)
N2
r (z)

, (12)

and then the absolute ion density for speciesi is calculated as

Fig. 1. (a)Meridional plane cross section of the magnetosphere in-
dicating the plasmapause and the starting positions of the ray trac-
ing. (b) Diffusive equilibrium model for cold plasma density.

Ni=NeQi . (13)

Figure 1a gives a view of the fixed longitude plane show-
ing plasmapause location atL= 4 and indicating the starting
points for the ray tracing of each chorus element. In accor-
dance with the chorus equations (Omura et al., 2008, 2009),
the generation point is at the magnetic equator for chorus ris-
ing elements, and the initial frequency sweeps linearly with
time from 0.2–0.4�e/2π (Hz) in 50 ms, where�e/2π is the
local electron gyrofrequency. The elements are repeated ev-
ery 50 ms. The starting values for parameterL areL= 3.8
just inside the plasmapause, actually at the plasmapauseL=

4, and outside the plasmapauseL= 4.5. While it is true that
most chorus originates outside the plasmapause, the ray trac-
ing starting fromL= 3.8 would be relevant to the closely al-
lied problem of discrete and triggered VLF emissions. All ray
tracing starts with zero propagation angle, ork vector paral-
lel to B0(z), on the grounds that parallel propagation cor-
responds to maximum instability and observations (Santolik
and Gurnett, 2003; Santolik et al., 2003, 2009) point to par-
allel or quasi-parallel propagation at the point of generation.

www.ann-geophys.net/31/665/2013/ Ann. Geophys., 31, 665–673, 2013
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Table 1.Latitude, distance from equator, local cyclotron and plasma
frequencies at all the ray tracing start points.

L Latitude Distance from Cyclotron Plasma frequency
[RE] [deg] equator [km] frequency [kHz] [kHz]

3.8 0 0 15.93 401.2
3.8 −9.5 4000 17.95 406.6
4.0 0 0 13.66 391.3
4.0 −9.0 4000 15.26 396.1
4.5 0 0 9.591 59.62
4.5 −8.0 4000 10.48 61.78

However, in Fig. 6 the starting propagation angle will be the
local Gendrin angle. The local values of electron plasma fre-
quency, electron cyclotron frequency, latitude in degrees and
distance from the equator are shown in Table 1.

The falling tone elements sweep linearly with time from
0.4–0.2�e/2π (Hz) in 50 ms, the elements being repeated
every 50 ms. The starting points for the ray tracing are de-
rived from the simulations in Nunn and Omura (2012), and in
accordance with those results we take the generating point to
be 4000 km upstream from the equator. The final exercise is
a comparison between lower- and upper-band rising chorus,
with element frequency ranges of 0.3–0.5�e/2π (Hz) and
0.5–0.7�e/2π (Hz), respectively, both extra-plasmapause at
L= 4.5.

In Fig. 2 we ray trace rising tone chorus elementsf = 0.2–
0.40�e/2π (Hz). Start points are with zero propagation an-
gle at the equator at (a)L= 3.8 (b)L= 4.0 and (c)L= 4.5.
Left-hand panels show the physical extent and orientation in
2-D space of each rising frequency element wave pulse as
time progresses. The wave pulse representations are coloured
from red to blue to represent elapsed propagation time. For
rising chorus the front of the pulse will have a frequency
of 0.2�e/2π (Hz), and the rear of the pulse 0.40�e/2π
(Hz). The right-hand panels ray trace three rays at frequen-
ciesf = 0.2, 0.3, 0.4�e/2π (Hz) and show evolution of the
k vector orientation with respect toB0 field. All three start-
ing points show common features, namely inward drift into
the plasmasphere, the outermost ray atL= 4.5 readily cross-
ing the plasmapause. There is a very marked elongation of
the wave pulses and rotation with respect to the magnetic
field line so the pulse spans almost a wholeL value. By the
time the wave reaches about 20 degrees of latitude the wave
is very oblique and then remains so, close to the resonance
cone. After lower-hybrid resonance reflection, there is no
sign of any tendency towards parallel propagation when re-
crossing the equator as noted in Bortnik et al. (2011), though
in that paper large numbers of rays were followed, includ-
ing a whole range of starting propagation angles. This result
is in agreement with a recent study (Breuillard et al., 2012)
that employs Ronnmark’s WHAMP hot plasma dispersion
relation to ray trace large numbers of chorus rays originat-
ing at the equator fromL= 4.5–7. They found the propaga-
tion angle distribution at high latitudes to be very oblique and
concentrated inside the local resonance cone.

Fig. 2. Ray tracing of rising tone chorus elements with frequency
spanf = 0.2–0.40�e/2π (Hz), pulse length 50 ms. Start points
are with zero propagation angle at the equator and at(a) L= 3.8
(b) L= 4.0 and(c) L= 4.5. Left-hand panels show the physical
extent and orientation in 2-D space of each rising frequency element
as time progresses. The right-hand panels ray trace three rays at
frequenciesf = 0.2, 0.3, 0.4�e/2π (Hz) and show evolution of
thek vector orientation with respect toB0 field.

An interesting feature of these results is as follows. Where
the traced rays with different frequencies spread acrossL

shells, particularly after magnetospheric reflection, under the
assumption that the entire chorus element is indeed gener-
ated at a single point with the same zero propagation angle,
then, according to ray tracing theory, a remote observer at a
fixed point would only be expected to see a single frequency
and not the whole chorus element. This implies that for an
observer to see the whole element, one would either have
to have ducted propagation or the observer would have to
be reasonably close to the generation point so that the rays
had not diverged appreciably. However, we note that the real
situation is rather more complex, in that the generation region
has a finite extent,∼ 1000s of kilometers along the field line,
and will radiate into a narrow cone of propagation angles.

Ann. Geophys., 31, 665–673, 2013 www.ann-geophys.net/31/665/2013/
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We next compare upper- and lower-band rising frequency
chorus, with a starting point at the equator and outside the
plasmapause atL= 4.5. Figure 3a follows a lower-band ris-
ing element withf = 0.3–0.5�e/2π (Hz) and Fig. 3b fol-
lows an upper-band element withf = 0.5–0.7�e/2π (Hz).
In both cases the wave pulse moves to lowerL values, readily
crossing the plasmapause, and the propagation angle quickly
becomes highly oblique by the time latitude of 10 degrees
is reached. It is noticed that the upper-band wave pulses are
more field aligned than the lower band, particularly after re-
flection. Another noticeable feature is that at the highest fre-
quency,f = 0.7�e/2π (Hz), the inward propagation of the
wave pulse is very marked, having shifted by an amount
dL∼ −0.3 by the time 10 degrees of latitude is reached.
This would make any nonlinear generation mechanism at
these frequencies very difficult and might explain why upper-
band chorus does not go to high frequencies (Meredith et al.,
2012).

The chorus theory of Omura and co-workers (Omura et al.,
2008, 2009) is that the equatorial wave magnetic field am-
plitude for a rising frequency chorus element is directly re-
lated to the frequency sweep rate through the condition that
at the equator the inhomogeneity factorS =−0.4 for a me-
dian value of perpendicular velocityV⊥. The rationale for
this is as follows. Due to adiabatic effects, growth rates fall
off quickly away from the equator, and so we need maxi-
mal nonlinear growth at the equator. Nonlinear growth maxi-
mizes atS =− 0.4 for a rising tone, under conditions of con-
stantS, and thus we postulate this value ofS at the equator.
However, sinceS is a function of perpendicular velocity, we
must select this median value of perpendicular velocityV⊥

to be that at which the contribution to resonant particle cur-
rent is maximal. When the zero order distribution function is
a bi-Maxwellian with temperature anisotropyT⊥/T|| = 3, the
maximum occurs at a pitch angle in the region of 56 degrees
(Nunn et al., 1997; Nunn, 1990). We thus chooseV⊥ to be
VR tan(66◦). In view of the relatively large sweep rates of
+175 kHz s−1 at L= 3.8, of +136 kHz s−1 at L= 4.0 and
outside the plasmapause atL= 4.5 of +95 kHz s−1, it is of
some interest to calculate the corresponding equatorial wave
amplitudes. The development proceeds as follows. We define
(Omura et al., 2008, 2009)

χ2
=

1

1+ ξ2
(14)

and

ξ2
=
ω(�e−ω)

ω2
pe

, (15)

whereωpe is the electron plasma frequency. The wave phase
velocityVP is given by

VP = cχξ, (16)

group velocityVG by

Fig. 3.Ray tracing of rising chorus starting from outside the plasma-
pause atL= 4.5 for (a) lower-band chorus element, frequency span
f = 0.3–0.5�e/2π (Hz) and(b) upper-band chorus element, fre-
quency spanf = 0.5–0.7�e/2π (Hz). Pulse length is 50 ms in both
cases. Left-hand panel shows pulse evolution, right-hand panelk

vector evolution atf = 0.3, 0.4, 0.5�e/2π (Hz) for the lower band
andf = 0.5, 0.6, 0.7�e/2π (Hz) for the upper band.

VG =
cξ

χ
/

[
ξ2

+
�e

2(�e−ω)

]
, (17)

and cyclotron resonance velocityVR by

VR = cχξ(1−
�e

γω
). (18)

We next define the coefficientss0 ands1 as being

s0 =
χV⊥

ξc
(19)

and

s1 = γ [1−VR/VG]2 , (20)

whereγ is the relativistic Lorentz factor. Requiring inhomo-
geneity factorS = −0.4 for a valueV⊥ at the equator gives
us the following relation between equatorial wave amplitude
and sweep rate:

∂f/∂t = 0.4(s0/s1)f eBw/m. (21)

Outside the plasmapause atL= 4.5 for rising chorus at a
start frequency of 2.87 kHz, we haveBw = 395 pT. AtL=

www.ann-geophys.net/31/665/2013/ Ann. Geophys., 31, 665–673, 2013
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4.0 at the plasmapause, this figure becomes 385 pT at a start
frequency of 4098 Hz and inside the plasmapause atL= 3.8
the figure is also 385 pT at a start frequency of 4779 Hz.
These figures correspond to examples of large amplitude
chorus outside the plasmapause (Santolik et al., 2003).

We now turn our attention to the case of falling cho-
rus. Figure 4 shows ray tracing for falling tone chorus ele-
ments with frequency spanf = 0.4–0.2�e/2π (Hz), pulse
length 50 ms and pulse separation 50 ms, for (a)L= 3.8,
(b) L= 4.0, and (c)L= 4.5. The leading edge of the wave
pulse corresponds to the higher frequency 0.40�e/2π (Hz).
Referring to Nunn and Omura (2012), generating points are
located 4000 km upstream from the equator. Left-hand pan-
els show pulse evolution with time, the right- hand panelsk

vector evolution for three selected frequencies,f = 0.2, 0.3,
0.4�e/2π (Hz). For allL shells and for the whole frequency
band, there is considerable obliquity;∼ 40 degrees is preva-
lent by the time the pulse has crossed the equator, with high
obliquity of the order of the resonance cone by the time 20
degrees of latitude is reached. For all cases initial pulse short-
ening occurs across the equator accompanied byL spread,
but after reflection considerable pulse lengthening occurs.

In these cases of falling tones, as the localized nose fre-
quency (at least for parallel propagation) is∼ one quarter of
the electron gyrofrequency, most of the element is above the
nose frequency and thus lower frequencies will travel faster
and thus overtake the higher frequencies at the front of the
pulse. In the present study initial sweep rates are quite large,
and thus here we have “turnover” and a faller becomes a
riser. However, by the time that happens the wave train has
considerableL shell spread, and it is questionable whether
the observer would see the whole chorus element. The in-
flection in the element wave train profile near the low fre-
quency end corresponds to the nose frequency where group
velocity is greatest. Of course the detailed situation is rather
complex as rays with different frequencies diverge spatially
and group velocity is then a function of local ambient mag-
netic field, cold plasma density, frequency and propagation
angle. A second factor making the higher frequencies slower
is that they follow a path with a lowerL shell and higher cold
plasma density, thus decreasing group velocity still further. In
the case of less steep fallers, these propagation effects would
steepen the negative frequency gradient but not produce a
riser.

We now focus our attention on the region within 10
degrees of latitude of the equator where nonlinear wave–
particle interactions can occur. Figure 5 shows the ray trac-
ing for (a) rising chorus and (b) falling chorus. Start points
are outside the plasmapause atL= 4.5, at the equator for the
riser and 4000 km upstream from the equator for the faller.
We take an expanded view about the equator.

In the case of the riser, the wave pulse remains reasonably
field aligned and only reaches an obliquity of∼ 30 degrees at
a latitude of 10 degrees. With the faller though, the obliquity
is greater than 45 degrees in the whole region downstream

Fig. 4. Ray tracing for falling tone chorus elements with fre-
quency spanf = 0.4–0.2�e/2π (Hz), pulse length 50 ms for(a)
L= 3.8, (b)L= 4.0, and(c)L= 4.5. In accordance with Nunn and
Omura (2012) starting points are 4000 km upstream from the equa-
tor. Left-hand panels show pulse evolution with time, the right-hand
panelsk vector evolution for three selected frequencies,f = 0.2,
0.3, 0.4�e/2π (Hz).

from the equator and there is a significantL spread of the
order of dL∼ 1/4.

In the literature (Bortnik et al., 2006; Lauben et al., 2002),
there are satellite observations to the effect that chorus can
be generated in the equatorial region with a propagation
angle equal to the Gendrin angle, which is the propaga-
tion angle where group velocity is directed along the field
line, thus allowing a sufficient interaction length between
waves and resonant particles. There are issues of whether
the linear and nonlinear growth rates at this propagation
angle are sufficient to sustain a generation region. Recently,
non-self-consistent computations of nonlinear growth rates
in a narrow-band oblique VLF wavefield have been reported
(Nunn and Omura, 2012). These computations assume arbi-
trarily a bi-Maxwellian zero order distribution function, and
the wavefield may have any chosen dependence of amplitude,
frequency and propagation angle onz and t . It was found

Ann. Geophys., 31, 665–673, 2013 www.ann-geophys.net/31/665/2013/
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Fig. 5. Expanded equatorial view forL= 4.5 for lower-band rising
and falling tone,f = 0.2–0.4�e/2π (Hz) andf = 0.4–0.2�e/2π
(Hz), respectively. Rising tone is generated at the equator, falling
tone 4000 km upstream from the equator. Left-hand panels show
pulse evolution with time; the right-hand panels showk vector evo-
lution for three selected frequencies,f = 0.2, 0.3, 0.4�e/2π (Hz).

that changing the propagation angle from zero to the Gen-
drin angle reduced the cyclotron growth rate (n= 1 reso-
nance) by a factor∼ 4 from 52 dB s−1 to 12 dB s−1, and at
the same time invoked Landau damping (n= 0 resonance)
of −6 dB s−1. Overall power input was then reduced by a
factor of ∼ 8. Although not ruling out Gendrin angle gen-
eration entirely, it would certainly require high particle flux
and or high anisotropy. In Fig. 6 we repeat the exercise of
Fig. 5 exactly for lower-band chorus, but the rays are all
started off at the appropriate Gendrin angleψg for that fre-
quency and location. For the riser the actual values, at the
equator, areψg = [66.4 53.0 36.8] degrees, corresponding
to frequenciesω/�e = [0.2 0.3 0.4]. For the faller the cor-
responding Gendrin angles are [70.2 59.5 47.4] degrees, all
ath= −4000 km. There is of course the issue of whether in
fact in a “Gendrin” chorus generation region propagation an-
gle would track the Gendrin angle as a function of frequency.

Consulting Fig. 6a we see that for the riser the rays remain
tightly aligned to the field line within the likely generation
region with negligible compression, rotation, expansion or
drift of the element wave train. Thus, at least purely from the
propagation point of view, a generation region at the Gen-
drin angle looks possible. The corresponding ray tracing for
a faller in Fig. 6b is less promising with rotation and inward
drift as well as compression of the wave train occurring, mak-
ing falling chorus at the Gendrin angle look rather unlikely.

Fig. 6. Expanded equatorial view forL= 4.5 for lower-band rising
and falling tone,f = 0.2–0.4�e/2π (Hz) andf = 0.4–0.2�e/2π
(Hz), respectively, as in Fig. 5, but with all rays starting at the local
Gendrin angle.

3 Discussion and conclusions

In this paper we have uniquely followed by ray tracing the
propagation of the wave pulse of a chorus rising- or falling-
frequency element so as to be able to track its crossL shell
motion, as well as the rotation of the wave pulse relative to
the field line plus any compression or extension. In addition,
the k vector orientation is also determined for sample fre-
quencies within the chorus element bandwidth.

One immediate feature of our results is the tendency for
rays to drift inwards inL shell and to readily cross the
plasmapause. This is in agreement with calculations in Bort-
nik et al. (2011), who show that the inward drift of chorus
VLF wave energy gives rise to plasmaspheric hiss. Also ap-
parent in general agreement with observations and modelling
is the tendency towards oblique propagation at angles ap-
proaching the resonance cone once the generation region has
been left (Breuillard et al., 2012). There is no sign of quasi-
parallel propagation once rays recross the equator.

The most significant result of this study is its relevance to
the theory of the structure of the generating regions for ris-
ing and falling chorus. Following Omura and Nunn (2011)
and Nunn and Omura (2012), we place the generating point
for a rising element at the equator and for a falling-frequency
element upstream of the equator by 4000 km. The rising el-
ement remains closely parallel and field aligned within the
nonlinear trapping zone out to about 10 degrees of latitude.
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In the case of the faller, the wave pulse remains quasi-parallel
and closely field aligned in the nonlinear interaction region
upstream from the equator, but downstream from the equa-
tor the wavefield becomes oblique>45 degrees and spread
acrossL shells. Spreading loss, reduced growth rate due
to then= 1 cyclotron resonance, Landau damping plus the
sharp gradient of propagation angle along the field line will
all serve to suppress nonlinear trapping in the downstream re-
gion where inhomogeneity factorS is negative. Confining the
nonlinear generation region of falling tones to the upstream
region with positive inhomogeneity factorS >0, as in Nunn
and Omura (2012), seems then to have ample justification.
Another factor which might have a bearing on cross equato-
rial coherent wave–particle interaction is azimuthal energetic
electron drift. Assuming a drift time of 10 min around the
earth, this gives a drift velocity∼ 250 km s−1, which is not
enough to cause particles to be lost from an interaction re-
gion of∼ 100 km width as estimated in Santolik and Gurnett
(2003).

A rigorous treatment of the problem will require a full 3-D
simulation in which propagation and nonlinear wave–particle
interaction are dealt with in a unified code, but this remains
just beyond current computer capabilities. It is not impossi-
ble that the nonlinear component of resonant particle current
Jb might act to self-focus the wavefield along the field line,
but this seems unlikely and must remain a topic for further
research.

Finally, it should be pointed out that our DE cold plasma
density model is smooth. It is quite likely that plasma den-
sity in the plane perpendicular toB0 may have variations
and irregularities which can act to “duct” the wavefield along
the field line. If some kind of ducting is occurring, then the
conclusions from this paper will not be valid. In this case
cross-equatorial coherent wave–particle interaction occurs.
The trapping initially takes place in the downstreamS <0
region producing a distribution function hole. This will prop-
agate across the equator and delay or suppress the formation
of a distribution function hill, and thus prevent formation of a
positiveJb upstream, thus making a faller generation region
difficult or impossible. It is quite possible that such ducting
does sometimes occur which might explain the overall ten-
dency towards rising chorus.
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