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Abstract. In this work, we studied the effects of background
plasma density fluctuations on the relaxation of electron
beams. For the study, we assumed that the level of fluctua-
tions was so high that the majority of Langmuir waves gen-
erated as a result of beam-plasma instability were trapped
inside density depletions. The system can be considered as a
good model for describing beam-plasma interactions in the
solar wind. Here we show that due to the effect of wave trap-
ping, beam relaxation slows significantly. As a result, the
length of relaxation for the electron beam in such an inho-
mogeneous plasma is much longer than in a homogeneous
plasma. Additionally, for sufficiently narrow beams, the pro-
cess of relaxation is accompanied by transformation of sig-
nificant part of the beam kinetic energy to energy of acceler-
ated particles. They form the tail of the distribution and can
carry up to 50 % of the initial beam energy flux.

Keywords. Space plasma physics (wave-particle interac-
tions; waves and instabilities)

1 Introduction

Understanding the generation of type III solar radio bursts
is a long-standing problem in space plasma physics (Parker,
1965). Solar type III radio bursts are produced by fast elec-
tron beans (energy from several keV to several tens of keV)
ejected in the anti-sunward direction during solar flares (Lin,
1970). Radio bursts have a characteristic frequency near the
local electron plasma frequency and/or its harmonic. Such
a mechanism of generation was proposed byGinzburg and
Zhelezniakov(1958) and further refined byPapadopoulos
et al. (1974). It is widely accepted that these radio bursts
are generated as a result of the electron beam-plasma inter-
action. Emission on the fundamental frequency (the plasma
frequency) and its harmonic (twice the plasma frequency)

is generated by nonlinear processes that occur following the
primary generation of Langmuir waves by the electron beam.

The excitation of Langmuir waves in plasmas by electron
beams is one of the first kinetic instabilities described by
quasi-linear theory (Vedenov et al., 1962; Drummond and
Pines, 1962), and studied in controlled laboratory experi-
ments. However, during the beginning of these studies it was
determined that the quasi-linear theory of beam relaxation in
homogeneous plasma results in a length of relaxation which
in solar corona conditions should be approximately several
hundred km (Sturrock, 1964), while electron beams, gener-
ated in the solar atmosphere, are observed in interplanetary
space for the orbits of Earth and Jupiter (Buttighoffer, 1998).
During the process of beam relaxation, the region of the posi-
tive slope of the electron distribution function responsible for
the generation of primary Langmuir waves should shift with
time toward lower velocities. On the other hand, inhomoge-
neous plasma waves can stay in phase with beam particles
only for a finite time due to the change of thek vector, and,
consequently, the phase velocity. As a result, the efficiency of
the wave particle interaction is significantly diminished (i.e.
the energy transfer from particles to waves is slowed). The
process of formation for the plateau of the velocity distribu-
tion instead of the beam is considerably reduced. Another im-
portant effect that results in the reduction of the efficiency of
the “plateauing” process is due to the re-absorption of Lang-
muir waves by electrons from the velocity range where the
slope is negative (Zaitsev et al., 1972). Numerical simula-
tions (Takakura and Shibahashi, 1976; Grognard, 1982) have
demonstrated that the beam can propagate out to a distance
of about 1 AU, and predict plateau-like electron distributions.
However, the electron beams detected at 1 AU and associated
with solar type III radio bursts (Lin et al., 1981) do not con-
tain any plateau-type features in the distribution function.

Nonlinear plasma processes, such as induced scattering on
ions, development of weak or strong turbulence of Langmuir
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1380 A. Voshchepynets and V. Krasnoselskikh: Electron beam relaxation in inhomogeneous plasmas

waves (Zakharov, 1972; Shapiro and Shevchenko, 1984)
may significantly change the Langmuir wave spectrum, and,
therefore, slow down the beam relaxation.

The spectrum of density fluctuations obtained during ISEE
inter-satellite propagation experiment (Celnikier et al., 1983)
indicates that the solar wind plasma is strongly inhomoge-
neous. Variations of the density reconstructed from the spec-
trum (Kellogg, 1986; Kellogg et al., 1999) indicates that in-
homogeneities can impact Langmuir wave propagation and
can influence the transport of solar flare produced energetic
electrons from the Sun to the Earth (Reid and Kontar, 2010;
Zaslavsky et al., 2010; Foroutan et al., 2008; Kontar and
Reid, 2009; Ziebell et al., 2011; Li et al., 2006). Worth noting
is thatErgun et al.(2008) found that some observed Lang-
muir waves can be trapped within solar wind density cavities.

This leads to the necessity of reformulating the problem of
beam plasma interactions by taking into account the effects
of plasma density inhomogeneities. Hereafter, we suppose
that the effect of Langmuir wave trapping within preformed
density cavities takes place everywhere in the system and de-
termines the wave dynamics during beam relaxation. For the
work presented here, we studied the evolution of the elec-
tron beam velocity distribution function,f using equations
for the quasi-linear relaxation of electron beams in strongly
inhomogeneous plasmas as derived byRyutov(1969).

2 Model description

In this work, we considered the same one-dimensional sys-
tem as inRyutov (1969) where the overwhelming majority
of waves are assumed to be trapped inside density deple-
tions in the vicinity of the local minima of the plasma den-
sity. The profile around the minimum can be approximated
by parabola. In order to calculate the averaged over space in-
crement and the diffusion coefficient,Ryutov(1969) initially
evaluated these parameters for one single cavity and found
that they can be presented in the form of integrals that are
dependent on the particle velocity at the bottom of the well
and do not depend on the well parameters. This universality
allowed him to perform averaging over space. The result was
shown to be independent of the details of the cavity distribu-
tion and was presented in a universal form that was depen-
dent only on the average wave energy density,W , and the
averaged particle distribution function,f (for more details
see the Appendix), as follows:

∂f

∂t
=

∂

∂v

∂f

∂v

v∫
0

Wdu

u2
√

v2 − u2

 , (1)

∂W

∂t
= uW

∞∫
u

∂f

∂v

vdv
√

v2 − u2
, (2)

wherev is the electron velocity,u is the phase velocity of
Langmuir waves at the bottom of the density cavity (the de-
pendence ofv onu is determined using Eq.A16). An analyt-
ical solution of the system was obtained byRyutov (1969)
only when the initial dispersion of the beam1v is negli-
gible in comparison with the beam velocityv0: v0 � 1v.
Here, we present the numerical solution of the system (1,
2). Below, we describe and discuss the dynamics of the beam
distribution function,f , and the averaged wave energy den-
sity, W . To solve the system (1, 2), we applied the finite dif-
ference method with the second-order, semi-implicit scheme
(Samarskii and Popov, 1975). As for the initial conditions for
f we used the Gaussian distribution with the mean value nor-
malized to the beam velocityv0 (v0 = 1 arbitrary units) and
the variance1v (for e.g.1v = 0.06,0.08,0.1,0.2,0.3). The
initial distribution ofW within the phase space was uniform.
As shown inRyutov (1969), the system has the following
invariant:

d

dt

1

2

∞∫
0

v2f dv +

∞∫
0

W

u3
du

 = 0. (3)

The first term corresponds to the particle kinetic energyεk,
the second – to the wave energyεw. Initially, the ratio ofεw
to εk is chosen to beεw/εk = 0.0001.

3 Results

The dynamics off obtained in the simulation is shown in
Fig. 1. On the right and left panels one can see the snap-
shots off for different moments of time. In a homogeneous
plasma, relaxation stops when within the entire range of
velocities the distribution satisfies the condition∂f /∂v ≤ 0
(Vedenov et al., 1962), corresponding to the absence of insta-
bility. The time of relaxation in dimensionless units, as deter-
mined using the details provided in the Appendix (following
Eq. A26), is on the order ofτ ≈ 1 . As shown in Fig.1, at
the end of the period the relaxed beam distribution,f , still
has a positive slope. The dynamics ofW obtained in the sim-
ulation is shown in Fig.2. The maximum value ofW ob-
tained in simulation wasWmax = 0,15 in arbitrary units (as
shown in the Appendix, after Eq.A26). We normalizedW
to Wmax in Fig. 2. By comparing the dynamics off and the
wave energyεw one can notice that the process of the posi-
tive slope decrease corresponding to conventional formation
of the plateau of the electron distribution (“plateauing”) con-
tinues to operate whileεw continues to grow (in Figs.1 and
2 it corresponds to time intervalt = 0.0, t = 0.5). After this
time,εw begins to decay but particle diffusion is still at work
for some time. For the conditions of simulation as presented
in the Fig.1 the relaxation process ends afterτ ≈ 1.4. As
shown in the Appendix, we obtain an expression describing
the averaged growth rate of the wave,γ , dependence on the
electron distribution function.

Ann. Geophys., 31, 1379–1385, 2013 www.ann-geophys.net/31/1379/2013/
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Fig. 1. The dynamics of the electron distribution function obtained from the numerical simulation (shown in the central panel). The small
panels provide snapshots of the distribution function. The values of the distribution function and the velocity are provided in arbitrary units
(in the Appendix following Eq.A26). The width of the initial Gaussian is1v = 0.2.

Fig. 2. The dynamics of the averaged wave spectral power obtained using the numerical simulation, as shown in the central panel. Small
panels provide snapshots of the wave spectral power. The values of the wave spectral power and the velocity are provided in arbitrary units
(in the Appendix following Eq.A26).

In Fig. 3 the dependencies of the distribution function and
the growth rate on velocity are presented for two moments
in time. As one can see, the impact of wave trapping on
inhomogeneous plasma as described by the averagedγ re-
sults in significant reduction of the range of phase velocities
u where waves can be generated. Very important difference
between beam plasma interaction in homogeneous and in-
homogeneous plasmas consists in the direct relation of the
slope of distribution with the positiveness of growth rate in

homogeneous plasma and absence of such relation in inho-
mogeneous, indeed the waves can damp in the areas of the
velocity space where the distribution function has positive
slope. The effect appears due to the variation of the wave’s
phase velocity in inhomogeneous plasma. The majority of
waves that are trapped pass a significantly longer time in
areas where they are damped than in areas where they can
grow. Therefore, the effect of averaging along the wave’s tra-
jectory explains the change in the relationship between the

www.ann-geophys.net/31/1379/2013/ Ann. Geophys., 31, 1379–1385, 2013



1382 A. Voshchepynets and V. Krasnoselskikh: Electron beam relaxation in inhomogeneous plasmas

Fig. 3. The electron distribution functionf (black) and the related Langmuir wave growth rateγ (red) (thex andy axis are same as in
Fig. 1).

Fig. 4. f for different moments of time (in arbitrary units). The initial electron beam distribution,f , is plotted in black and the final
distribution,f , is plotted in brown. The right and left panels correspond to the different width of the beam with respect to its energy1v

(1v = 0.2 and1v = 0.08) within the velocity space.

slope of the velocity distribution and wave growth/damping.
The process of plateau formation can take place only if the
wave intensity in the corresponding region is strong. Thus,
relaxation of the beam significantly slows down due to the
shrinking of the region where waves growγ > 0. The region
becomes narrower with time and from the moment shown in
the left panel in Fig.3, we have anγ < 0 for all waves. After
τ = 0.8 the waves could only be damped and the formation
of the plateau eventually stopped, electrons begin to reab-
sorb the energy of Langmuir waves allowing the diffusion
process to be supported until the wave energy is completely
reabsorbed.

As seen from Eq. (1), all of the waves with phase veloci-
tiesu < v were involved in the acceleration of particles with
a velocityv. Therefore, acceleration was basically provided
by waves that were grown in a region with a positive growth
rate. Wave propagation in inhomogeneous plasma suggests
that part of the time waves pass in the region where their
phase velocity is larger than the phase velocity of primar-

ily generated waves, resulting in an interaction with particles
having velocities higher than the velocity of particles of the
beam that transfers part of their energy to waves.

Such an action allows the transfer of part of the wave en-
ergy to energetic particles, forming the tail of the distribu-
tion with energies larger than the beam energy. We used this
process to describe the diffusion process toward higher ener-
gies. From Fig.4 one can see that the population of fast elec-
trons within the tail of the distribution function growth during
beam relaxation (the filled areas). Therefore, electrons could
be efficiently accelerated. Calculations with different initial
conditions indicated that the energy of energetic particles de-
pend on the initial1v.

For1v < 0.1v0, more than 50 % of the initialεk could be
transferred to a high energy tail due to the wave energy ab-
sorption by particles having energies higher than the energy
of the beam.

Ann. Geophys., 31, 1379–1385, 2013 www.ann-geophys.net/31/1379/2013/
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4 Conclusions

Electron beam relaxation in a plasma with a strongly inho-
mogeneous density fluctuation was numerically studied by
making use of the system of equations derived byRyutov
(1969) in a quasi-linear approximation. The system describes
beam-plasma interactions when the overwhelming majority
of waves are trapped by density depletions. Under these con-
ditions the growth rate is averaged along the wave path in the
vicinity of the bottom of density wells. Two important fea-
tures were observed during the relaxation of the beam that
were different from the beam-plasma interaction in a homo-
geneous plasma. The relaxation process stops prior to the for-
mation of a plateau-like distribution function because wave
growth stops even when the slope of the distribution func-
tion remains positive locally. The relaxation process causes
a transfer of a portion of the energy of waves to the high en-
ergy part of the electron velocity distribution. For the narrow
beam (1v < 0.1v0) the energy flux of accelerated electrons
can reach up to 50 % of the total energy flux of the beam.
However, the presence of wave damping by the background
distribution in the solar wind also impacts available wave en-
ergy that can be reabsorbed by the electron beam.

Appendix A

For the problem under consideration we assumed that the
initial velocity of the beam,v0, significantly exceeded the
plasma thermal velocity,vt. The second assumption is that
the initial width (variance) of the velocity,1v, of the beam
is small as compared to the beam velocity,v0. We consid-
ered a beam moving in the direction of the magnetic field,
parallel to thex axis. Thus, our problem is 1-D. The den-
sity of a plasma is supposed to depend on the coordinates
as follows:n(x) = n0 + 1n(x), wheren0 is the unperturbed
averaged value of the electron density and delta1n(x) de-
scribes small random deviations fromn0. An important addi-
tional condition is that the spatial scale of inhomogeneities,
a, is supposed to be much larger than the wavelength of the
Langmuir waves generated by the beam:

aωp/v0 � 1, (A1)

whereωp =

√
4πe2n0/me is the plasma frequency.

When inequality (A1) is satisfied, Langmuir waves in plas-
mas can be described as a superposition of the quasi-particles
(wave packets) that corresponds to WKB description. The
motion of these quasi-particles in the phase space can be de-
scribed by the following Hamiltonian equations:

dx

dt
=

∂

∂k
ω(k,x), (A2)

dk

dt
= −

∂

∂x
ω(k,x), (A3)

wherex is a coordinate,k is a momentum (wave vector),ω

is the Hamiltonian function (frequency) that is the solution
of the dispersion equation:

ω(k,x) = ωp

(
1+

1

2

n(x)

n0

)
+

3

2

k2v2
t

ωp
. (A4)

Another important characteristic is the phase velocity,vph =

ω/k. The interaction between an electron and a quasi-particle
is possible only whenv = ω/k.

The evolution of Langmuir wave spectral power can be
described by the Liouville equation, as follows:

∂W

∂t
+

∂ω

∂k

∂W

∂x
−

∂ω

∂x

∂W

∂k
= 2γW, (A5)

whereγ is the growth rate of the beam instability, as follows:

γ = γ (k, t) =
π

2

n′

n
ωp

(∂f

∂v
v2

)
v=vph

. (A6)

The presence of the density of the beamn′ is due to the elec-
tron distribution functionf , normalized to 1 as follows:

∞∫
0

f dv = 1. (A7)

The energy of the wave changes slowly on the time scale
a/( ∂ω

∂k
) that allows one to describe the evolution of the wave

spectral power, making use of the averaged growth rate. Us-
ing the variableω instead ofk in Eq. (A5), as follows, is
convenient:

∂W

∂t
+

∂ω

∂k

∂W

∂x
= 2γW. (A8)

In order to determine the solution to the equations above, we
used the perturbation theoryW = W0 + γW1 and took into
account the fact that by using∂W0

∂t
∼ 2γW0 one can obtain,

in the first order approximation, the following:

∂W1

∂x
=

2γW0 − ∂W0/∂t

∂ω/∂k
. (A9)

Let us consider quasi-particles that oscillate near the bottom
of density wells. Then the following equation can be written∮

2γW0 − ∂W0/∂t

∂ω/∂k
dx = 0. (A10)

We integrate over the closed trajectories of quasi-particles.
By considering that theW0 does not depend onx one can
rewrite Eq. (A10), as follows:

∂W0

∂t
= 2γW0, (A11)

www.ann-geophys.net/31/1379/2013/ Ann. Geophys., 31, 1379–1385, 2013
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whereγ is the averaged growth rate, as follows:

γ =

(∮
γ

∂ω
∂k

dx
)
/
(∮

dx

∂ω
∂k

)
, (A12)

In the vicinity of the bottom of the potential well,x0, the
density can be presented as follows:

1n(x) = 1n0 +
1

2
|1n|

(x − x0)
2

a2
0

, (A13)

where1n0 = 1n(x0) and

1

a2
0

=
1

|1n0|

∂21n

∂x2
. (A14)

Then, the Hamiltonian function reads as follows:

ω = const+ ωp
|1n|

2n0

(x − x0)
2

a2
0

+
3

2

k2v2
t

ωp
. (A15)

Using Eq. (A15) one can integrateγ from Eq. (A12). There-
fore, it is convenient to use the new variable of integration
v = ωp/k(x), wherek(x) can be defined from the condition
ω(x,k) = const. Easy to determine is that, as follows:

(x − x0)
2
=

a2
0v2

t

ε

( 1

u2
−

1

v2

)
,

∂ω

∂k
= 3

v2
t

v
, (A16)

where

ε =
|1n0|

6n0
, u =

ωp

k(x0)
, (A17)

whereu is the phase velocity of the quasi-particle in the bot-
tom of the well. Using Eqs. (A16), (A12) and (A6) one can
obtain the following:

γ (u, t) =
ωpn

′

2n

∞∫
u

∂f (v, t)

∂v

( 1

u2
−

1

v2

)−
1
2
dv. (A18)

The factor∼ π from Eq. (A6) is canceled as a result of the
spatial averaging in Eq. (A12).

Now we consider the following equation for the electron
distribution function:

∂f

∂t
+ v

∂f

∂x
=

∂

∂v
D

∂f

∂v
, (A19)

whereD is the quasi-linear diffusion coefficient, as follows:

D =
4π2e2

m2v
W(k,x, t). (A20)

By taking into account the inequality (A1) and by assuming
that the oscillations in each single cavity are independent on
those in other cavities, one can average overx to obtain the
following:

∂f

∂t
=

∂

∂v
D

∂f

∂v
, (A21)

whereD is the averaged diffusion coefficient andf is the
averaged electron distribution function, as follows:

D = lim
L→∞

1

2L

L∫
−L

D(x,k, t)dx. (A22)

For the quasi-particles that oscillate in the vicinity of the bot-
tom of the potential well from the Eqs. (A16), (A22) one can
find the diffusion coefficient, as follows:

D =
8π2e2

m2
vt

v∫
0

W(u, t)

u2
√

v2 − u2
du, (A23)

where

W(u, t) = lim
L→∞

1

2L

a0W0
√

ε
. (A24)

The complete system of equations describing the relaxation
of the electron beam in inhomogeneous plasmas in the quasi-
linear approximation is, as follows:

∂f

∂t
=

∂

∂v
D

∂f

∂v
, D =

8π2e2

m2
vt

v∫
0

W

u2
√

v2 − u2
du, (A25)

∂W

∂t
= 2γW, γ =

1

2
ωp

n′

n
u

∞∫
u

v∂f /∂v
√

v2 − u2
dv. (A26)

After a substitution of the variablesf →
f
v0

, W →
n′mv4

0
πωpvt

W ,

t →
n

n′ωp
t , v = v0v, u = v0u, one can obtain the following

dimensionless system:

∂f

∂t
=

∂

∂v

( v∫
0

W

u2
√

v2 − u2
du

)∂f

∂v
, (A27)

∂W

∂t
= Wu

∞∫
u

v
∂f
∂v

√
v2 − u2

dv. (A28)

For this work, we solve this system (A27, A28) numerically
aiming to study the process of quasi-linear relaxation of the
electron beam in inhomogeneous plasmas.
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