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Abstract. Magnetohydrodynamic configurations with strong
localized current concentrations and vortices play an impor-
tant role in the dissipation of energy in space and astrophys-
ical plasma. Within this work we investigate the relation
between current sheets and vortex sheets in incompressible,
stationary equilibria. For this approach it is helpful that the
similar mathematical structure of magnetohydrostatics and
stationary incompressible hydrodynamics allows us to trans-
form static equilibria into stationary ones. The main con-
trol function for such a transformation is the profile of the
Alfv én-Mach numberMA , which is always constant along
magnetic field lines, but can change from one field line to
another. In the case of a global constantMA , vortices and
electric current concentrations are parallel. More interesting
is the nonlinear case, whereMA varies perpendicular to the
field lines. This is a typical situation at boundary layers like
the magnetopause, heliopause, the solar wind flowing around
helmet streamers and at the boundary of solar coronal holes.
The corresponding current and vortex sheets show in some
cases also an alignment, but not in every case. For special
density distributions in 2-D, it is possible to have current but
no vortex sheets. In 2-D, vortex sheets of field aligned-flows
can also exist without strong current sheets, taking the limit
of small Alfvén Mach numbers into account. The current
sheet can vanish if the Alfv́en Mach number is (almost) con-
stant and the density gradient is large across some bound-
ary layer. It should be emphasized that the used theory is
not only valid for small Alfv́en Mach numbersMA � 1, but
also forMA . 1. Connection to other theoretical approaches
and observations and physical effects in space plasmas are
presented. Differences in the various aspects of theoretical
investigations of current sheets and vortex sheets are given.

Keywords. Space plasma physics (Kinetic and MHD
theory)

1 Introduction

Many structures in magnetospheres or in the solar corona
are often described by quasi-magnetohydrostatic sequences
of equilibria (e.g.Romeou and Neukirch, 1999; Schindler
and Birn, 1982; Becker et al., 2001; or Wiegelmann and
Schindler, 1995). Current sheets are important for storage
and release, i.e. dissipation of energy, leading, e.g. to mag-
netic reconnection (seeNeukirch, 2005b, or Solanki et al.,
2003, for observational aspects of coronal heating). The for-
mation of thin current sheets is often done within the frame
of the quasi-static approach, where the time dependent pres-
sure on the boundary is prescribed. Via the law of adiabatic
change of the flux tubes in the frame of ideal MHD magneto-
spheric convection, the flux transport takes place and forms
highly structured current sheets.

Another approach to the formation of current sheets is a
parametric method (e.g.Nickeler et al., 2006, andNickeler
and Wiegelmann, 2010). Here the parameter is the Alfvén
Mach number instead of the control parameters (e.g.Forbes
and Priest, 1995, andRomeou and Neukirch, 1999). These
parameters describe constraints or boundary conditions, like
magnetic shear, pressure or currents.

Instabilities of current and vortex sheets, although with
very high Alfvén Mach number, have been analysed inBaty
et al. (2003). In this article, grid-adaptive simulations show
that even in very weak magnetic field regimes (MA ' 30), the
large-scale Kelvin-Helmholtz coalescence process can trig-
ger tearing-type reconnection events previously identified in
cospatial current-vortex sheets.

The paper ofEyink and Aluie(2006) explains how, for dis-
continuous fields, a part of the magnetic flux can slip through
the plasma by an averaged turbulent statistic fluctuation of a
subscale electromotive force (EMF), i.e. an electric field in
the comoving systems of the ions. Another important aspect
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of this paper is that current sheets and vortex sheets both
have to exist and “intersect in sets of large enough dimen-
sions” to get “ideal” magnetic reconnection, i.e. “magnetic
flux conservation may be broken in ideal MHD by nonlinear
effects”. Such tangential discontinuities are basically current
vortex sheets.

From numerical, incompressible, time-dependent, adap-
tive MHD-simulations byGrauer and Marliani(1998, 2000),
it is shown that vortex sheets align with current sheets. The
initial conditions in this investigation are given by the so-
called Orszag-Tang vortex.

In the present paper, we analyse and explain some of
the physical implications of the non-canonical transforma-
tion technique (as developed and discussed by, e.g.Gebhardt
and Kiessling, 1992; Petrie and Neukirch, 1999) to calculate
steady-state ideal MHD flows with current sheets. We anal-
yse the feedback circuits on magnetohydrodynamic forces
that arise, enabling a relaxed, incompressible steady-state
plasma flow along a magnetohydrostatic background field.
We analyse the connection between vortex and current sheets
in the frame of this mathematical technique, but also for gen-
eral field-aligned flows.

In Sect.2 we discuss the basic stationary MHD equations
and introduce a general solution for the incompressible field
aligned case, based on magnetohydrostatic equilibria. In par-
ticular, we investigate the forces induced by the flow. Sec-
tion 3 contains special cases of initial potential and force-
free equilibria. In Sect.4 we investigate the relation between
electric currents and flow vortices in general and provide an-
alytic example solutions in Sect.5. Finally, we discuss the
impact of this work on physical objects like planetary mag-
netospheres and the solar coronal plasma.

2 Transformation from magnetohydrostatic equilibria
to stationary MHD configurations

Under the assumption of a finite Alfvén Mach number,
the equations of stationary incompressible and field-aligned
MHD are given by

∇ ·v = 0, v ·∇ρ = 0, (1)

ρ(v ·∇)v = j ×B −∇p, (2)

v =
MAB
√

µ0ρ
, (3)

∇ ·B = 0, (4)

wherev is the velocity,ρ the mass density,j =
1
µ0

∇×B the
current density vector,p the scalar plasma pressure, andMA
is the Alfvén Mach number. The assumption that the mag-
netic field and the flow are parallel leads to the conclusion
that the electric field has to vanish everywhere identically to
fulfill ideal Ohm’s law.

Within this work we solve the equations by a transforma-
tion approach developed inGebhardt and Kiessling(1992),

which transforms a static solution into a stationary one. We
show that the general solutions of the stationary, field-aligned
incompressible ideal MHD equations lead to a very close
connection between current and vortex sheets. We also show
how the forces are compensated by the exact solution method
used.

In the following, we transform the force terms to enlighten
the connection to the magnetic and plasma force terms. Un-
der the assumption of field aligned stationary incompress-
ible plasma flow, we get the transformation equations (see
Nickeler and Wiegelmann, 2010; Nickeler et al., 2006, for
details). Keeping in mind that the mass continuity Eqs. (1)
and (4) for every Alfvén Mach numberMA and the densityρ
satisfyingB ·∇MA = 0 andB ·∇ρ = 0 is a necessary condi-
tion, the general solution of the system Eqs. (1)–(4) in 3-D,
but also in 2-D, is given by

B =
BS√

1−M2
A

, (5)

p = pS −
1

2µ0

M2
A |BS |

2

1−M2
A

, (6)

√
ρv =

1
√

µ0

MABS√
1−M2

A

, (7)

j =
MA

µ0

∇MA ×BS(
1−M2

A

) 3
2

+
jS(

1−M2
A

) 1
2

, (8)

∇pS = jS ×BS , (9)

where the subscriptS defines the original magnetohydro-
static fields.

Thus, one has a recipe to construct field-aligned, incom-
pressible flows along magnetohydrostatic structures: the first
step is to find a magnetohydrostatic (MHS) equilibrium,
which we label with the subscriptS for static (pS,BS).
For the mathematical method introduced byGebhardt and
Kiessling(1992), the static equilibria is written with the help
of Euler potentials(α,β): B = ∇α×∇β or if the equilibrium
has some sort of symmetry (e.g. in z-direction) with the flux
functionA: B = ∇A(x,y)×ez+Bz(x,y)ez. The next step is
to specify a Mach number profileMA(α,β), or MA(A) in 2-
D, depending on the Euler potentials or flux function, respec-
tively. One should be aware that the functionρ as a function
of the two Euler-potential is independent of the choice of the
Alfv én Mach number. They are basically two independent
functions.

The analysis of the forces deals with all the force terms in
the Euler-equation of ideal MHD, namely

ρ(v ·∇)v = j ×B −∇p . (10)

The identities Eqs. (5)–(7) lead with the Eqs. (1)–(4) to

ρ(v ·∇)v =
M2

A

µ0
(
1−M2

A

) (Bs ·∇)Bs . (11)
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This means that the new inertial force, induced by the flow,
depends mainly on the magnetic tension of the magnetohy-
drostatic field, and of course on a function of the Alfvén
Mach number, i.e. the inertial force is a transformed part of
the magnetic tension force of the magnetohydrostatic field.

We are now going to analyse the right hand side of the
momentum or force equation Eq. (10), where we can identify
the Lorentz force by

j ×B = f L1 +f L2 , (12)

where

f L1 =
j s ×Bs

1−M2
A

(13)

f L2 = −
1

µ0

MAB2
s(

1−M2
A

)2 ∇MA . (14)

Here we recognize that the initial Lorentz-force is enhanced
by a factor 1/(1−M2

A) and changed by a term depending
on the gradient of the Alfv́enic Mach number and the mag-
netic pressure. But the the term with gradient ofMA is also
influenced strongly by the strength of the Alfvén Mach num-
ber itself. If MA . 1 the term with the gradient ofMA is
enhanced by the(1−M2

A)2-term, having, of course, even a
stronger influence than the(1−M2

A)-term in the nominator
of the modified original Lorentz-forcef L1.

The second term on the right hand side of the momentum
Eq. (10) is given by the pressure force∇ps transformed via

−∇p = −∇

(
pS −

1

2µ0

M2
AB2

s

1−M2
A

)
(15)

= −∇pS

−
M2

A

1−M2
A

jS ×BS

+
1

2µ0
B2

S ∇
M2

A

1−M2
A

+
M2

A

µ0
(
1−M2

A

) (Bs ·∇)Bs . (16)

Thus, after final addition of the new pressure gradient to the
new Lorentz-force on the right hand side of the momentum
equation Eq. (10), the only remaining force-term is the net
force, namely the modified magnetohydrostatic tension force

1

µ0
M2

A/(1−M2
A)(BS ·∇)BS ≡ ρ(v ·∇)v . (17)

The remaining term

∇pS −jS ×BS (18)

vanishes, because this describes the original static equilib-
rium. As it can be recognized by the inertial force (= tension
force) in Eq. (17), the expression can become extremely large
in the limit of MA → 1.

This implies that the modified pressure gradient consists of
four terms: the first is the static pressure, the second a term
completing the new Lorentz force to the old static one, the
third term removes the gradient forces concerning the Mach
number gradient term in Eq. (12), and the fourth term dis-
plays the final inertia or net force term of the flow, induced
by the mapping method.

2.1 Comparison between quasi-static and stationary
approach

If the gradient ofMA is very large and alsoMA has a value
close to one, as explained in the last section and following
the last paragraph of the Lorentz-force Eq. (12), hence the
complete Lorentz-force can become extremely large. The sit-
uation in the quasi-static approach is different: Although the
current density grows extremely in the forming thin current
sheet, no strong Lorentz-forces occur due to the null sheet of
the magnetic field, ignoring a small normal component to the
sheet.

In the case of the stationary states even for flows with
small or moderate Alfv́en Mach numbers, the magnetic flux
density and therefore the magnetic flux is not essentially en-
hanced, compared to the initial MHS state, but the newly
generated current density is able to increase in order of
magnitude. Additionally, filamentary or “fractal” structures,
compared to the old magnetohydrostatic current distribution,
are created, i.e. a double-structure evolves (see (Nickeler and
Wiegelmann, 2010), and also see Figs.1, 2). The pres-
sure gradient is enhanced and has to be compensated by the
Lorentz-force as the additional inertial force, due to the flow
is of second order inMA , see Eq. (11) for smallMA � 1, and
therefore negligible, but not negligible for largeMA . The
only price one has to pay here is the unchanged shape of the
fieldlines, in contrast to the quasi-static approach, and the
formation of strong shear flows, i.e. small scale vortices, as
we will show in the next sections.

The additionally occuring filamentary fine structures of
the steady-state current sheets, i.e. thin current sheets, are
therefore similar to results found, e.g. inWiegelmann and
Schindler(1995). These authors found that only for non-
similarity solutions of the quasi-static equations double-
structure of the current density evolves. The evolution of a
double-structure is necessary for the occurence of thin cur-
rent sheets.

However, the method of thin current sheet formation and
structure used in this paper is a different approach than the
quasi-static approach (e.g. seeSchindler and Birn, 1982, or
Wiegelmann and Schindler, 1995), where the pressure is ap-
plied as boundary condition and via the law of adiabatic
change is equivalent to magnetic flux transport and therefore
flux enhancement. This is in contrast to the approach of this
paper, where at least for small Alfvén Mach numbers the flux
is not essentially enhanced.

www.ann-geophys.net/30/545/2012/ Ann. Geophys., 30, 545–555, 2012



548 D. H. Nickeler and T. Wiegelmann: Current sheets and vortex sheets

Fig. 1. Transformation from an initial potential field with a smooth Mach-number profile (see Eq.37with MAmax= 0.5 andd = 0.2).
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Fig. 2. Transformation from an initial potential field, similar as in Fig.1, but with a much steeper Mach-number profile (see Eq.37 with
MAmax= 0.25 andd = 0.2/16).
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One interesting aspect of the velocity fields, as ex-
plained and calculated inWiechen and Schindler(1988) and
Schindler and Birn(1987), is that the velocity component
parallel to the magnetic field in the vicinity of separatrices is
getting very large. Hence also in the quasi-static regime, the
flow parallel to the magnetic field is of huge importance for
the plasma dynamics.

3 Special cases

To see how the transformation technique affects the initial
MHS-equilibrium we will now discuss and analyse some
properties of specially chosen MHS-equilibria and flows, i.e.
Alfv én Mach numbers.

3.1 Flows with global constant Alfv́en Mach number

3.1.1 Potential field as initial static equilibrium

The most simple cases of field-aligned incompressible MHD
flows seem to be represented by potential fields as initial
MHS-fields and the restriction to constant Alfvén Mach num-
bers. We now analyse some combinations of these possibil-
ities. Discussingjs = 0 andMA = const it can clearly be
recognized in the modified Lorentz force Eq. (12) that the
magnetic field is similar to the old magnetohydrostatic field,
i.e. the static field does not change its relative field strength
across the field lines. The magnetic field stays potential, no
currents form. The gradient forces vanishes, i.e.∇pS = 0,
there is no Lorentz-force, and only the constant static pres-
surepS changes to an inverted shaped thermal pressurep,
reduced by a fraction of the magnetic pressure, depending on
MA . One needs large enough offsets in that case, to avoid
negative thermal pressuresp. The net force or inertial force
from the flow can then be interpreted as the gradient force
of the plasma pressure in the magnetohydrostatic case times
M2

A/(1−M2
A), which for∇×BS = 0 is identical to the mag-

netic tension force. Without gradients ofMA no additional
forces can be generated.

3.1.2 Initial force-free fields

The Lorentz-force equation Eq. (12) shows also clearly that
instead of the initially force-free state a force is induced by
the flow gradient term∇MA . All other aspects are similar to
the potential field case.

3.1.3 Non force-free initial magnetohydrostatic
equilibria

With this trivial case thatjs 6= 0 andMA =const, we get so-
lutions very similar to the initial MHS equilibria. The mag-
netic field and the current are mapped by a constant factor

1/

√
1−M2

A , and therefore the Lorentz force is enhanced by

the constant factor 1/(1−M2
A). The current sheet structure is

conserved, and therefore basically these solutions represent
similarity solutions, as all terms, including gradients of the
Mach number, vanish.

3.2 Flows with non-constant Alfv́en Mach number
profile

The generic case of plasma flows is that the Mach number
changes from one field line to the other and the transforma-
tion equations are non-linear. This leads to additional non-
linear effects as discussed in the following.

3.2.1 Initial potential field

The special case ofjs = 0 andMA 6= const is simple, but very
interesting for easy modelling: one can choose a potential,
e.g. asymptotical homogeneous field and map it with multi-
ple current sheets, as done inNickeler et al.(2006). The ef-
fect on the forces is that the Bernoulli pressure force within
the new pressure force, i.e.−∇p = −∇(pS −ρv2/2), must
be compensated by an additional Lorentz force. As thef L1-
term in Eq. (12) is zero, asjS = 0, only the force-termf L1
in Eq. (12) can do that job. The reason is that only the gra-
dient of the Alfv́en Mach number can generate currents and
then induce additional Lorentz forces. The net force or iner-
tial force originating from the flow can then be interpreted as
the gradient force of the magnetohydrostatic pressure times
M2

A/(1−M2
A). The fact thatMA is non-constant produces

currents perpendicular to the magnetic field, repeating and
keeping in mind that,

µ0j = MA
∇MA ×BS(
1−M2

A

)3/2
+

∇×BS(
1−M2

A

)1/2

here
= MA

∇MA ×BS(
1−M2

A

)3/2
. (19)

The equation reflects that in this case the generated currents
are perpendicular to the magnetic field but also to the direc-
tion in which the flow gradient is oriented.

3.2.2 Initial force-free fields

While the first term in the first line of Eq. (19) provides only
perpendicular currents with respect to the magnetic field, if
the Alfvén Mach number has strong gradients, the effect of
the second term is only to enhance the existing magnetohy-
drostatic force-free current, being parallel to the magnetic
field, written as

µ0j = MA
∇MA ×BS(
1−M2

A

)3/2
+

∇×BS(
1−M2

A

)1/2

= MA
∇MA ×BS(
1−M2

A

)3/2
+

αBS(
1−M2

A

)1/2
, (20)

where∇×BS = αBS . This implies that a former force-free
field without flows now develops components of the current,
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producing forces pointing into the direction of∇MA (see
modified Lorentz-force in Eq. (12)).

4 Connection between vortices and currents in field-
aligned, subalfv́enic, stationary ideal MHD

Even if the notions of “turbulent” and “ideal” reconnection
(see, e.g. (Eyink and Aluie, 2006) or other references), are
based on discontinuous solutions, also including a specific
angle between vortex sheet and current sheet, the solutions
presented here represent a powerful method to find the limit
from continuous, namely well-known MHS solutions with
smooth current sheets, to almost discontinuous solutions, i.e.
sufficiently small subscales of concentrated and strong cur-
rent sheets. It is obvious that forv ‖ B, the “curls” of both
vector fields, i.e. their vortices, are directly connected, of
course not necessarily parallel1

v =
MA B
√

µ0ρ
:= λB ⇒ ∇×v = ∇λ×B +λ∇×B . (21)

As ∇×B can be split into one perpendicular componentj⊥

with respect to the magnetic field and one parallel compo-
nent,j‖, we can rewrite the curl of the velocity

∇×v = ∇λ×B +
λ

µ0

(
j‖ +j⊥

)
. (22)

This implies that

B ·(∇×B) = 0 ⇒ j‖ = 0 (23)

is a necessary condition for a MHD configuration with a non-
vanishing current but without vortices in 3-D (or 2-D). This
is necessary as the term with the gradient ofλ, being per-
pendicular to the magnetic field, cannot compensate the term
with j‖. For a 2.5-D configuration, the parallel part of the
current can only vanish identically if everywhere(∇A)2 can
be expressed as a function ofA. Thus, in a physical situa-
tion with currents, but without vortices, it is necessary that
the parallel current vanishes. We will present a sufficient cri-
terion in 2-D (Eq.25) as an example.

With the additional assumptions that the flow is incom-
pressible, we can simplify the relations (21), getting the vor-
ticity or vortex (strength)�,

� = ∇×

(
MAB
√

µ0ρ

)
= −

MA∇ρ ×B

2
(
µ0ρ3

)1/2
+

∇×(MAB)
√

ρ

=
MABS ×∇ρ

2
√

µ0
(
1−M2

A

)1/2
ρ3/2

+
∇MA ×BS

√
µ0ρ

(
1−M2

A

)3/2

+
MA∇×BS

√
µ0ρ

(
1−M2

A

)1/2
. (24)

For potential fields (∇×BS = 0), the vorticity only has com-
ponents perpendicular to the magnetic field; ifMA is con-
stant, then the vorticity is only non-zero, if the density is not

1For global constantMA/
√

ρ they are strictly parallel.

completely constant. Strong vortex sheets only occur if the
density gradient is strong enough.

In the case of force-free fields, there are nonvanishing
components of the vorticity, even ifMA is constant, while
the current remains field-aligned. The second term in the
last equation also enables generation of a component of
the vorticity perpendicular to the magnetic field in the case
∇MA 6= 0, but it is, of course, also perpendicular to the cur-
rent.

In the nonlinear case with smallMA = const, the vortex
can be large, while the current is not extremely enhanced by
the flow. Necessary for� = 0, e.g. in 2-D with∇×BS = 0
is, with apostrophes denoting derivatives with respect to the
flux functionA,

∇MA ×BS√
(µ0ρ)

(
1−M2

A

) =
MA

µ0

∇ρ ×B

2ρ3/2

M ′

A(A)(∇A×BS)
√

(µ0ρ)
(
1−M2

A

)3/2
=

ρ′(A)MA (A)(∇A×BS)

2ρ3/2√µ0
(
1−M2

A

)1/2

⇒
M ′

A (A)

MA (A)
(
1−M2

A (A)
) =

ρ′(A)

ρ(A)

⇒ ρ = ρ0

(
M2

A

1−M2
A

)1/2

. (25)

The densityρ and the Alfv́en Mach number areusually in-
dependently conserved quantities along the field lines, i.e.
both ρ = ρ(A) and MA = MA(A) can be freely choosen.
One recognizes that this cannot be fulfilled if the vorticity
should vanish. Here, either the density is a specified func-
tion of the Alfvén Mach number, i.e.ρ = ρ(MA(A)), or vice
versaMA = MA(ρ(A)). If ∇ ×BS 6= 0 then a solution is
only possible if again relation Eq. (23) holds, i.e. the cur-
rent must be perpendicular to the magnetic field. Concern-
ing the current equation, Eq. (19) it can be recognized that
this necessary condition Eq. (23) must also be fulfilled if one
wants the steady-state-current to vanish. In the 2-D case, the
current distribution and the magnetic field are then basically
1-D. This could, e.g. lead either to field lines being circles or
straight field lines in 2-D.

In general (3-D), ifMA is non-constant andBS is a non-
potential field, then the current can only vanish ifjS‖ = 0.

If MA is constant, or its gradients can be neglected, and
the corresponding magnetohydrostatic field is potential, it is
possible to have no currents, or current sheet, but with the
gradient term of the density it is possible to generate a vortex
sheet in Eq. (24) at the same time.

www.ann-geophys.net/30/545/2012/ Ann. Geophys., 30, 545–555, 2012
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4.1 Sequence of equilibria towards almost
magnetohydrostatic configurations

To analyse the connection between current and vortex sheets
without loss of generality in 2-D, we search for an ansatz for
the Alfvénic Mach number sheet. We use an ansatz where
the Alfvén Mach numberMA is depending on one flux func-
tion, but basically this view can be transferred to the prob-
lem in 3-D with two flux functions, i.e. Euler potentials. We
present the principle of how to construct a series of peaked
function for the Alfv́en Mach number, sharply separating re-
gions with flow from regions with almost no flow (MA � 1).
The Alfvén Mach number should therefore be represented by
a function series depending on a smallness parameterε 6= 0,
which tends to zero, to mimic an approximatelystaticequi-
librium. This has relevance for a lot of situations in which the
complete or large part of the domain have a basically quasi-
magnetohydrostatic character, with some regions showing al-
most no flows along the field line, e.g.Neukirch(2005a) and
Romeou and Neukirch(1999). The relevance for the case
MA � 1 is valid especially in the case of a lowβ-plasma, as

1� β =
p

B2/(2µ0)
=

p/ρ

B2/(2µ0ρ)
=

2

γ

M2
A

M2
S

(26)

γ being the polytropic exponent andMS the usual Mach
number, i.e.

p

ργ
= const, v2

S =
dp

dρ
, M2

S =
v2

v2
S

. (27)

Approximate incompressibility is plausible for Mach num-
bersMS � 1, and hence the conditionMA � MS � 1, to
guarantee a lowβ-plasma, is even more plausible. In fact,
MA . 1 is possible for regions in which the plasmaβ is much
larger, e.g. in the vicinity of (degenerated) separatrices, be-
ing null sheets of the magnetic field, or regions where the
magnetic field in general is weaker.

Taking a normalized flux functionA and a scaling factorε
into account, a very general ansatz forMA can be written as
the following sequence of functions:

MA = ±|MA,max|ε
n

[
±1+ tanh

(
A
ε

)
2

]
(28)

lim
ε→0

MA = 0 (29)

dMA(A)

dA
≡ M ′

A(A) <∞ (30)

⇒ M ′

A = εn−1cosh−2
(

A

ε

)
(31)

MAM ′

A = ε2n−1

[
cosh−2

(
A

ε

)
+

sinh
(

A
ε

)
cosh3

(
A
ε

)], (32)

i.e. the terms withMA andM ′

A are bounded forε 6= 0. A di-
vergence of these terms and therefore the parametric forma-
tion of a vortex sheet can be recognized in the second row of

the vortex equation, Eq. (24), if we consider limε → 0, and,
of course, taking into account that∇MA(A) = M ′

A(A)∇A.
For small Alfvén Mach numbers, even if we do not only take
potential fields, i.e.∇×BS = 0, into account, the dominant
and important terms are that term in the vortex and current
equations, which include at least the∇MA-term. We can
distinguish different regimes for the exponentn, which are
listed in the following:

1. Forn > 1, the current sheet and the vortex sheet contract
with 1/ε in Eq. (32), but their amplitudes converge to
zero, as can be seen by taking the limit for Eq. (32) for
ε → 0. The reason is that theMA M ′

A term converges
with ε2n−1

= ε2(1+|δ|)−1
= ε1+|δ| to zero.

2. For n = 1, the vortex sheet and the current contract,
the amplitude of the vortex sheet stays finite, the cur-
rent sheet amplitude converges to zero, also due to the
MA M ′

A-convergence, reading∝ ε.

3. In the range 1> n > 1
2, the vortex sheet and the cur-

rent contract, the vortex sheet amplitude diverges with
ε−(1−n) for ε → 0, the amplitude of the current sheet
converges to zero withMA M ′

A ∝ ε|δ|.

4. Forn =
1
2, the vortex sheet and the current contract, the

vortex sheet diverges withε−
1
2 , the amplitude of the

current sheet stays finite, converging withMA M ′

A ∝ ε0.

5. For 0≤ n < 1
2, the vortex sheet and the current sheet

contract, the vortex sheet (with∝ ε−2|δ| , 1
2 ≥ |δ| > 0

) and the current sheet amplitude divergeMA M ′

A ∝

ε−
1
2 |δ|; for n = 0 the Alfvén Mach number stays finite

and therefore cannot converge to a quasi static case. We
therefore do not take values ofn < 0 into consideration.

These different cases imply that only for a special chosen
funcion of the Alfv́en Mach number, current and vortex
sheets simultaneously appear, namely for the case of the ex-
ponentn < 1/2. For the other cases it is at least necessary
that n < 1 to generate a singular vortex sheet in the limit
ε → 0, but without getting a current singularity. Case 5 guar-
antees the existence of both, a current sheet and a vortex
sheet.

We did not discuss the influence of the∇ρ-term in the
vortex-equation, Eq. (24), very intensively. The influence
can also be very important, although it is with a∝ MAM ′

A-
dependence of the same strength and quality as the depen-
dence of the current density.

4.2 General view on the connection between currents
and vortices

To clarify the structure of this connection between vortex
sheets and current sheets from a different view, we intro-
duce the abbreviationsGA = (∇MA ×BS)/(1−M2

A)3/2 and
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J S = jS/(1−M2
A)1/2 and can rewrite the vortex-equation

Eq. (24) and the current-equation Eq. (19)

j =
MA

µ0
GA +J S (33)

� =
1

√
ρ

GA +
MA

µ0
√

ρ
J S −

MA ρ−
3
2

2
√

µ0
∇ρ ×B (34)

⇒ � =
ρ−

3
2

2

MA

µ0
∇ρ ×B +

1
√

ρ
GA +

MA

µ0ρ

(
j −

MA

µ0
GA

)
(35)

The terms of orderO(M2
A) can be neglected for small val-

ues ofMA . Then one can recognize that the most important
term, the zeroth order inMA , is theGA-term, followed by
the gradient term of the density and the term with the current
density as terms of first order inMA .

But even for the general caseMA . 1, theGA-term has
the strongest influence on the generation of vorticity, as it
scales only withρ−1/2 in contrast to thej -term with a 1/ρ-
dependence or theρ−3/2-dependence of the∇ρ-term. Only
if the scale of the density gradient is much smaller than that
of the Alfvén Mach number the gradient term of the density
can dominate. TheGA-term is also favoured, as for values
of MA close to one the(1−M2

A)3/2-dependence enhances
the influence of the∇MA-term on the vorticity stronger than
the (1−M2

A)1/2-dependence of all other terms in the vor-
ticity Eq. (35). The nature of this transformation technique
shows that these steady-state current-vortex structures are re-
lated to static equilibria, and therefore the vortex structure
and its scalesgoverns the structure of the currents and cur-
rent sheets.

5 Examples

As an example we investigate an initial 2-D-equilibrium in
the form

A(x,y)= x2
+(jz/2−1)y2, (36)

which reduces to a potential field solution for a vanishing
currentjz as shown in Fig.1 panelA(x,y). We describe a
Mach-number-profile in the form

MA(A) =
MAmax

2

(
1− tanh

A

d

)
, (37)

whereMAmax= 0.5 andd = 0.2 are free parameters; see top-
left panels1 showingMA(A) and ∂MA(A)

∂A
for the profile and

its derivative, respectively. This introduces a plasma flow on
some field lines and a moderate flow gradient perpendicu-
lar to the x-point separatrices as shown in the top-right pan-
elsMA and ∂MA

∂A
. As a consequence, the initial current free

equilibrium develops a current and vortex sheet aligned with
the separatrices (middle-right panelsJz and�, respectively).
The bottom-right panelJz

�
shows the ratio of these quantities.

In Fig.2 we use the same mathematical form, but provide a
significantly steeper flow gradientd = 0.2/16 along the sep-
aratrices, but a lower maximum flow velocityMAmax= 0.25.
The panels in Fig.2 have the same meaning as in Fig.1. We
observe that both the current sheet and vortex sheet increase
in magnitude, but the vortex sheet is more strongly affected,
as the ratioJz

�
shows.

6 Conclusions

Numerical incompressible time dependent adaptive MHD
simulations byGrauer and Marliani(1998, 2000) show that
vortex sheets align with current sheets. Although it is not
clear why this alignment occurs within the approach of these
simulations, we could show that, for steady-state incom-
pressible field-aligned flows, this alignment appears natu-
rally in a non-trivial way: even if the Alfv́en Mach number is
non-constant, and non-trivial terms appear, resulting from the
used non-canonical transformation mechanism, the resulting
microscopic or thin structure and decrease of the amplitude
of current and vortex strength show a clear alignment. The
reason is that, in both representations of current and vorticity,
the gradient of the the Alfv́en Mach numberMA generates
the thin structure of vortex and current sheet.

The larger the gradient, i.e. the smaller the lengthscale, the
stronger the vorticity and the current. The difference is only
that the current generating term is multiplied byMA , i.e. in
the case of approximative magnetohydrostaticsMA � 1, the
vortex is stronger enhanced than the current. To obtain strong
vortex sheets without strong current sheets, the plasma flow
must change on significantly smaller scales than the magnetic
field.

It is also noteworthy that the functionρ can be chosen
freely as a function of the Euler-potentials in the frame of this
transformation technique. The free choice leads to strong in-
fluence of the vorticity on the density gradient. This may be
important for regions across magnetic boundaries, e.g. hel-
met streamer regions, the heliopause or other astropauses,
the magnetopause, etc., where inner and outer field lines
and plasma regions are separated by separatrices or magne-
topauses, separating regions of higher density from regions
of lower density. Thus, it is very difficult to get current sheets
without vortex sheets, as the used non-canonical transforma-
tion method automatically has to produce shear flows to cre-
ate filamentary structured current sheets. These shear flows
in fact imply vortex sheets, hence generating current sheets.

On the other hand, for special configurations it is also pos-
sible to create a current sheet with a vanishing vortex strength
in 2-D, where onenecessarycondition is automatically ful-
filled, namely that the parallel current with respect to the
magnetic field vanishes, i.e.j‖ = 0. But a special density
distribution must also be included to besufficient: normally
the both free and independent integralsMA andρ are then
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necessarily dependent functions of each other in 2-D, i.e.
ρ = ρ(MA(A)).

The velocity fields calculated from the quasi-static ap-
proach (seeSchindler and Birn, 1987, and Wiechen and
Schindler, 1988) show high bulk velocities parallel to the
magnetic field, similar to the pure field-aligned flow of our
presented calculations. There is also an analogy to the fine
structures of current sheets in both approaches, namely the
filamentary structure formation, i.e. the formation of a peak-
ing, almost singular current, in time-dependent, quasi-static
theory and the filamentary structure formation of the current
sheet due to small-scale gradients of Alfvén Mach number
of our stationary approach. The used technique to calcu-
late exact solutions of ideal MHD from known magnetohy-
drostatic solutions is very important to understand the struc-
ture of current vortex sheets also regarding eruptive space
plasma processes like magnetic reconnection and following
magnetospheric substorms, eruptive flares or coronal mass
ejections. Even if anomalous viscosity is damped or mini-
mized (Ahmadi and Hirose, 1981) and shear flows in specific
situations lower the reconnection rate (Karlicky, 1989), it is
important to generate smaller-scale dissipation (see e.g.Baty
et al., 2003).

“Flare observations should be used to investigate whether
the large-scale vortical flows, required to sustain the maxi-
mum viscous dissipation rate, are indeed present in the flar-
ing solar corona.”, as theoretical investigations on steady re-
connection and dissipation show (seeCraig and Litvinenko,
2009).

Hence, we expect that in the vicinity of current sheets
close to separatrices, it is possible to observe such strongly
sheared flows. From that point of view, it would be inter-
esting to search for small-scale shear flows in the vicinity of
thin current sheets to compare this with initial configurations
in active or eruptive regions in the solar atmosphere or in
magnetospheres before magnetic (sub)storms. The involved
scales may admittedly be extremely small.

It is also noteworthy that in adaptive mesh refinement anal-
yses of magnetic reconnection, the “fractal” or better fila-
mentary structure of current sheets can also be found and
plays a very important role in fragmented reconnection, i.e.
current-layer fragmentation (see, e.g.Bárta et al., 2011, and
Bárta et al., 2010).

It would be of great interest to investigate steady-state cur-
rent vortex sheets for general field-aligned flows.
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