
Ann. Geophys., 30, 751–760, 2012
www.ann-geophys.net/30/751/2012/
doi:10.5194/angeo-30-751-2012
© Author(s) 2012. CC Attribution 3.0 License.

Annales
Geophysicae

Evolution of the plasma sheet electron pitch angle distribution by
whistler-mode chorus waves in non-dipole magnetic fields

Q. Ma, B. Ni, X. Tao, and R. M. Thorne

Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, CA, USA

Correspondence to:Q. Ma (qianlima@atmos.ucla.edu)

Received: 16 November 2011 – Revised: 18 January 2012 – Accepted: 6 February 2012 – Published: 27 April 2012

Abstract. We present a detailed numerical study on the ef-
fects of a non-dipole magnetic field on the Earth’s plasma
sheet electron distribution and its implication for diffuse au-
roral precipitation. Use of the modified bounce-averaged
Fokker-Planck equation developed in the companion paper
by Ni et al. (2012) for 2-D non-dipole magnetic fields sug-
gests that we can adopt a numerical scheme similar to that
used for a dipole field, but should evaluate bounce-averaged
diffusion coefficients and bounce period related terms in non-
dipole magnetic fields. Focusing on nightside whistler-mode
chorus waves atL = 6, and using various Dungey magnetic
models, we calculate and compare of the bounce-averaged
diffusion coefficients in each case. Using the Alternative Di-
rection Implicit (ADI) scheme to numerically solve the 2-D
Fokker-Planck diffusion equation, we demonstrate that cho-
rus driven resonant scattering causes plasma sheet electrons
to be scattered much faster into loss cone in a non-dipole
field than a dipole. The electrons subject to such scatter-
ing extends to lower energies and higher equatorial pitch an-
gles when the southward interplanetary magnetic field (IMF)
increases in the Dungey magnetic model. Furthermore, we
find that changes in the diffusion coefficients are the domi-
nant factor responsible for variations in the modeled tempo-
ral evolution of plasma sheet electron distribution. Our study
demonstrates that the effects of realistic ambient magnetic
fields need to be incorporated into both the evaluation of res-
onant diffusion coefficients and the calculation of Fokker-
Planck diffusion equation to understand quantitatively the
evolution of plasma sheet electron distribution and the oc-
currence of diffuse aurora, in particular atL > 5 during ge-
omagnetically disturbed periods when the ambient magnetic
field considerably deviates from a magnetic dipole.

Keywords. Magnetospheric physics (Auroral phenomena;
Energetic particles, precipitating) – Space plasma physics
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1 Introduction

The precipitation of low energy plasma sheet electrons is
the principal cause of the Earth’s diffuse aurora, which is
not visually impressive but considerably modifies the iono-
spheric properties (Eather and Mende, 1971). Electrons dif-
fuse into the loss cone, and thus precipitate into the upper at-
mosphere due to resonant interactions with the plasma waves
in the magnetosphere (e.g.,Lyons et al., 1972; Inan et al.,
1992). These processes can be modeled using a Fokker-
Planck diffusion equation to evaluate the temporal evolution
of the electron phase space density (PSD) distribution (Al-
bert, 2004, 2005).

Recently, it has been shown that the most intense night-
side diffuse auroral scattering is mainly due to chorus waves,
which can lead to the formation of electron pancake distribu-
tion at energies below a few keV (e.g.,Thorne et al., 2010;
Tao et al., 2011; Ni et al., 2011a,b). Most previous studies on
the scattering of plasma sheet electrons (e.g.,Su et al., 2009;
Tao et al., 2011; Horne and Thorne, 2000; Horne et al., 2003;
Johnstone et al., 1993; Thorne, 2010) and radiation belt rela-
tivistic electrons (e.g.,Shprits et al., 2008; Horne et al., 2005;
Summers et al., 1998, 2009; Thorne et al., 2005, 2007, 2010)
have adopted a dipole field, yet it is known that the Earth’s
magnetic field is not a perfect dipole, especially at high L-
shells or under geomagnetically disturbed conditions. Solar
wind disturbance can cause significant changes in the Earth’s
magnetic field (Baker, 2000). Even at solar quiet times,
the dipole field is only a first order approximation. Wave-
particle resonant interaction processes can be significantly
different when the ambient magnetic field changes (Orlova
and Shprits, 2010), which will consequently affect the quan-
tification of magnetospheric electron dynamics (Kennel and
Engelmann, 1966). More specifically, for the Earth’s diffuse
aurora, bounce-averaged diffusion coefficients that critically
determine the evolution of electron PSD will be different
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between the use of a magnetic dipole and more realistic non-
dipole magnetic field models (Ni et al., 2011c).

In the companion paper (Ni et al., 2012), we demonstrate
that for 2-D non-dipole magnetic field models it is reasonable
to use a bounce-averaged Fokker-Planck diffusion equation
similar to that for PSD evolution in a dipole field, but with
modified bounce period related terms and bounce-averaged
diffusion coefficients. In the present study we choose the
nightside Dungey magnetic field model atL = 6 to simulate
the influence of a southward IMF, and focus on the effects
of a non-dipole magnetic field on the Earth’s diffuse auro-
ral scattering due to upper band chorus (UBC) and lower
band chorus (LBC). Section 2 gives a brief description of
the generalized formalism of bounce-averaged diffusion co-
efficients and Fokker-Planck diffusion equation in 2-D mag-
netic fields. Comparisons of bounce-averaged diffusion co-
efficients in dipole and Dungey models are shown in Sect. 3.
In Sect. 4 we present our modeling of the evolution of plasma
sheet electron pitch angle distribution by chorus waves in
dipole and non-dipole magnetic fields using the ADI scheme.
We discuss implications of the above results in Sect. 5.

2 Bounce averaged diffusion coefficients and Fokker-
Planck diffusion equations in 2-D magnetic fields

Resonant wave-particle interactions in the Earth’s magneto-
sphere are generally described by quasi-linear diffusion the-
ory (e.g.,Albert, 2004). The equations for resonant particle
diffusion in pitch angle and energy were first developed by
Lyons(1974a,b). The bounce averaged Fokker-Planck equa-
tion that describes evolution of phase space densityf , using
any 2-D magnetic fieldB = B(λ) at fixedL is given as (e.g.,
Schulz, 1976; Schulz and Chen, 1995; Summers, 2005; Ni
et al., 2012):
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Here p is particle momentum,αeq is equatorial pitch an-
gle, andS(αeq) is the bounce period related term. In a
dipole field,S(αeq) can be approximated byS(αeq) = 1.38−

0.32sinαeq−0.32
√

sinαeq (e.g.,Lenchek et al., 1961; Orlova
and Shprits, 2011). In general,S(αeq) is given as:
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wherer, λ, andα denote radial distance, local magnetic lat-
itude and pitch angle, and the subscripts “m,s” and “m,n”
denote mirror points on the Southern and Northern Hemi-
sphere, respectively. In the Fokker-Planck Eq. (1), the pa-
rameters〈Dαeqαeq〉, 〈Dpp〉 and 〈Dαeqp〉 = 〈Dpαeq〉 denote
bounce-averaged diffusion coefficients in pitch angle, en-
ergy, and mixed terms respectively, which are determined by
(e.g.,Glauert and Horne, 2005; Summers et al., 2007a,b; Ni
et al., 2011c):
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whereDαα, Dpp andDαp = Dpα denote local diffusion co-
efficients in pitch angle, energy, and mixed terms, respec-
tively. These equations are similar to that in a dipole field
(e.g.,Lyons and Williams, 1984) except that the bounce time
related termS(αeq) and bounce-averaged diffusion coeffi-
cients need to be calculated in the adopted magnetic field
model, which suggests it feasible to use the developed nu-
merical schemes for Fokker-Planck diffusion simulations us-
ing a dipole field (e.g.,Tao et al., 2008; Xiao et al., 2009).

The Doppler-shifted resonant condition for resonant inter-
actions between electrons and plasma waves is:

ω−k‖v‖ = n�e/γ, (4)

whereω is wave frequency,k‖ is wave number parallel to the
ambient magnetic field,v‖ is parallel velocity,n is the reso-
nant harmonic order,�e is electron gyro-frequency, andγ is
the relativistic factor. When the background magnetic field
model changes, the range of electron energy and pitch an-
gle where resonance can occur will change accordingly (e.g.,
Orlova and Shprits, 2010; Ni et al., 2011c); as shown later,
this consequently affects the diffusion coefficients and the
evolution of the electron PSD distribution.

3 Electron resonant diffusion in non-dipole magnetic
fields

3.1 Dungey magnetic fields and adopted chorus wave
model

The first order approximation to the Earth’s magnetic field is
a dipole field. However, the Earth’s magnetic field is always
disturbed and compressed by the ambient solar wind media
(Dungey, 1963). The Dungey magnetic model adds a uni-
form z-component magnetic fieldBz in the Dipole field to
simulate the effects of southward IMF:
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Table 1. Parameters of nightside chorus waves atL = 6 based on CRRES data.

Wave Latitude Bw(pT ) fm =
fm
fce

flc =
flc
fce

fuc=
fuc
fce

δf =
δf
fce

θm θlc θuc δθ

LBC |λ| ≤ 5◦ 35.605 0.359 0.05 0.5 0.081 0◦ 0◦ 58◦ 30◦

5◦ < |λ| ≤ 10◦ 73.479 0.307 0.05 0.5 0.091 20◦ 0◦ 58◦ 30◦

10◦ < |λ| ≤ 15◦ 18.336 0.234 0.05 0.5 0.113 40◦ 0◦ 58◦ 30◦

UBC |λ| ≤ 5◦ 24.864 0.582 0.5 0.7 0.060 0◦ 0◦ 44◦ 30◦

5◦ < |λ| ≤ 10◦ 6.840 0.557 0.5 0.7 0.045 30◦ 0◦ 44◦ 30◦

Fig. 1. Comparison of field line configuration (left) and magnetic strength (right) for different magnetic field models atL = 6. Solid curves
are the results from the Dungey magnetic field model whenb is 8 (red), 13 (green) and infinity (blue); black dotted, dashed, and dash-dotted
curves are results from T89 model when Kp is 2 (quiet), 5 (moderate), and 7 (active), respectively.
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2M

r3
+Bz
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sinλ,
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(
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)
cosλ, (5)

where M is the Earth’s dipole magnetic moment. This
field model simplifies the Euler potentials description of the
Earth’s magnetic field at nightside (Kabin et al., 2007). We
useb = (M/Bz)

1/3 in units of Earth radii as a proxy of the
disturbance. The Dungey magnetic model approaches the
dipole field when b goes to infinity.

We focus on the resonant wave-particle interaction atL =

6 and magnetic local time (MLT)= 0. The Dungey mag-
netic field configuration and magnetic field strength atL = 6
whenb is 8, 13 and∞ (dipole) are shown in Fig.1. For a
comparison with the Tsyganenko global empirical magnetic
field model we show results for the Tsyganenko 89 (T89)
magnetic model (Tsyganenko, 1989) under geomagnetically
quiet (Kp = 2), moderate (Kp = 5), and active (Kp = 7) condi-
tions. The southward IMF stretches the Earth’s dipole field
on the nightside, leading to a decrease in the magnitude of
magnetic field strength at lower magnetic latitudes and an

increase at higher latitude. Consequently, the resonance con-
dition for wave-particle interaction is considerably affected
when we adopt the Dungey magnetic field model compared
to a dipole. Based upon the comparison with the T89 results,
the Dungey magnetic field model withb = 8 is more realistic
than a dipole field, and gives a reasonable represent of the
field distortion.

The parameters of nightside LBC and UBC waves (e.g.,
Meredith et al., 2001, 2009) at L = 6 are adopted on the ba-
sis of averaged CRRES wave observations (e.g.,Ni et al.,
2011a,b) under moderately disturbed conditions. Nightside
LBC has a latitude distribution|λ| < 15◦ and frequencies be-
tween 0.05fce and 0.5fce, wherefce is the electron gyro-
frequency at equator; Nightside UBC has a latitude distri-
bution |λ| < 10◦ and frequencies between 0.5fce and 0.7fce.
The waves are assumed to have a Gaussian frequency distri-
bution given by (e.g.,Glauert and Horne, 2005; Horne et al.,
2005):

B2(ω) =

{
A2e−[(ω−ωm)/δω]

2
ωlc ≤ ω ≤ ωuc,

0 otherwise,
(6)
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Fig. 2. Bounce-averaged pitch angle diffusion (top), energy diffusion (middle), and mixed diffusion (bottom) coefficients (in units of s−1)
corresponding to use of the Dungey magnetic models withb = ∞ (dipole), 13, and 8 at the equatorial crossing ofL = 6.

whereA is a normalized constant given by:
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andBw is the wave amplitude. The wave normal angle dis-
tribution g(θ) is also assumed to be Gaussian which can be
described as:

g(X) =

{
e−[(X−Xm)/δX]

2
Xlc ≤ X ≤ Xuc,

0 otherwise,
(8)

whereX = tanθ . In the three equations above, “δ” means
the bandwidth, subscript “m” means the peak, and subscripts
“uc” and “lc” denote the upper cutoff and lower cutoff, re-
spectively. The detailed information of wave amplitudeBw,
frequencyf (normalized byfce) and normal angleθ are
shown in Table1.

3.2 Bounce averaged diffusion coefficients

We use the Full Diffusion Code (FDC) (e.g.,Ni et al., 2008;
Shprits and Ni, 2009) to calculate the bounce-averaged diffu-
sion coefficients. The bounce-averaged pitch angle, energy,

and mixed diffusion coefficients atL = 6 are shown in Fig.2
as a function of equatorial pitch angleαeq and kinetic energy
Ek for the three magnetic field models. The two-band fre-
quency structure of chorus leads to characteristic features in
diffusion coefficients especially forDαeqαeq. At lowerαeq the
diffusion above a few keV is mainly caused by LBC while
the diffusion below a few keV is caused by UBC, producing
a relatively narrow diffusion gap around a few keV. For the
Dungey models (b = ∞ corresponding to a dipole field), as
b decreases, resonant diffusion extends to lower energies and
higher equatorial pitch angles, tending to diminish the gap
between LBC and UBC scattering rates. Clearly, bounce-
averaged diffusion coefficients largely depend on the adopted
magnetic field model, which is consistent with the results of
Orlova and Shprits(2010) andNi et al. (2011c).

The diffusion coefficients at fixed energies of 300 eV,
1 keV, 3 keV and 10 keV are shown in Fig.3. Bounce-
averaged diffusion coefficients increase for hundreds of eV
electrons when the Earth’s magnetic field becomes more
stretched. For 1 keV and 3 keV electrons changes in mag-
netic field can produce larger or smaller scattering rates at
lowerαeq compared to the results for a dipole field (b = ∞),
depending on the changes in the resonant wave frequen-
cies and the latitudinal extent of resonant interaction. In
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Fig. 3. Bounce-averaged pitch angle diffusion coefficients (solid curves) and energy diffusion coefficients (dotted curves) obtained using
Dungey magnetic field models withb = ∞ (black), 13 (green) and 8 (red) atL = 6 and MLT = 00:00 for four fixed electron energies of
300 eV, 1 keV, 3 keV, and 10 keV.

contrast, at higher equatorial pitch angle (αeq> 60◦), scat-
tering rates are higher in a non-dipole fields. For 10 keV
electrons, changes in the diffusion coefficients is relatively
small. The redistributions of diffusion coefficients over elec-
tron kinetic energy and equatorial pitch angle have significant
effects on the evolution of the electron PSD pitch angle dis-
tribution, and help identify the waves effects on the particles
(e.g.,Chen and Schulz, 2001a,b).

4 Fokker-Planck diffusion simulations in non-dipole
fields

4.1 Modeled evolution of plasma sheet electron PSD
pitch angle distribution

Compared to the case of using a dipole field, the solutions
of the bounce-averaged 2-D Fokker-Planck diffusion equa-
tion in non-dipole fields require the evaluation of the bounce
period related termS(αeq), and the bounce-averaged dif-
fusion coefficients corresponding to the adopted magnetic
field model. Polynomial expansion based on

√
sinαeq (e.g.,

Orlova and Shprits, 2011; Schulz and Lanzerotti, 1974) is
used to simulate the bounce period related term in Eq. (2),
which gives a relative error of 10−3. The results ofS(αeq) for
differentb values in the Dungey magnetic models show that
the normalized bounce time becomes shorter whenb varies
from infinity (dipole) to 8, which leads to higher diffusion

coefficients and faster diffusion process for theb = 8 case
compared with a dipole orb = 13 in the Dungey magnetic
models.

We can use the numerical schemes developed for a dipole
model to calculate the evolution of electron PSD in non-
dipole fields. A number of numerical methods (e.g.,Shprits
et al., 2009; Subbotin et al., 2010; Albert and Young, 2005)
have been developed for modeling PSD evolution in Fokker-
Planck diffusion simulations. In this study we choose the
ADI scheme since it is easy to code and computationally ef-
ficient (e.g.,Xiao et al., 2009; Su et al., 2010b). The Time
History of Events and Macroscale Interactions during Sub-
storms (THEMIS) mission (Angelopoulos, 2008) provides
observations of electron PSD from a few eV to 1 MeV, and
we adopt the nightside data nearL = 6, following Tao et al.
(2011), as our initial condition for numerical calculations of
PSD evolution, and focus on the energy range from 100 eV
to 100 keV which contributes most to the diffuse aurora.

The modeled evolution of plasma sheet electron PSD due
to nightside chorus scattering for up to 2 h is shown in Fig.4
as a function of equatorial pitch angle and kinetic energy for
the three Dungey models. It is clear that electrons are lost
rapidly in the energy band between 100 eV to about 20 keV
by the combined scattering of LBC and UBC. As the Earth’s
magnetic field becomes more stretched (b = 8), the diffu-
sion in this energy range becomes even faster. This is con-
sistent with the changes in the bounce-averaged diffusion

www.ann-geophys.net/30/751/2012/ Ann. Geophys., 30, 751–760, 2012
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Fig. 4. Evolution of electron PSD (in units of s3 m−6) as a function of equatorial pitch angle and kinetic energy due to nightside chorus at
L = 6 from initial condition (column 1) tot = 0.5 h (column 2),t = 1.0 h (column 3) and up tot = 2.0 h (column 4) in the Dungey magnetic
models withb = ∞ (dipole), 13 and 8.

coefficients that for the more distorted field (b = 8 case)
wave-particle interaction expands and shifts to lower energy
and higher equatorial pitch angle band compared with the
dipole field.

In order to study the PSD evolution for this energy band in
more detail, Fig.5 shows the evolution of electron PSD pitch
angle distribution at fixed energies from 110 eV to 27.19 keV.
At energies well below a few keV (2.88 keV in the Dungey
b = ∞ (dipole) case, 1.78 keV in the Dungeyb = 13 case,
and 1.09 keV in the Dungeyb = 8 case), electron loss is dom-
inantly due to UBC scattering and the electron PSD distribu-
tions form pancake structures. At energies well above several
keV (7.59 keV in the Dungeyb = ∞ (dipole) case, 6.46 keV
in the Dungeyb = 13 case, and 2.88 keV in the Dungeyb = 8
case), the electron scattering is mainly caused by LBC at
lower equatorial pitch angles and UBC at higher equatorial
pitch angle. The combination of rapid pitch angle scatter-
ing loss by LBC and energy diffusion by UBC leads to an
increase in the PSD distribution anisotropy with time. For
the energies between the above two energy bands, the scat-
tering loss is relatively slower. The reduction in electron loss
contributes to the formation of a flattened PSD distribution,
consistent withTao et al.(2011).

Comparisons of PSD evolution among the three Dungey
fields clearly show that the temporal variation of electron
PSD pitch angle distribution is strongly dependent on the
adopted magnetic field models. Compared to the results us-
ing the dipole field, electron PSD at lower equatorial pitch
angle decreases faster in stretched, non-dipole Dungey field
asb decreases. Due to the extension of scattering rates to
higherαeq, drops in electron PSD also occur over a broader
αeq range (up to higherαeq) in non-dipole Dungey fields. In
addition, the decrease in electron PSD is much larger for
the cases ofb = 8, especially for electrons from 100 eV to
15 keV, suggesting a much more pronounced precipitation
loss of plasma sheet electrons during disturbed periods.

4.2 Relative roles of bounce-averaged diffusion coeffi-
cients andS(αeq)

In order to better understand the factors responsible for the
differences in electron PSD evolution introduced by use of
different magnetic field models, we perform further 2-D
Fokker-Planck diffusion simulations to investigate the rel-
ative roles of bounce-averaged diffusion coefficients and
bounce period related termS(αeq), since these are the only
two terms that are changed when we switch from the dipole
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Fig. 5. Evolution of PSD (s3 m−6) as a function of equatorial pitch angle at selected fixed energies due to nightside chorus atL = 6 from
initial condition (column 1) tot = 0.5 h (column 2),t = 1.0 h (column 3) and up tot = 2.0 h (column 4) in the Dungey magnetic models with
b = ∞ (dipole), 13 and 8.

model to the Dungey models. The results shown in Fig.6
indicate that when we adopt the Dungey model withb = 8
and only changeS(αeq), the difference compared to simula-
tion in a dipole field becomes more pronounced at higher en-
ergy of a few keV. However, changes in the bounce-averaged
diffusion coefficients have a strong effect at both lower and
higher energy bands where the loss by UBC and LBC waves
are most prominent. Overall, changes in bounce-averaged
diffusion coefficients are more effective for influencing the
PSD evolution within different magnetic field models.

5 Conclusion and discussion

We numerically solved the bounce-averaged diffusion equa-
tion in non-dipole 2-D magnetic models to understand the
effects of different magnetic models on electron PSD distri-
bution in Earth’s diffuse aurora zone. Bounce-averaged dif-
fusion coefficients in different magnetic models were com-
puted, and the resulting PSD evolution was calculated by
ADI scheme. Specifically, the electron diffusion by LBC and
UBC waves (Bortnik and Thorne, 2007), which contributes
to the Earth’s diffuse aurora most, was studied in the Dungey
field models withb = ∞ (dipole), 13, and 8.

Our results show a similar behavior with the previous stud-
ies performed in dipole fields (e.g.,Tao et al., 2011; Ni et al.,
2008), but the rate of precipitation is quantitatively differ-
ent when using the Dungeyb = 8 magnetic model. We find
that the bounce-averaged diffusion coefficients are generally
stronger and shifts to lower energy and higher equatorial
pitch angle bands for the Dungeyb = 8 model, which is the
most distorted case. Correspondingly, electron PSD distribu-
tion is also lost faster with diffusion extending to lower en-
ergy and higher equatorial pitch angle bands, which suggests
that the non-dipole component and disturbance in Earth’s
magnetic fields can cause quantitative changes in the diffu-
sion process of plasma sheet electrons. Considering that the
Dungey model withb = 8 is the most realistic when com-
pared with T89 magnetic field results, ignoring the south-
ward magnetic field component and using a pure dipole field
will significantly underestimate the PSD loss in earth’s diffu-
sive aurora zone, especially at energies below 15 keV.

Further modeling will require more realistic non-
symmetric 3-D magnetic models to model the electron PSD
evolution (e.g.,Albert et al., 2009; Fok et al., 2008; Jor-
danova et al., 2010; Su et al., 2010a; Xiao et al., 2010). The
magnetic models used here are confined at MLT= 0, while
the Earth’s magnetic field configuration varies significantly

www.ann-geophys.net/30/751/2012/ Ann. Geophys., 30, 751–760, 2012
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Fig. 6. Comparison of the effects of bounce period related termS(αeq) and bounce-averaged diffusion coefficients (D) on electron PSD
(s3 m−6) evolution by using different magnetic field models: dipole (solid) and the Dungey modelb = 8 (dotted). Results are given for four
specified energies of 300 eV, 1 keV, 3 keV and 10 keV after four time scales of PSD evolution:t = 0.0 h (black),t = 0.5 h (blue),t = 1.0 h
(green) andt = 2.0 h (red).

with MLT. The adoption of non-dipole magnetic field is im-
portant in multi-dimensional Fokker-Planck diffusion simu-
lations for both low energy plasma sheet electrons and radi-
ation belt relativistic electrons. This work shows the study
of non-dipole effects on the wave-particle interaction in the
Earth’s diffuse aurora, and suggests that the choice of differ-
ent magnetic models could have a significant influence on the
plasma sheet electron PSD evolution.
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