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Abstract. The expansion-contraction model of Dungey cell
plasma convection has two different convection sources, i.e.
reconnections at the magnetopause and in the magnetotail.
The spatial-temporal structure of the nightside source is not
yet well understood. In this study we shall identify tempo-
ral variations in the winter polar cap convection structure
during substorm activity under steady interplanetary condi-
tions. Substorm activity (electrojets and particle precipita-
tions) is monitored by excellent ground-satellite DMSP F15
conjunctions in the dusk-premidnight sector. We take advan-
tage of the wide latitudinal coverage of the IMAGE chain
of ground magnetometers in Svalbard – Scandinavia – Rus-
sia for the purpose of monitoring magnetic deflections as-
sociated with polar cap convection and substorm electro-
jets. These are augmented by direct observations of po-
lar cap convection derived from SuperDARN radars and
cross-track ion drift observations during traversals of po-
lar cap along the dusk-dawn meridian by spacecraft DMSP
F13. The interval we study is characterized by moder-
ate, stable forcing of the magnetosphere-ionosphere system
(EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP),
8 (Boyle) = 115 kV) during Earth passage of an interplane-
tary CME (ICME), choosing an 4-h interval where the mag-
netic field pointed continuously south-west (Bz < 0; By <

0). The combination of continuous monitoring of ground
magnetic deflections and the F13 cross-track ion drift ob-
servations in the polar cap allows us to infer the temporal
CPCP structure on time scales less than the∼10 min dura-
tion of F13 polar cap transits. We arrived at the following
estimates of the dayside and nightside contributions to the
CPCP (CPCP = CPCP/day + CPCP/night) under two inter-
vals of substorm activity: CPCP/day∼110 kV; CPCP/night
∼50 kV (45 % CPCP increase during substorms). The tem-

poral CPCP structure during one of the substorm cases re-
sulted in a dawn-dusk convection asymmetry measured by
DMSP F13 which is opposite to that expected from the pre-
vailing negativeBy polarity of the ICME magnetic field, a
clear indication of a nightside source.

Keywords. Ionosphere (Plasma convection) – Magneto-
spheric physics (Solar wind-magnetosphere interactions;
Storms and substorms)

1 Introduction

The temporal structure in polar cap convection and the asso-
ciated cross polar cap potential (CPCP) has been the subject
of much study over the years. The presence of an underly-
ing temporal structure was indicated by the large scatter ap-
pearing in plots of CPCP, as measured by low-altitude space-
craft, versus the geoeffective interplanetary electric field,
EKL (Kan and Lee, 1979) (seeCowley, 1984, his Fig. 3). An
interpretation of this scatter in terms of the influence from
the closure of open flux during substorm activity, i.e. satel-
lite polar cap traversals under different substorm phases, was
given by e.g.Lockwood and Cowley(1992). This is a natu-
ral consequence of the expansion-contraction model of polar
cap convection (Siscoe and Huang, 1985; Cowley and Lock-
wood, 1992).

The same conclusion was reached on the basis of obser-
vations from SuperDARN radars byShepherd et al.(2002).
They found a highly variable CPCP for any given value of
EKL . Thus they concluded that upstream parameters alone
are not enough to describe the instantaneous CPCP value.
Processes internal to the magnetosphere-ionosphere system
must be included as well.
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In a case studyGrocott et al.(2002) documented the exci-
tation of new voltage during the substorm expansion phase.
The total transpolar voltage typically increased by a factor of
2 (100 %) during the expansion phase. Milan et al. (2003)
found that the polar cap contraction characteristic of the ex-
pansion phase continues throughout the recovery phase and
can last as long as 100 min after substorm onset.Provan
et al. (2005) observed by ground radars a 70 % CPCP in-
crease (40 kV) during the 12 min interval following substorm
onset.

In a recent study byLockwood et al.(2009) it was found
that the nightside source (magnetotail reconnection) of the
CPCP dominates in the substorm expansion and recovery
phases. The dayside source (MP reconnection) is the most
important contributor to the CPCP in the growth phase only.
An increase in the CPCP by a factor of 2 from growth to
expansion phase was derived.

The MHD simulation study ofGordeev et al.(2011) shows
a rapid response of the CPCP to substorm onset, but they
find that the nightside contribution to the CPCP is generally
less in magnitude than the dayside source. In their study, the
CPCP typically increased by 25 % after substorm onset.

From these examples we conclude that there is no con-
sensus on the relative contributions to the total CPCP from
CPCP/day and CPCP/night. According toGordeev et al.
(2011) “a direct quantitative evaluation of the efficiency of
the nightside reconnection in contributing to the polar cap
potential still awaits to be done.” A reason for this might
be that direct measurements of the CPCP temporal structure
by ground radars are difficult to make because of limited
coverage of these radars at the high polar cap latitudes. A
widely used method to determine the CPCP is to integrate the
E-field component along the satellite track across the polar
cap (Hairston et al., 1998). The temporal resolution of CPCP
values derived from such cross-track ion drift observations
during dawn-dusk traversals of the polar cap by low-altitude
satellites is limited. As we shall see, the polar cap transit time
of approx. 10 min may introduce deviations from the instan-
taneous CPCP value during intervals of transient convection
sources. The presence of non-ideal satellite trajectories (de-
viations from dawn-dusk meridian) may also be a problem
with this technique.

Indirect measurements in the form of ground magnetic
deflections (the PC index) are widely used as an indica-
tor of polar cap convection (Troshichev et al., 2011). Re-
sponses in polar cap ground magnetic deflections to the day-
side and nightside convection sources has been distinguished
by Kullen et al.(2010).

Our approach is to combine direct and indirect observa-
tions in order to derive a finer temporal structure in the CPCP.
In this article we shall use this approach to focus on the mag-
netotail source of CPCP temporal structure, i.e. that related
to substorm activity, by applying an appropriate combination
of ground and satellite data as described next.

We shall combine continuous observations of (i) high lat-
itude (Svalbard) magnetic deflections and (ii) cross-track
ion drift observations during dusk-dawn passes by satellite
DMSP F13. The continuous monitoring of the ground signa-
ture allows us to identify the temporal structure of polar cap
convection on time scales shorter than the approx. 10 min-
long traversal time of DMSP F13 across the polar cap. As
noted above, the latter is a widely used technique to derive
CPCP values.

The magnetotail source is monitored by its associated
substorm electrojet activity. For the latter purpose we
use ground-satellite DMSP F15 conjunctions in the dusk-
premidnight sector, and the AL auroral index.

The case we study occurred during an interval of ICME
passage at Earth on 10 January 2004. We focus on a 4-h long
interval when the stable ICMEBz component meaured by
ACE lies within−5 to−7 nT after a rapid southward turning.
TheBy component was negative throughout the whole inter-
val. The corresponding geoeffective interplanetary electric
field (EKL (Kan and Lee, 1979)) lies within 4.0–4.5 mV m−1.

The combination of the present data sets also allow us to
document a non-traditional dawn-dusk convection asymme-
try, as measured during a DMSP F13 polar cap transit, which
may appear during intervals of substorm activity. Expecta-
tions on dawn-dusk convection asymmetries are based on the
effect of IMF By on dayside convection (Jørgensen et al.,
1972; Cowley et al., 1991). We hypothesize that the reversed
asymmetry we observe is further evidence of a nightside con-
tribution.

2 Data description

We shall study the evolution of plasma convection features
and the associated CPCP during a 4-h-long interval of steady
southwestly ICME magnetic field which contains two inter-
vals of substorm activity. The interplanetary conditions asso-
ciated with this interval of ICME passage, as recorded from
ACE, are given in Fig.1.

After describing the interplanetary data, we illustrate the
observation geometry for this case study. Then we describe
two ground-satellite conjunction studies which took place
during the substorm intervals 15:50–16:40 UT and 17:40–
18:30 UT in more detail.

2.1 Interplanetary conditions: ICME

The interplanetary data from the MAG (Smith et al., 1998)
and SWEPAM (McComas et al., 1998) instruments on ACE
are shown (Fig.1) for the interval 13:00–18:00 UT. From top
to bottom, the panels show the proton density, bulk speed
and temperature (in red: the expected temperature of the nor-
mal solar wind afterLopez, 1987), theα particle-to-proton
number density ratio, the dynamic pressure, the GSM com-
ponents of the magnetic field and the total field strength,
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Fig. 1. Interplanetary parameters obtained from ACE during the in-
terval 13:00–18:00 UT. Panels from top to bottom shows: (i) proton
density, (ii) bulk speed, (iii) proton temperature, (iv) the alfa/proton
density ratio), (v) dynamic pressure, (vi)–(ix) magnetic field com-
ponentsBx, By, Bz, and the total field, (x) the geoeffective in-
terplanetary electric field,EKL , and (xi) the Boyle potential. The
ICME front boundary is marked by vertical guideline.

the interplanetary electic field in the formulation of Kan and
Lee (1979) and the Boyle potential (seeBoyle et al., 1997).
The quantityEKL is defined asVp

√
(B2

y +B2
z )sin2(clock/2),

whereθ is the clock angle.
The interval we study, 14:00–18:00 UT, is characterized

by an exceptionally slow and smooth rotation of the ICME
magnetic field. The clock angle (not shown) increases slowly
from ∼120◦ to 160◦. Bz lies within −5 to −7 nT, whileBy
is increasing from−10 to−3 nT. The total field strength B
decreases slowly from 12 to 8 nT. The bulk speed is decreas-
ing from 550 to 520 km s−1 while the dynamic pressure lies
below 1 nPa throughout. The latter is lower than typical. The
electric field,EKL , is very stable within 4–4.5 mV m−1. This
is slightly smaller than values needed to saturate the CPCP
(e.g.Muhlbachler et al., 2005, and references therein), so that
a linear response of the CPCP to interplanetary driving is ex-
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Fig. 2. Observation geometry placed in the context of global plasma
convection as derived from DMSP F13 and F15 data.

pected. As a corollary, formulae for CPCP assuming linear-
ity (e.g.Boyle et al., 1997) may be employed. An estimate of
the evolution of the CPCP/day during this interval, based on
the Boyle formula (∼115 kV), is given in the bottom panel
of Fig. 1. A propagation delay of approx. 50 min from ACE
to Earth should be added when comparing ACE data with the
low-altitude data reported below (seeSandholt et al., 2010).

2.2 Observation geometry and global convection
context

Figure2 is a sketch containing the main elements of the first
of these conjunctions where the DMSP F13 and F15 passes
are indicated. The coordinate system is MLAT vs. MLT, with
dawn on the right and noon at the top. The features of po-
lar cap convection appearing along the dusk-dawn meridian
(F13 data and ground magnetograms) and the substorm ac-
tivity in the dusk-premidnight sector (F15 data and ground
magnetograms) we shall focus on are placed in the context
of the global convection pattern as estimated on the basis of
the F15 ion drift and precipitation data on the dayside.

The indicated convection geometry with emphasis on spa-
tial structure, i.e. flow channels along the periphery of the
polar cap, calls for a short comment. First of all, the two
asymmetric convection cells are as expected for the prevail-
ing ICMEBy negative conditions in our case. An outstanding
feature is the traditional IMFBy-related dawn-dusk convec-
tion asymmetry (Jørgensen et al., 1972; Cowley et al., 1991;
Weimer, 1995; Ruohoniemi and Greenwald, 2005).

Flow channel 1 (FC 1) represents a restricted flow chan-
nel associated with newly open field lines (LLBL, cusp, pre-
cipitation) in the prenoon and postnoon sectors. It is ac-
companied by poleward moving auroral forms (PMAFs; see
e.g.Lockwood et al., 1989) located on either side of noon
and which are separated by a sector of strongly attenuated
auroral emission near noon, the “midday gap aurora” (see
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e.g.Sandholt and Farrugia, 2007). The approximate location
of the open-closed field line boundary is marked by dashed
curved line.

The spatial structure on the dusk side of the polar cap,
which we refer to as FC 2 and FC 3, is related to the dayside
and nightside sources of plasma convection, respectively.
These regimes of enhanced (>1 km s−1) antisunward con-
vection are accompanied by polar rain precipitation. FC 2
is a result of the persistence of open flux tubes previously
opened by bursts of reconnection (flux transfer events; FTEs)
along the flanks of the polar cap, as predicted bySouthwood
(1987). The presence of these flows has been documented
by Sandholt et al.(2010). The IMFBy dependence and the
role of conductivity gradients at the polar cap boundary for
the formation of these flow channels have been discussed by
Sandholt and Farrugia(2009).

The presence of flow channel FC 3 on the nightside of the
polar cap we attribute to the nightside source (magnetotail
reconnection). The role of the conductivity gradients for the
presence of flow channels in this MLT sector (beyond ap-
prox. 18:00 MLT) has been described byWang et al.(2010)
who point out their relationship to enhanced geoeffective in-
terplanetary electric field (EKL , Kan and Lee, 1979) and that
it is mainly a winter phenomenon.

The westward and eastward-directed electrojet (WEJ and
EEJ) currents in auroral oval in the Harang discontinuity re-
gion are essential elements of substorm activity in the dusk-
premidnight sector. An important substructure of the con-
vection pattern appearing in association with auroral stream-
ers (see e.g.Sergeev et al., 2004) in the substorm expansion
phase is not included in this sketch.

Below we shall give a more detailed description of the ob-
servations of the ground-satellite conjunction indicated in the
sketch.

1. F13 dusk-to-dawn pass across auroral oval segments
and the polar cap during 16:31–16:46 UT. The follow-
ing regimes are marked along the track: subauroral
latitudes with subauroral polarization streams (SAPS);
duskside auroral oval with flow channel FC 0 (return
flow) and EEJ; polar cap with flow channel FC 3 (night-
side old open field lines) at the duskside boundary;
dawnside oval with FC 0.

2. F15 pass from evening to pre-noon MLTs during 16:03–
16:18 UT. The following regimes are marked along the
track: SAPS; EEJ; WEJ; polar cap; FC 1 (flow channel
associated with LLBL/cusp/mantle precipitation - pole-
ward moving auroral forms; PMAFs).

3. Flow channels FC 1 and FC 2 are indicated on the ba-
sis of F15 data in this case and previous studies (FC 2).
This flow pattern is consistent with complementary sta-
tistical studies of field-aligned current patterns inferred
from Iridium data (Anderson et al., 2008) (see their
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Fig. 3. Geomagnetic indices for the interval 13:00–19:00 UT: Dst
(upper), AU and AL (bottom). Vertical guidelines mark (i) south-
ward turning responses at 14:00 and 15:00 UT, (ii) substorm in-
terval 1: 15:50–16:40 UT, and (iii) substorm interval 2: 17:40–
18:30 UT. Three DMSP F13 passes in the central polar cap are
marked by red arrows.

Fig. 5). Flow channel FC 3 is documented by Super-
DARN plot at 15:56 UT, in the second F15 conjunction
at 17:47 UT, and in F13 data at 18:14 UT (see below).

In the sequel emphasis will be laid on the variability of po-
lar cap convection in relation to substorm activity. This rep-
resents a CPCP temporal fine-structure giving rise to non-
traditional polar cap flow patterns which may deviate from
those expected from the actual IMFBy conditions, i.e. the
well-known IMF By-related dawn-dusk asymmetry of po-
lar cap convection with flow strengths in the PC increasing
toward dusk (i.e. those which consider solely the dayside
source). A good example on this non-traditional dawn-dusk
asymmetry is the second case of F13 observations (18:14–
18:25 UT) we study below, showing increasing antisunward
convection towards the dawn side of the NH polar cap during
the prevailingBy < 0 ICME conditions.

2.3 Global substorm activity: AL-index on 10 January
2004

Figure3 shows the Dst (hour averages) and the AL and AU
indices for the interval 13:00–19:00 UT. A moderate storm
is underway during this interval. Focusing now on the AL-
index (Tomita et al., 2011) for the interval 13:00–19:00 UT
the following features may be noted (marked by vertical
guidelines):

1. DP2 events (enhancedEKL and associated plasma con-
vection) at 14:00 and 15:00 UT, which are activated by
southward turnings of the ICME magnetic field. DP2 is
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Fig. 4. DMSP F13 data showing cross-track ion drift (Vy) and electrostatic potential (bottom) for the interval 14:45–15:11 UT. Polar cap
dusk- and dawn-side boundaries are marked by vertical guidelines.

defined as polar magnetic disturbances which are unre-
lated to substorms and controlled by the geoeffective in-
terplanetary electric field,EKL (Troshichev et al., 2011).
So, these events are due to enhancedEKL and associated
excitation of plasma convection.

2. The two substorm intervals we study: 15:50–16:40 and
17:40–18:30 UT. Blue vertical guidelines mark the two
intervals of substorm activity which is clearly manifest
in the local IMAGE chain magnetic deflections in the
dusk-premidnight sector, as we shall show shortly. In
the figure we marked by bold arrows the three DMSP
F13 passes through the central polar cap (15:00, 16:38,
and 17:24 UT) which we use for CPCP estimates.

2.4 Pre-substorm conditions

Figure 4 shows DMSP F13 cross track ion drifts (Vy)
and the electrostatic potential obtained during the inter-
val 14:45–15:11 UT. We shall focus on the interval of
polar cap crossing from dusk (17.39 MLT/72.3 MLAT) to
dawn (6.82 MLT/80 MLAT) during the interval 14:52:50–
15:01:00 UT, delimited by vertical guidelines. For this in-
terval we derive a dawn-dusk potential drop of 107 kV. This
method of deriving the CPCP is the same as that used by e.g.
Hairston et al.(1998) (see their Fig. 1) Note that the pass
reached high enough MLATs to sample the whole CPCP.

The interval of this CPCP measurement (14:53–15:01 UT)
represents the conditions of enhanced plasma flow after the
southward turning of the ICME magnetic field recorded by
ACE about 1 h earlier, i.e. at 13:50 UT and well before the
first substorm interval 15:50–16:40 UT. The excitation of
FC 1–FC 2 flows (see Fig.2) during the interval 14:50–
15:00 UT on this day can be seen in the IMAGE magnetome-
ter data reported bySandholt et al.(2010) (see their Fig. 3).
On the rapid convection enhancement during the first 10–

15 min after a southward turning of IMF we also refer to
Greenwald et al.(1999).

2.5 Ground-satellite conjunctions in substorm inter-
val 1: 15:50–16:40 UT

Figure5 shows X-component magnetic deflections from IM-
AGE stations in Svalbard – Scandinavia – Russia. We notice
the following features of the activity:

(i) a quiet interval from 15:00–15:50 UT is followed by
electrojet activity lasting from 15:50 to 16:40 UT, (ii) pos-
itive X-deflection (EEJ) maximizing at stations LOZ-PEL
(63–64◦ MLAT) near 16:00 UT, is followed by (iii) WEJ and
EEJ intensifications appearing at stations BJN (71◦ MLAT)
and SOR (67◦ MLAT), respectively, at 16:09 UT, and
(iv) electrojet and polar cap (NAL-HOR: 75–71◦ MLAT)
magnetic deflection event at 16:37–16:40 UT, which occur at
the same time when satellite F13 traversed the central polar
cap (see Fig.2).

Feature (iii) appeared just after satellite F15 crossed the
oval poleward boundary (71◦ MLAT) at 16:06 UT.

Figure6 shows the observation geometry for the ground-
satellite conjunction in the 18:00–21:00 MLT sector during
the interval 16:00–16:10 UT. In order of increasing latitude
the satellite intersected (i) SAPS, (ii) EEJ, (iii) WEJ and dis-
crete aurora, and (iv) polar cap.

As we saw from the ground data, the satellite in-
tersected the EEJ (16:03–16:04 UT) and WEJ (16:05–
16:06 UT) at the time of a local convection/electrojet en-
hancement, and entered the polar cap at 71◦ MLAT, just
before the larger WEJ intensification occurred at this lati-
tude (71◦ MLAT) at 16:08 UT. The hatched arrow centered
at 76◦ MLAT/18:00 MLT marks the polar cap flow channel
detected by SuperDARN radars at 15:56 UT (data shown be-
low).
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Fig. 5. The X-component of the geomagnetic field for the inter-
val 15:00–17:00 UT from ground stations of the IMAGE chain in
Svalbard – Scandinavia – Russia. The station acronyms are marked
on the right side. Deflection maxima relating to EEJ (16:00, 16:09
and 16:38 UT) and WEJ (16:09, 16:37 UT) activities are indicated
by arrows. Near perfect conjunctions of satellite F15 and ground
stations LOZ (16:04 UT) and NAL (16:08 UT) have been marked
by starred symbols along the respective traces. The interval of en-
hanced antisunward flow in the polar cap detected by F13 in the
interval 16:37–16:40 UT is marked by vertical lines.

As indicated in the figure there is very good coverage of
ground magnetometer stations along the 18:00 MLT merid-
ian in this case.

Figure7 shows the spatial plot of plasma convection (ion
drift vectors and streamlines; seeRuohoniemi and Baker,
1998) in the Northern Hemisphere obtained by SuperDARN
radars at 15:56 UT. We notice the presence of crescent-
shaped dusk-side cell as appropriate for the prevailingBy < 0
conditions in the interplanetary CME and the presence of
a polar cap flow channel over Svalbard, centered at 76–
80◦ MLAT/18:00 MLT.

Figure8 shows particle precipitation, ionospheric ion drift
and magnetic deflections detected by satellite DMSP F15
during the pass from pre-midnight (20:00 MLT) to pre-noon
(10:00 MLT) during the interval 16:03–16:20 UT. The track
is indicated in Fig.6. We shall concentrate on the ion and
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Fig. 6. Overview of ground-satellite F15 conjunction in the 18:00–
21:00 MLT sector during the interval 16:00–16:10 UT. The coordi-
nate system is MLT versus MLAT. The three latitudinal regimes
of (i) SAPS (westward ion drift (Vw) >0.5 km s−1 centered at
∼60◦ MLAT), (ii) plasma sheet precipitation and the eastward elec-
trojet (EEJ) current within 64–66◦ MLAT, and (iii) arcs near the
poleward boundary accompanied by westward electrojet (WEJ)
current within 68–71◦ MLAT have been marked along the track
and in the MLT sector of the magnetometer stations. The loca-
tions of nine ground magnetometer stations in the IMAGE network
(mainly along the 18:00 MLT meridian) are marked by solid dots.
Solid curved lines mark the centers of the westward (WEJ) and
eastward (EEJ) electrojet activities as estimated from the ground
magnetograms and the satellite observations of cross-track ion
drift/precipitation. The center of the westward-directed ion drift at
subauroral latitudes (SAPS), as inferred from the satellite ion drift
data, is marked by the westward-directed dashed curved arrow. Po-
lar cap flow channel FC 3 (enhanced antisunward convection) above
Svalbard detected by SuperDARN at 15:56 UT is marked by the
wide, hatched arrow in the Svalbard region.

electron precipitation spectra in panels 3 and 4, the cross-
track ion drift in panel 5, and the eastward magnetic deflec-
tion (theBz trace) in the bottom panel. We note the following
features traversed along the track: (i) westward-directed sub-
auroral ion drift in the form of polarization streams (SAPS)
and inward-directed Birkeland current within 55–61◦ MLAT;
(ii) auroral oval precipitation and outward-directed Birkeland
currents within 64–70◦ MLAT (“most equatorward arc” at
64–66◦ MLAT), (iii) sharp poleward boundary of aurora at
70.6◦ MLAT, (iv) polar rain precipitation in the polar cap;
and (v) enhanced noonward ion drift (flow channel FC 1)
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within ∼73–78◦ MLAT in the prenoon sector (see schematic
Fig. 2) with electron precipitation structures extending to
1 keV energy on its equatorward boundary. FACs directed
in (R0/mantle current) and out (dayside R1) on the poleward
and equatorward FC 1 boundaries, respectively, are marked
in the figure.

The electron precipitation feature on the prenoon side
(10:00 MLT), associated with flow channel FC 1, cor-
responds to the auroral phenomenon we refer to as
PMAFs/prenoon/By < 0, as documented inSandholt and
Farrugia(2007) (see their Figs. 7 and 8).

The satellite crossed the poleward boundary of the au-
rora (70.6◦ MLAT/20:00 MLT) at 16:06 UT, just before the
16:08 UT WEJ intensification at this latitude (see the BJN
magnetogram in Fig.5).

Figure9 shows cross-track ion drift (Vy) and the electro-
static potential curve obtained during the dusk to dawn pass
of DMSP F13 during the interval 16:27–16:51 UT. The satel-
lite track is indicated in Fig.2.

We shall focus on the interval of polar cap traversal
from the dusk-side (17.87 MLT/67.9 MLAT) to the dawn-
side (6.18 MLT/74.87 MLAT) polar cap boundary during the
interval 16:33–16:43 UT. Enhanced antisunward convection
(Vy = 1.6 km s−1) over a 1 km s−1 background is observed in
the central polar cap during 16:37–16:40 UT. This interval is
marked in Fig.2. The CPCP value derived for this pass is
160 kV.

2.6 Ground-satellite conjunctions in substorm inter-
val 2: 17:40–18:30 UT

Figure10shows eight X-component magnetograms from the
IMAGE chain of stations in Svalbard – Scandinavia – Rus-
sia for the interval 17:00–19:00 UT. The magnetograms are
shown in order of decreasing latitude, from the highest (top:
SOR at 67.3◦ MLAT) to the lowest (KAR at 56◦ MLAT) lat-
itude. The following features are important: (i) the quiet
conditions prevailing from 17:00 to 17:40 UT are followed
by, (ii) sudden onset of enhanced westward electrojet (nega-
tive X-deflection) at 17:41 UT (see AND trace in the second
panel), (iii) maximum of westward (−400 nT at AND; 66.5◦)
and eastward (300 nT at RVK; 62.2◦ MLAT) electrojet de-
flections reached at 17:45–17:48 UT, (iv) 50–100 nT positive
X-deflections at subauroral latitudes (DOB-NUR-KAR rep-
resenting the latitude range 59.3–56.4◦ MLAT) maximizing
at 17:48–17:52 UT (see arrows at the DOB and KAR traces),
(v) a second WEJ intensification ocurring at station SOR
(67◦ MLAT) at 18:05 UT was followed by streamer events
(see the blue tilted lines) in the interval 18:10–18:30 UT.

Interval of enhanced polar cap convection detected by F13
in the polar cap is delimited by the blue vertical guidelines.
The station locations are given in Fig.11.

Figure11 shows the track of satellite DMSP F15 during
the interval 17:40–17:52 UT. The traversals of latitude seg-
ments of (i) enhanced (>0.5 km s−1) westward-directed ion
drift at subauroral latitudes (SAPS within 58–62◦ MLAT),
(ii) EEJ current within 62–64◦ MLAT and (iii) auroral oval
discrete arcs (accelerated electrons) within 64–66.5◦ MLAT
with the westward electrojet current centered at∼66◦ MLAT
have been marked.

We note that the satellite reached the latitude of auroral
oval poleward boundary at 17:46 UT, i.e. just in the maxi-
mum phase of the local WEJ intensification recorded at sta-
tion AND (66◦ MLAT). The position of eight magnetome-
ter stations in the IMAGE chain which are central in this
study (see the X-component deflections reported above) are
marked by solid dots. These stations are representative of the
three latitude regimes we study, i.e. (i) KAR, NUR and DOB
lie within the SAPS regime, (ii) RVK and OUJ lie within the
EEJ, and (iii) SOR, AND and LOZ lie within the latitude
regime of the WEJ. We note that AND and LOZ stay within
the WEJ during the whole 17:42–17:50 UT event while sta-
tions RVK and OUJ are within the EEJ regime only initially
(17:42–17:47). After 17:47 (OUJ) and 17:50 UT (RVK) the
OUJ and RVK magnetometers are sensitive to WEJ activity.
This is consistent with the equatorward expansion of the Ha-
rang discontinuity during the event.

Figure 12 shows particle precipitation, ionospheric ion
drift and magnetic deflections detected by satellite DMSP
F15 during the pass illustrated in Fig.11. F15 crossed
the local segment (20.5 MLT) of the oval (confined to the
latitude range 64–66.5◦ MLAT) during the interval 07:45–
07:46:30 UT. Thus, F15 crossed the auroral oval poleward
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Fig. 8. DMSP F15 data obtained during the interval 15:57–16:27 UT along the track shown in Fig.6. Panels from top to bottom shows ion
(electron) precipitation energy flux, average energy, electron and ion spectrograms, cross-track ion drift, and magnetic deflection components
across (1Bz) and along the track. The following latitude regimes along the 20:00 MLT meridian are marked: (i) 58–62◦ MLAT: enhanced
subauroral ion drift/SAPS, (ii) 64–66◦ MLAT: plasma sheet precipitation (most equatorward arc) and moderate westward ion drift (the EEJ
regime), and (iii) 66–70.6◦ MLAT: auroral arc at oval poleward boundary and westward electrojet (WEJ). Field-aligned current directions
(in and out) are marked at theBz-trace in the bottom panel. The vertical guidelines on the right side (prenoon sector) mark the traversal of
flow channel FC 1 and electron precipitation structures extending to 1 keV energy on its equatorward side.

boundary (centered at 66◦ MLAT) just at the maximum of its
brightening phase (17:46 UT).

We note the following features of the ion drift and mag-
netic field data: (i) positiveBz-gradient (inward-directed R2
FAC) and enhanced westward ion driftVw (>0.5 km s−1)
in SAPS within∼58–62◦ MLAT traversed during the inter-
val 17:43–17:44:30 UT, (ii) negativeBz-gradient (outward-
directed R1 FAC) and auroral oval precipitation (boundary
plasma sheet) within the MLAT range 63.5–66.5◦ MLAT tra-
versed during the interval 17:45–17:46:30 UT, (iii) enhanced
westward ion drift (northward-directedE-field) immediately
equatorward of the “high-energy arc”, and (iv) eastward ion
drift (southward-directedE-field) within the regime of dis-

crete auroral precipitation (“high-energy arc”). The latter
corresponds to the latitude regime of the westward electro-
jet (WEJ).

The latitude regimes of the westward and eastward elec-
trojets (WEJ and EEJ) as inferred from the ground magnetic
deflections are indicated in the figure. The presence of flow
channel FC 3 immediately poleward of the polar cap bound-
ary may be seen in the ion drift data.

Figure 13 shows cross-track ion drifts (Vy) and electro-
static potential curves for the interval 18:08–18:32 UT. This
interval includes a dusk (18.19 MLT/67.73◦ MLAT) to dawn
(6.34 MLT/73.47◦ MLAT) crossing of the polar cap during
the interval 18:14–18:24 UT. Two features are worthy of
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Fig. 9. DMSP F13 cross-track ion drift (Vy) and potential curves during the interval 16:27–16:51 UT. Polar cap dawn- and dusk-side
boundaries and sector of enhanced antisunward flow in the central polar cap (16:37–16:40 UT) are marked by vertical guidelines. Same
format as in Fig.4. The satellite track is indicated in Fig.2.

notice: (i) a latitudinally restricted (200 km wide) region of
enhanced (1 km s−1) antisunward flow near the dusk side po-
lar cap boundary (our FC 3 flow channel), bracketed by the
first two vertical guidelines, and (ii) an antisunward con-
vection increase towards the dawn side of the polar cap,
with Vy exceeding 2 km s−1 on occasion on the dawn side
(6.31 MLT/81.37◦ MLAT) of the polar cap.

The CPCP value derived from these data is 153 kV. We
note that theVy-profile showing increasing antisunward con-
vection on the dawn side of the polar cap. As we shall argue
below this non-traditional dawn-dusk asymmetry is a tempo-
ral effect (rather than spatial structure) which is related to the
prevailing substorm activity (see Fig.10).

3 Summary and discussion

3.1 CPCP fluctuations on 10 January 2004

We reported cases of polar cap convection enhancements
associated with two intervals of substorm activity (15:50–
16:40 UT and 17:40–18:30 UT) during a 4-h long interval
of very steady interplanetary conditions on 10 January 2004
(15:00–19:00 UT). The steady external conditions are perfect
for our purpose of determining the contribution to the polar
cap potential from magnetotail reconnection.

The substantial increases in the CPCP of∼50 kV dur-
ing the two substorm intervals are clearly demonstrated in
Fig. 14. A stable background level of 110 kV is observed
outside the two substorm intervals.

As stated above we aim at discriminating between the day-
side and nightside sources of plasma convection in this case
of moderate forcing of the magnetosphere by an ICME. The
dayside (magnetopause) and nightside (magnetotail) contri-
butions to CPCP we refer to as CPCP/day and CPCP/night,
respectively. The prevailing geoeffective interplanetary elec-

tric field (EKL ) of 4–4.5 mV m−1 in our case means that we
are in the upper part of the linear regime of CPCP/day vari-
ations in response toEKL (see e.g.Muhlbachler et al., 2005,
andBurke et al., 2007). Applying a previously derived em-
pirical relation between IMFBz and CPCP/day (CPCP/Bz =

−20) (Yeoman et al., 2002; Milan et al., 2003) we get 120 kV
for our case (Bz = −6 nT).

Three dusk-dawn NH passes of DMSP F13 in this interval
are used to derive CPCP values. The second and third F13
passes (16:37–16:40 and 18:14–18:24 UT) ocurred within
the two intervals characterized by substorm electrojet inten-
sifications (AL =−300 to−400 nT). They may therefore be
used to estimate CPCP/night.

Since the first F13 pass (14:53–15:01 UT) ocurred before
substorm activity started, and just after a southward turning
of the ICME field (ground magnetic signature of FC 1 is seen
at 14:45–14:50 UT), this pass may be used as an estimate
of the dayside (magnetopause) contribution to the CPCP in
our case. From this F13 pass we get CPCP/day = 107 kV.
This CPCP/day value is close to the above given estimate
on the basis of the prevailing ICMEBz value and the CPCP
value derived from the Boyle formula (Boyle et al., 1997)
(see below).

In the two substorm intervals we observed polar cap ion
drift events in the form of enhanced (>1 km s−1) antisunward
convection. The first convection event (16:37–16:40 UT) is
short-lived (3 min), occurring when F13 was in central polar
cap (marked along the F13 track in Fig.9), while the second
event (18:14–18:24 UT) lasted longer than the 10 min period
of the F13 polar cap transit. In the latter case the cross-track
ion drift (antisunward flow) increased continuously during
the pass from the dusk to the dawn side of the polar cap
when a substorm was in progress. The result is a dawn-dusk
asymmetric convection profile in the Northern Hemisphere
which is totally unexpected, being in the opposite sense to
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F15

SAPS

WEJ

EEJ

F13

F15

Fig. 10. X-component magnetograms from eight selected stations
in the IMAGE chain of stations in Svalbard – Scandinavia – Russia
for the interval 17:00–19:00 UT. The station acronyms are marked
on the right side. The onset of electrojet activity (WEJ at sta-
tion AND) at 17:41 UT and the maximum phase of the westward
(−400 nT at AND; 66.4◦ MLAT) and eastward (300 nT at RVK;
62◦ MLAT) electrojet deflections at 17:48 UT are marked by ver-
tical guidelines. A series of auroral streamers in the interval 18:10–
18:30 UT are shown by the blue tilted lines. Interval of F13 dusk-
dawn crossing of the polar cap is marked by blue vertical lines.

that expected in view of the prevailingBy < 0 ICME condi-
tions. This is an interval of substorm electrojet activity and
the presence of auroral streamers (see e.g.Sandholt et al.,
2002, andSergeev et al., 2004) emanating from the polar cap
boundary (see Fig.10).

Both these polar cap traversals are characterized by a con-
vection structure subject to temporal variability, as can be
derived from the continuous monitoring of the associated
ground magnetic deflections in the polar cap and in the night-
side oval with its auroral electrojet activity.

Various techniques may be applied to distinguish between
the dayside and nightside sources of the CPCP as estimated
from the F13 data in our cases.

If we assume that CPCP/day is approximately constant
in our case, as indicated by the DMSP observations in
Fig. 14, and the constantEKL , we may use the first po-

50 60 70 80 90
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NUR

KAR

DOB

1752

Fig. 11. Observation geometry of ground-satellite conjunction
in the 19:00–21:00 MLT sector with track of satellite DMSP F15
marked during the interval 17:43–17:52 UT. The three latitudinal
regimes of (i) subauroral polarization streams (SAPS; westward
ion drift (Vw) >0.5 km s−1 within ∼58–62◦ MLAT), (ii) central
plasma sheet precipitation and the eastward electrojet (EEJ) cur-
rent within 62–64◦ MLAT, and (iii) auroral oval (AO) arcs within
64–66.5◦ MLAT and the westward electrojet (WEJ) centered at
∼66◦ MLAT have been marked along the track and in the MLT sec-
tor of the magnetometer stations. The coordinate system is MLT
versus MLAT. The locations of eight stations of ground magnetome-
ters in the IMAGE chain are marked by solid dots. Solid curved
lines mark the centers of the westward (WEJ) and eastward (EEJ)
electrojet activities as estimated from the ground magnetograms and
the satellite observations of cross-track ion drift. The center of the
westward-directed ion drift at subauroral latitudes (SAPS) which is
marked by the dashed curved arrow is inferred from the satellite
data.

lar cap pass (14:53–15:01 UT) as an estimate of CPCP/day
(107 kV). This is also consistent with the CPCP value de-
rived from the Boyle formula (Boyle et al., 1997) in our case:
112.8±3.7 kV (see Fig.1).

The two values of the total CPCP we derived for the inter-
vals 16:33–16:43 and 18:14–18:24 UT are 160 and 153 kV,
respectively. If we subtract the CPCP/day value we got from
the first F13 pass (107 kV), under quiet substorm conditions,
we find that CPCP/night is 53 and 46 kV in these two cases.
From this estimate we find that the actual substorm activities
caused a 50 % increase in the total CPCP we measure.

A more direct method to extract CPCP/day from the sec-
ond pass, which includes the 16:37–16:40 UT short-lived
event, may be to use the potential curves in Fig.9 to ex-
trapolate the pre-event drift velocity (Vy = 1 km s−1) across
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SA
PS

EE
J

W
EJ

Fig. 12.DMSP F15 data obtained during the interval 17:35–18:05 UT. Same format as in Fig.8. Latitude regimes corresponding to subauroral
polarization stream (SAPS), and the eastward and westward electrojets (EEJ and WEJ) have been delimited by vertical guidelines. Field-
aligned current directions (R2 in: positiveBz gradient; and R1 out: negativeBz gradient) are marked in the ion drift panel.

Fig. 13. DMSP F13 cross-track ion drift (Vy) and electrostatic potential curves for the interval 18:08–18:32 UT. Flow channel FC 3 at the
dusk side polar cap boundary is marked by the two first guidelines. The third guideline marks the polar cap boundary on the dawn side.
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Fig. 14. CPCP estimates derived from F13 cross-track ion drift ob-
servations across the polar cap in both hemispheres. Two intervals
of enhanced substorm activity are marked by vertical guidelines.

the whole polar cap to obtain CPCP/day. This gives CPCP
(pre-event) = 120 kV, which is slightly higher that the result
of the first method. The corresponding CPCP/Bz ratio is 20,
which is exactly the same value as derived by Yeoman et
al. (2002). If this method is used, the consequence is that
CPCP/night = 40 kV (33 % increase) in this case.

A questionable point in the last approach is that the
pre-event value of CPCP may contain a contribution from
CPCP/night since the pre-event conditions (15:50–16:37 UT)
are not void of substorm activity which prevails during the
interval 15:50–16:40 UT (see Fig.5).

3.2 On the relative strengths of CPCP/day and
CPCP/night

Some studies of the relative contributions of
CPCP/day and CPCP/night to the total CPCP
(CPCP = CPCP/day + CPCP/night), as measured along
the dawn-dusk meridian, have been reported over the last
10 years. Some of these results are summarized below.
Grocott et al.(2002) found 100 % CPCP increase associated
with an isolated substorm. The CPCP increase occurred
during a 15 min interval of the expansion phase, and then
decayed to the pre-onset level over∼10 min during recovery.
A similar effect is documented inProvan et al.(2004).

Lockwood et al.(2009) found that CPCP/night makes the
larger contribution during the expansion and recovery phases
but not in the growth phase when CPCP/day dominates. In
his cases the substorm expansion phase typically gave rise to
100 % CPCP increase.

In the statistical study ofKullen et al.(2010) the average
substorm response (CPCP/night) represents approx. 40–50 %
instantaneous increase of the CPCP at substorm onset. A
smaller substorm effect is obtained byGordeev et al.(2011).

In their MHD simulations, substorm onset gives rise to a
CPCP increase of approx. 25 %.

Comparing with these previous calculations our estimates
of approx. 50 % CPCP increase associated with the substorm
activity is comparable to the results ofKullen et al.(2010).
Thus, we find that the CPCP/night contribution to CPCP/total
during substorms is significantly higher than the estimates of
Gordeev et al.(2011), but less than the values obtained by
Lockwood et al.(2009).

3.3 Non-traditional dawn-dusk convection asymmetry

The non-traditional dawn-dusk convection asymmetry we
find during intervals of substorm activity (see Fig.13) il-
lustrates that substorms significantly disturb the polar cap
convection pattern imposed by the IMFBy-related magne-
topause reconnection geometry (see e.g.Moore et al., 2002)
and confirms that magnetopsheric convection is driven by
two independent sources. We demonstrate that a substorm-
related distortion of the convection pattern is strongly present
in our satellite measurements along the dawn-dusk meridian
during the interval 18:14–18:24 UT. In this case the dawn-
dusk convection asymmetry (enhanced antisunward convec-
tion on the dawn side of the polar cap) is opposite to the
traditonalBy negative pattern indicated in Fig.2. But this is
in our view due to a temporal evolution of polar cap convec-
tion occurring during the DMSP F13 traversal of the polar
cap when the substorm is in progress (see Figs.13and3).

Our result on this point is consistent with the previously
published radar observations byGrocott et al.(2010). They
found “a lack of IMF By-control in the nightside auroral
zone. On the dayside each pattern exhibits the expectedBy
asymmetry, yet on the nightside the asymmetry is exactly the
opposite to that associated with IMFBy in the absence of
substorms.”

3.4 Spatial-temporal convection structure: flow chan-
nels at the polar cap boundary

The temporal nature of polar cap antisunward flow events is
well illustrated by the F13 event at 16:37–16:40 UT (Fig.9).
The correlation with the temporal evolution of the auroral
electrojet is demonstrated in Fig.5.

On the other hand, spatial structure, in the form of en-
hanced flow near the dawn/dusk side boundaries of the polar
cap, is also seen in our data set: (i) dusk-side flow chan-
nel in substorm interval 1 (15:55 UT SuperDARN plot in
Fig. 7), (ii) dusk-side flow channel in substorm interval 2
(F13 ion drift data at 18:14 UT; Fig.13), and (iii) dawn-
side flow channel in substorm interval 2 (F13 ion drift data
during 18:35–18:40 UT when the WEJ intensification was in
progress).

Previous studies of flow channels at the nightside polar
cap boundary (Wang et al., 2010) reveal relationships with
(i) conductivity gradient at the polar cap boundary, (ii) the
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degree of solar wind forcing (highEKL ), and (iii) solar ion-
ization state (“winter phenomenon”).

All these three factors are favourable for flow channel for-
mation in our case. In addition we would like to add one pa-
rameter which seems to be favorable too: substorm activity.

Finally, we would like to point out one difference between
flow channels FC 2 and FC 3, in addition to the different mo-
mentum source in the solar wind-magnetosphere-ionosphere
system. The relationship with the FAC configuration may
be different. FC 2 is related to ionospheric Pedersen cur-
rent closure of FACs located poleward of the R1-R2 system,
generated in the magnetospheric boundary layers (coupled
HBL/LLBL dynamo system) (Sandholt and Farrugia, 2009).
In the model ofWang et al.(2010) the FC 3 channel is lo-
cated immediately poleward of the nightside oval FACs (see
Wang et al., 2010, their Figs. 1 and 8). This is also confirmed
by our DMSP observations reported in Fig.12. The F15 ion
drift data shows an FC 3 flow channel immediately poleward
of the polar cap boundary at 17:46–17:48 UT (centered at
68◦ MLAT/20 MLT), when the WEJ maximizes at stations
AND and SOR (66–67◦ MLAT). On the latitude profiles of
conductivity and E-field (ion drift) at the polar cap bound-
ary during substorms we also refer toKamide and Kokubun
(1996) (see their Fig. 4).
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