
Ann. Geophys., 30, 841–847, 2012
www.ann-geophys.net/30/841/2012/
doi:10.5194/angeo-30-841-2012
© Author(s) 2012. CC Attribution 3.0 License.

Annales
Geophysicae

On the prediction of the auroral westward electrojet index

O. A. Amariutei 1 and N. Yu. Ganushkina1,2

1Finnish Meteorological Institute, Helsinki, Finland
2University of Michigan, Ann Arbor, USA

Correspondence to:O. A. Amariutei (olga.amariutei@fmi.fi)

Received: 1 November 2011 – Revised: 19 March 2012 – Accepted: 4 May 2012 – Published: 14 May 2012

Abstract. An ARMAX based model, to forecast the evolu-
tion of the of AL index, is developed. The model has been
trained and validated using neural networks with the half
wave rectifier (V Bs) as input. It is shown that the model
posses a good, reliable forecasting ability, including periods
of intense geomagnetic activity. Prediction efficiency of the
model is discussed in the context of 1 min resolution output
smoothed over 7 min.

Keywords. Magnetospheric physics (Storms and sub-
storms)

1 Introduction

Many contemporary technological systems are susceptible to
the adverse effects caused by space weather disturbances, so
the forecasting of space weather dynamics has become one
of the most important applications of space physics. A num-
ber of indices were proposed to qualify the intensity of the
disturbances in the magnetosphere. Auroral electrojet indices
are obtained from a number (usually greater than 10) of sta-
tions distributed in local time in the latitude region that is
typical of the Northern Hemisphere auroral zone (Davis and
Sugiura, 1966). For each of the stations the north-south mag-
netic perturbation H is recorded as a function of universal
time. A superposition of these data from all the stations en-
ables a lower bound or maximum negative excursion of the
H component to be determined; this is called the AL index.
Similarly, an upper bound or maximum positive excursion in
H is determined; this is called the AU index. The difference
between these two indices, AU-AL, is called the AE index.
Notice that negative H perturbations occur when stations are
under an westward-flowing current. Thus the indices AU and
AL give some measure of the individual strengths of east-
ward and westward electrojets, while AE provides a measure

of the overall horizontal current strength. During auroral sub-
storms excursions in the auroral indices from a nominal daily
baseline, with durations of tens of minutes to several hours,
are seen. Therefore, times of sharp drops in, for example, Al
index are considered as onset times for substorms. The sharp
increase of energetic (a few tens to hundreds of keV) particle
flux in the near-Earth tail is one of the most important mani-
festations of the substorm expansion phase. The electric field
behaviour is important in understanding how the energetic
particle injections are formed and how the particles are accel-
erated. Observations show that substorm-associated electric
fields usually display a very complicated behaviour. The en-
hanced electric fields are impulsive with amplitudes of up to
20 mV m−1, which is more than three times the largest con-
vection electric field that coincides with the braking of the
fast flows, and it is correlated with the magnetic field dipo-
larization in the inner central plasma sheet (Tu et al., 2000,
and references therein). Several models have been proposed
to explain particle injections (Li et al., 1998; Sarris et al.,
2002). The models are built on the idea that a perturbation
farther out in the magnetotail propagates inward, probably
in the form of bursty bulk flows, and produces dipolariza-
tion and dispersionless injections. So far these models give
a good agreement with the observed dispersionless electron
injections at geostationary orbit.

The relative importance of the large-scale convection elec-
tric field and the substorm-associated electric fields in the
energization and transport of particles from the plasma
sheet into the ring current region is still an open ques-
tion. Ganushkina et al.(2005, 2006), using Inner Magne-
tosphere Particle Transport and Acceleration Model (IMP-
TAM) (Ganushkina et al., 2001, 2005, 2006), were able to
reproduce the observed amount of ring current protons with
energies of 80 keV during a storm recovery phase. In addi-
tion to the large-scale fields, transient fields associated with
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the dipolarization process in the magnetotail during substorm
onset were included for this modeling. These fields were
modeled as earthward propagating electromagnetic pulses of
localised radial and longitudinal extent (Li et al., 1998; Sarris
et al., 2002).

The times when the electromagnetic pulses were launched,
were the substorm onset times (Ganushkina et al., 2001,
2005, 2006). The times of sharp drops in the AL index were
used for the onset times and the amplitudes of the pulses were
scaled proportionally with the magnitudes of the peaks in the
AL index. Therefore, for the modeling of the processes of
particle transport and acceleration from the plasma sheet to
the inner magnetosphere regions, the information given by
the AL index is of a great importance. The auroral indices,
AL, AU, AE and AO, being a relative measure of the global
auroral electrojet activity, give rise to notable challenges in
prediction. Forecasting the auroral westward region electro-
jet currents, which are quantified by the AL index driven
by solely the solar wind and interplanetary magnetic field
(IMF), is of great importance and has stimulated numerous
studies.

In the present paper, the proposed AL forecasting model
has been developed and optimised as an addition to the IMP-
TAM model due to the necessity of including the electro-
magnetic pulses that will be launched at times and scaled
with the relative amplitudes given by the AL forecast. In or-
der to provide a near real time prediction, we have built a
model based on previous achievements in nonlinear system
identification and foregoing advances in modeling auroral in-
dices. Low-dimensional system identification has been sug-
gested as an appropriate technique in the search of a model
for the magnetospheric dynamics (Sharma, 1995; Roberts
et al., 1991; Boynton et al., 2011a; Vassiliadis and Klimas,
1995). Nonlinear models for the AL prediction, driven by
the solar wind and IMF parameters, have been pioneered by
Bargatze et al.(1985) and further developed byVassiliadis
(1994), Price et al.(1994) andVassiliadis et al.(1995). Neu-
ral networks have been introduced into prediction of auroral
indices along with nonlinear models (ARMA and MA fil-
ters) byHernandez et al.(1993) and later on byGleisner
and Lundstedt(1997) andWeigel et al.(1999). Following the
steps ofHernandez et al.(1993), our model uses neural nets
to construct nonlinear models using Autoregressive Moving
Average with eXogenous input(s) (ARMAX). The data and
the challenges of the data sets in correlation with the model
are discussed in Sect. 2, while results and conclusions are
presented in Sects. 3 and 4, respectively.

2 Data and model

The input data of our model are the half wave rectifier (Bur-
ton et al., 1975) V Bs, whereV is the solar wind velocity
andBs is defined as the z-component of the interplanetary
magnetic field (IMF), when southward- orientated or zero

Fig. 1. A schematic representation of the ARMAX – neural net-
work.

otherwise (in GSM coordinates). The output is the AL in-
dex data. We used 1 min resolution data for solar wind and
IMF parameters observed at ACE spacecraft, propagated to
the sub solar point of the magnetopause by omniweb (http:
//omniweb.gsfc.nasa.gov/form/omnimin.html). The AL in-
dex data were obtained from the World Data Center for Geo-
magnetism, Kyoto (http://wdc.kugi.kyoto-u.ac.jp/). We used
1 January 1998 to 31 December 1998 for training of the
model and 1 January 1999 to 31 May 1999 for validation.
There are three main technical issues that come into consid-
eration: data gaps, the ballistic propagation of the data from
in situ measurements to the magnetopause and the resolution
of the data. The comprehensive analysis of nonlinear systems
always require continuous data sets. In the data set consid-
ered, we have found only a few data gaps, so the overall du-
ration of the gaps does not have great impact on the results.
We apply a simple method, based on a recurrent linear in-
terpolation algorithm, to replace the missing data points with
the most fitted value given by the nearest neighbour to the
gap. The second problem is related to the propagation meth-
ods used for shifting the data measured at L1 to the magne-
topause. While this is an issue that is beyond the scope of our
presented work, it will be discussed in Sect. 3 in terms of the
model’s performance and capabilities. In the present study, in
order to identify drivers for the IMPTAM model, the empha-
sis falls on an accurate forecasting of the times more than the
amplitudes of the modelled data series, therefore the 1-min
resolution data has been smoothed with a moving average
over an interval of 7 min, similar toLi et al. (2007) (10 or
15 min averaged data) andWeigel et al.(1999).

ARMAX is often used to model systems of short time
scales. ARMAX modeling technique is a variation of the
general AutoRegressive Moving Average (ARMA) model.
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Fig. 2. Top panel: the autocorrelation function of the prediction error. Bottom panel: the cross correlation between the input (V Bs) and the
prediction error.
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Fig. 3. Observed AL vs. predicted AL, using data from validation
testbed (January–May 1999).

The general ARMA equation is given by

y(n) = −

p∑
k=1

aky(n − k) +

q∑
k=0

bkx(n − k), (1)

wherey(n) is the output of the system,x(n) is the input of
the system,bk andak are coefficients of thek-th polynomial
shift operator. The incorporation of an external input, called
exogenous term, to the systems results would give the formu-
lation for the ARMAX model (Eq.2) as

y(n) = −

p∑
k=1

aky(n− k)+

q∑
k=0

bkx(n− k)+

r∑
k=1

cku(n− k).

(2)

The extra termu and its coefficientck is the exogenous
input sequence, and this term represents the past predic-
tion errors. At the initial run of the model, this is as-
sumed to be zero, and during the training epochs it will
get the value of the difference between the desirable output
and the predicted output (Billings and Voon, 1986; Boyn-
ton et al., 2011b). Different methods exist to determine the
coefficients of the ARMA/ARMAX model, such as Least
square methods, Shank method, Pade approximation or co-
variance/autocorrelation methods. In the present work, we
propose another method, which exploits the main ability of
the neural network. Neural networks are commonly used
when the exact nature of the relationship between inputs and
output is unknown. The most important feature of the neural
networks is their capability to learn the relationship between
input and output through training. We propose a setup based
on an ARMAX model (Eq.2), for which a neural network
method is used for the determination of the coefficients. The
feed forward neural network consist of one input layer (with
various number of inputs), one or several hidden layers (with
various numbers of units) and the output layer which can
also have several outputs. The processing units also called
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Fig. 4. Model performance at various prediction steps, ranging from 10 to 60 min ahed. The figure depicts an event that took place on
20 January 2000.
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(a)Overlapped: Observed AL (red) and 10−step ahead AL prediction (blue); (b) Prediction error
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Fig. 5. (a)AL observation (red) and predicted AL (blue) – 10 step ahead prediction;(b) prediction error. The panel shows one month of data
(February 2000) at 1 min resolution.

nodes, are interconnected with neighbouring nodes from ad-
jacent layers. The parameters associated with these connec-
tions are called weights. The hidden layers, in our case two,
are weighted by two matrixes W1 (input to hidden) and W2
(hidden to output). The first hidden layer consists of seven
units, activated by a hyperbolic tangential function, which
ensures a higher coefficient variation for the activation val-
ues of the hidden unit. The second layer has a linear acti-
vation function for each of the two units (Hernandez et al.,
1993), as displayed in Fig.1. A reliable method for deter-
mining the number of the hidden layers and units is still un-
der dispute. While few general rules are nowadays accepted
(Chester, 1990), the extended verification methods are be-
yond the scope of this work (Lawrence et al., 1996). The
neural network structure was chosen to suit the nonlinearity
of the system and the number of the hidden units was cho-
sen in accordance with the number of inputs/outputs of the

network (Tetko et al., 1995). The network is trained to es-
timate its response by adjusting the set of the weights (W1
and W2), in accordance with the “learning rule”. The learn-
ing law is given by back propagation of the error between the
desired output, and the systems output and it has been im-
plemented using Levenberg-Marquardt (Kisi, 2004; Catalao
et al., 2007) method. Figure1 shows a schematic representa-
tion of the model.

3 AL prediction results

The network training has been done for 1 min resolution
measurements of the solar wind and IMF parameters and AL
index for the whole year 1998. The sum of squared devia-
tions of actual values from predicted values was SSE = 18
(nT2) and the prediction efficiency was PE = 0.4, where PE is
defined as the proportion between the mean squared residual
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(a)Overlapped: Observed AL (red) and 30−step ahead AL prediction (blue);(b)Prediction error
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Fig. 6. (a)AL observation (red) and predicted AL (blue) – 30 step ahead prediction;(b) prediction error. The panel shows one month of data
(February 2000) at 1 min resolution.
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(a)Overlapped: Observed AL (red) and 60−step ahead AL prediction (blue);(b)Prediction error
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Fig. 7. (a)AL observation (red) and predicted AL (blue) – 60 step ahead prediction;(b) prediction error. The panel shows one month of data
(February 2000) at 1 min resolution.

and the variance of the coefficients and SSE is the sum of
squared errors. Once the model has been trained, we choose
a different data set, from January to end of May 1999, for the
validation of the model. Figure2 shows the model error after
validation for one step ahead prediction. The top panel shows
the 95 % confidence interval for the autocorrelation func-
tion of the prediction error, while the bottom panel shows
the cross-correlation of the input with the prediction error.
Both the autocorrelation and cross-correlation fall within the
confidence range. For the autocorrelation, the reason behind
the 7 lags before falling into the confidence range, can be
explained in the context of the data being smoothed over 7
points. Figure3 shows the scatter plot between the observed
AL index and predicted AL index for the validation set. It
is noticeable that the points align along the 45◦ line, which

means a very good correlation. The scatters on the sides of
the 45◦ line, depict either the over- or under-estimation of
the observed values by the prediction model. As expected,
during intense magnetospheric activity, the model overesti-
mated the magnitude of the sub-storm. This shows that the
neural network structure is relevant to the system and that
we do not need to increase the order of the model (Billings
and Voon, 1986; Billings and Zhu, 1989).

The prediction of the AL index for a chosen event can be
seen in Fig.4 for 10 to 60 steps ahead. The chosen event
took place on 20 January 2000 and illustrates the precision
of the algorithm in determining the exact times in the oc-
currence of the event. The model capability over a longer
period of time is illustrated in 3 different figures: for 10 min
ahead Fig.5, 30 min ahead Fig.6 and 60 min ahead Fig.7.
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The top panel (a) in every figure shows the observed vs. pre-
dicted AL values and the bottom panel (b) shows the pre-
diction error, defined as the difference between the measured
and the predicted AL. The panels represent a month of data
(February 2000) at 1 min resolution. Figure5 shows a pre-
diction with a small overestimation of AL amplitudes rang-
ing from 10 to 70 nT, with a prediction efficiency PE = 0.98
and a normalised squared mean error NRMSE = 0.113, com-
puted as the square root of the proportion between the sum
of the squares of the residuals and the variance of the data.
The 30 step ahead forecast (Fig.6) accurately predicts the
timing of the substorm onsets with small overestimations of
the magnitude during large amplitudes of AL and small un-
derestimations during quiet times. The model overestimation
during the intensive activity is of the order of approxima-
tively 200 nT NRMSE = 0.33 and a PE = 0.89. The 60 min
forecast displays a better result than expected (Fig.7) with
a NRMSE = 0.61 and a PE = 0.63, following the same pattern
as the 30 min ahead prediction, underestimating lower val-
ues and overestimating during substorms. However, it should
be noticed that the prediction is following the shape of the
observed AL data. As mentioned before, ACE data, propa-
gated to the magnetopause is used as input. At the begin-
ning of February 2000, ACE spacecraft was orbiting around
the Sun–Earth L1 libration point, at 238RE sunward of the
Earth, spinning further away towards 242RE at the end of
the month. The relative distance to magnetopause is ranging
from 230 to 232RE, and the velocity of the bulk plasma flow
spans from 311 km s−1 to 989 km s−1, which implies that
time of arrival to the magnetopause would be between over
30 min to less than 80 min. Making predictions for 60 steps
ahead, in this context, is an ambitious task, as the model
would predict solely on what it has learned and cannot rely
much on solar wind inputs. At small IMF velocities, the
parameters for the half wave rectifier (V Bs) do not arrive
in time at the magnetopause, forcing the neural-ARMAX
model to estimate the output relying only on past learned be-
haviour.

4 Conclusions

We have presented a new model for prediction of the AL in-
dex, based on a combination of neural networks with an AR-
MAX model. Statistical evaluation of the model shows that
it is reliable and it is fit to be used as an addition to the Inner
Magnetosphere Particle Transport and Acceleration Model
(IMPTAM). The existing prediction models for the AL index
provide either a parametric model (Li et al., 2007) or mod-
els dependent on a prior classification of the data (Hernandez
et al., 1993). The former provides a batch prediction with the
disadvantage of completely missing the onsets of some of the
events, while the latter would give great prediction but only
on a carefully selected set of input data, which would make it
impossible to use with live data. The neural network and AR-

MAX model that we have proposed, has a number of advan-
tages, not only for our future use: the algorithm is not com-
putationally expensive, it is able to account for nonlinearities
in the input-output relationship and it provides a stable and
reliable prediction. Furthermore, the algorithm gives accept-
able results even in extreme conditions, when input data (so-
lar wind parameters) are scarcely available, as in the case of
60 min ahead prediction.
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