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Abstract. We investigate the global response of the geospace
plasma environment to an interplanetary (IP) shock at
∼02:24 UT on 28 May 2008 from multiple THEMIS space-
craft observations in the magnetosheath (THEMIS B and
C), the mid-afternoon magnetosphere (THEMIS A), and the
dusk magnetosphere (THEMIS D and E). The interaction of
the transmitted IP shock with the magnetosphere has global
effects. Consequently, it can affect geospace plasma signif-
icantly. After interacting with the bow shock, the IP shock
transmitted a fast shock and a discontinuity which propa-
gated through the magnetosheath toward the Earth at speeds
of 301 km s−1 and 137 km s−1, respectively. THEMIS A ob-
servations indicate that the IP shock changed the proper-
ties of a plasmaspheric plume significantly. The plasmas-
pheric plume density increased rapidly from 10 to 100 cm−3

in 4 min and the ion distribution changed from an isotropic
to a strongly anisotropic distribution. Electromagnetic ion
cyclotron (EMIC) waves observed by THEMIS A are most
likely excited by the anisotropic ion distributions caused by
the IP shock impact. THEMIS A, but not D or E, observed a
plasmaspheric plume in the dayside magnetosphere. Multi-
ple spacecraft observations indicate that the dawn-side edge
of the plasmaspheric plume was located between THEMIS A
and D (or E).

Keywords. Interplanetary physics (Interplanetary shocks) –
Magnetospheric physics (Magnetospheric configuration and
dynamics; Solar wind-magnetosphere interactions)

1 Introduction

The interaction of interplanetary (IP) shocks (usually fast
forward shocks) with the magnetosphere includes several
phases, including interaction with the bow shock, transmis-
sion through the magnetosheath, interaction with the mag-
netopause, transmission into the magnetosphere as fast and
intermediate mode waves, modifications of the field-aligned
and ionospheric current systems, and perturbations in ground
magnetograms (Samsonov et al., 2007). The interaction of
IP shocks with the bow shock has been extensively studied
(e.g.,Shen and Dryer, 1972; Grib et al., 1979; Zhuang et al.,
1981; Samsonov et al., 2006, 2007; Zhang et al., 2009). In
MHD simulations, the interaction of an IP shock with the
bow shock launches a fast shock into the magnetosheath and
creates a new discontinuity (Zhuang et al., 1981) where the
magnetic field strength and density increase, the temperature
decreases and the velocity remains unchanged (Samsonov
et al., 2006). The transmitted fast shock and new discon-
tinuity have been observed (Šafŕankov́a et al., 2007; P̌rech
et al., 2008).

Past work has predicted that the interaction of an IP shock,
marked by a pressure increase, with the bow shock results in
earthward then sunward motion of the bow shock. By ana-
lyzing the Rankine-Hugoniot conditions,Grib et al.(1979)
and Völk and Auer (1974) predicted that the bow shock
moves towards the magnetosphere after interaction with the
IP shock. Then the interaction of the transmitted fast shock
and the magnetopause (considered as a tangential discontinu-
ity) results in a fast rarefaction wave propagating toward the
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bow shock. This rarefaction wave could result in outward
bow shock motion. In MHD simulations, the bow shock be-
gins moving earthward immediately after an encounter with
an IP shock at velocities of∼100 km s−1 (Samsonov et al.,
2006). Results from a three-dimensional magnetosheath nu-
merical model show that both a fast reverse shock and a fast
expansion wave (rarefaction wave) may result from the in-
teraction of the IP shock with the magnetopause depend-
ing on boundary conditions of the model (Samsonov et al.,
2006). The existence of the rarefaction wave reflected from
the magnetopause due to the shock-magnetopause interac-
tion was confirmed by a case study employing observations
made by Cluster spacecraft in the magnetosheath (Maynard
et al., 2008). Based on results from global MHD simulations,
Samsonov et al.(2007) suggested that the dayside ionosphere
reflects the transmitted fast shock and that the bow shock
and the magnetopause move sunward when the reflected fast
shock passes. Earthward then sunward bow shock motion
due to the interaction of an IP shock with the bow shock has
been observed (e.g.,Šafŕankov́a et al., 2007). Šafŕankov́a
et al. (2007) concluded that the observed bow shock cross-
ings result from the IP shock-magnetosphere interactions be-
cause there are no further changes in the upstream dynamic
pressure or IMF that could cause them.

Electromagnetic ion cyclotron (EMIC) waves are gener-
ated by the ion temperature anisotropy (T⊥ > T‖) (e.g.,Corn-
wall, 1965). The frequency of EMIC waves is below the lo-
cal proton gyrofrequency. In the magnetosphere, it ranges
from 0.1 to 5 Hz. EMIC waves in the hydrogen band (with
frequencies between the helium and hydrogen gyrofrequen-
cies) and helium band (with frequencies between the oxygen
and helium gyrofrequencies) are often observed in the mag-
netosphere (Young et al., 1981; Roux et al., 1982; Ander-
son et al., 1992). Their highest occurrence is in the dayside
magnetosphere beyondL = 7 (Anderson et al., 1990, 1992).
EMIC waves have been found to be often associated with
compressions (Anderson and Hamilton, 1993; Engebretson
et al., 2002; Usanova et al., 2008).

The plasmasphere is a region located in the dipolar por-
tions of the Earth’s magnetosphere and populated by cold
(∼eV) and dense plasma of ionospheric origin (Lemaire and
Gringauz, 1998; Darrouzet et al., 2009a; Singh et al., 2011).
Plasmaspheric plumes are large-scale density structures that
are usually connected to the main body of the plasmas-
phere, and extend outward (e.g.,Elphic et al., 1996; Ober
et al., 1997; Sandel et al., 2001). Plasmaspheric plumes
have been detected by in-situ and ground-based instruments
(e.g., Chappell et al., 1970; Carpenter et al., 1992; Foster
et al., 2002; Moldwin et al., 2004; Goldstein et al., 2004;
Darrouzet et al., 2006, 2009b). Dense (>10 cm−3) plasma-
spheric plumes and/or cold ions at the magnetopause have
been observed (Chappell, 1974; Gosling et al., 1990; McFad-
den et al., 2008a). Darrouzet et al.(2008) presented a statis-
tical analysis of the plasmaspheric plumes observed by the
Cluster spacecraft. They found that plasmaspheric plumes

were observed mostly for moderate Kp and not for small Dst.
They also showed that plumes are mainly located in the after-
noon and pre-midnight MLT sectors. Plasmaspheric plumes
have been suggested as a major cause of EMIC waves (Fuse-
lier et al., 2004).

Most of the previous studies on EMIC waves and plasmas-
pheric plumes were during magnetic storms or substorms. In
this paper, we investigate the global response of the geospace
plasma environment to an IP shock from multiple THEMIS
spacecraft observations in the magnetosheath (THEMIS B
and C), the mid-afternoon magnetosphere (THEMIS A), and
the dusk magnetosphere (THEMIS D and E). The outline of
this paper is as follows. Section 2 presents observations from
the WIND and THEMIS spacecraft. Section 3 concludes the
paper.

2 Spacecraft observations

Figure1 shows an IP shock observed by the WIND space-
craft located at(x,y,z) = (257, 52, 23) GSERE. Panels (a)–
(c) show plasma moments measured by Solar Wind Ex-
periment (SWE) with 1 min time resolution (Ogilvie et al.,
1995). Panel (d) shows the calculated dynamic pressure
(nmv2). Panels (e) and (f) show magnetic fields measured
by Magnetic Field Investigation (MFI) instrument with 3 s
time resolution (Lepping et al., 1995). The interplanetary
magnetic field (IMF) was southward from 01:00 to 01:12 UT
and from 01:18 to 01:25 UT, mainly northward from 01:12
to 01:18 UT and after 01:25 UT. The vertical dashed red line
at 01:17:38 UT marks the IP shock crossing which is clearly
defined from the magnetic field strength variation. The IP
shock is a fast forward shock which is characterized by in-
creases in the solar wind density, thermal temperature, bulk
velocity, dynamic pressure and magnetic field strength.

The plasma observations reported below were obtained
from the Electrostatic Analyzer (ESA) (McFadden et al.,
2008b) on the THEMIS spacecraft (Angelopoulos, 2008). In
one 3-s spin, ESA measures the 3-D ion and electron distri-
butions over the energy range from a few eV up to 30 keV
for electrons and up to 25 keV for ions. The magnetic field
observations presented herein are obtained by the Fluxgate
Magnetometer (FGM) (Auster et al., 2008) which measures
the DC magnetic field up to 128 Hz.

Figure 2 shows the trajectories of the THEMIS space-
craft (small colored lines) from 02:00 UT to 03:00 UT on
28 May 2008. Five different symbols in Fig.2 mark the po-
sitions of 5 THEMIS probes at 03:00 UT. THEMIS B and C
are in the magnetosheath and THEMIS D, E, and A are inside
the magnetosphere at 02:20 UT. These regions can be identi-
fied from the ion spectra in Fig.3d, h, j, l and n. THEMIS D
and E are very close to each other on the dusk flank.

The IP shock observed by WIND (shown in Fig.1) propa-
gated toward the Earth and was observed by the THEMIS
spacecraft. Panels (a)–(d) in Fig.3 show THEMIS B
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Fig. 1. An IP shock observed by the WIND spacecraft upstream at (257, 52, 23)RE. From top to bottom:(a) ion density,(b) thermal
velocity,(c) component of the flow velocityVx along the Sun-Earth line,(d) dynamic pressure,(e)components of the magnetic fields in GSE
coordinates, and(f) the magnetic field strength. The vertical dashed red line at 01:17:38 UT marked the IP shock crossing.

observations and panels (e)–(h) show THEMIS C observa-
tions. Panels (i)–(n) show observations by THEMIS D, E
and A. The IP shock first reached THEMIS B in the mag-
netosheath. Panel (a) shows the plasma flowVx component.
Panel (b) shows the ion density. Panel (c) shows the ion tem-
perature. Panel (d) shows the ESA plasma ion spectrum. The
bow shock moved inward past THEMIS B at 02:25:07 UT,
as indicated by the transition to low solar wind densities and
temperatures but high velocities. The black dashed line at
02:23:47 UT marks the transmitted fast shock (due to the in-

teraction between the IP shock and the bow shock) which
can be identified by increases in the plasma flow speed, den-
sity and temperature. This shock was followed by a discon-
tinuity at 02:24:04 UT which is characterized by a density
increase and a temperature decrease. This is the new discon-
tinuity predicted by MHD theory (Samsonov et al., 2006).
Both the transmitted fast shock and the new discontinuity
propagated earthward towards THEMIS C. The separation
between the shock and discontinuity observed by THEMIS C
at 02:24:16 UT and 02:25:42 UT is larger than that observed
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Fig. 2. THEMIS trajectories (small colored lines) projected in the
GSM X-Y plane from 02:00 to 03:00 UT on 28 May 2008. The two
black curves represent the location of the bow shock and magne-
topause determined by the Fairfield model (Fairfield, 1971). The
positions of 5 THEMIS probes at 03:00 UT are marked by 5 dif-
ferent symbols. THEMIS B and C are in the magnetosheath and
THEMIS D, E, and A are inside the magnetosphere at 02:20 UT,
which can be identified from the ion spectra in Fig.3d, h, j, l and
n. THEMIS D and E are very close to each other on the dusk flank.
At 02:25 UT, THEMIS B is located at (9.5, 8.9,−3.5) GSMRE,
THEMIS C is located at (7.3, 8.8,−1.9) GSM RE, THEMIS A
is located at (3.8, 7.5,−1.1) GSMRE, THEMIS D and E are lo-
cated at (−0.7, 11.4, 0.6) GSMRE and (0.3, 11.6, 0.2) GSMRE,
respectively.

by THEMIS B at 02:23:47 UT and 02:24:04 UT due to the
greater propagation speed of the shock than the discontinu-
ity. Parameters of the transmitted shock and the new dis-
continuity have been calculated using Shock and Discontinu-
ities Analysis Tool (SDAT) (Vi ñas and Holland, 2005) which
uses the Vĩnas-Scudder analysis method (Vi ñas and Scudder,
1986) based on the Rankine-Hugoniot conservation equa-
tions. This method has been used by (Zhang et al., 2009).
The normal direction of the transmitted shock is (−0.90,
−0.10,−0.43) GSE and the shock velocity along the shock-
normal direction is 301± 27 km s−1. The normal direc-
tion of the new discontinuity is (−0.96,−0.22,−0.20) GSE
and the propagation velocity along the normal direction is

137±20 km s−1. The propagation velocities of the transmit-
ted fast shock and the new discontinuity can also be calcu-
lated using the separation of THEMIS B and C along the
normal directions divided by the time delay between these
two spacecraft (timing method). THEMIS B was located
at (9.5, 7.7,−5.8) GSERE and THEMIS C was located at
(7.3, 8.0,−4.2) GSERE at 02:25 UT. The propagation ve-
locities of the transmitted fast shock and the new disconti-
nuity obtained from the timing method are 278 km s−1 and
112 km s−1, respectively, which are consistent with the re-
sults using SDAT. The dynamic pressure increases associated
with the transmitted fast shock then compressed the magne-
tosphere. THEMIS D, E and A inside the magnetosphere
observed antisunward-moving plasmas beginning at almost
the same times (marked by black dashed lines in panels i, k
and m), and lasting for at least 2 min.

Figure 4 shows THEMIS A observations from 02:20 to
03:10 UT, 28 May 2008. Panel (a) shows three components
of the magnetic field in GSM coordinates with 0.25 s time
resolution. The magnetic field strength (panel b) increased
sharply from 60 nT to 75 nT at∼02:25 UT due to the pressure
enhancement associated with the IP shock. Then the mag-
netic field strength decreased slowly to 68 nT at 02:34 UT.
The magnetic field strength showed a few more compres-
sions and relaxations with a∼5 min period from 02:43 to
02:57 UT. Panel (c) shows the x-component of the plasma
flow velocity in GSM coordinates. After the IP shock arrival
(at ∼02:24 UT), theVx component turned antisunward and
then oscillated around 0 with an amplitude of∼50 km s−1

from 02:24 to 03:10 UT. The amplitude of the oscillating
electric fieldEy measured by the Electric Field Instrument
(EFI) (Bonnell et al., 2008) was 5 mV m−1 (not shown).
Panel (d) shows the wavelet analysis result for theBy com-
ponent of the magnetic field. The black (magenta) line at
around 0.25 Hz (0.03 Hz) shows the gyrofrequency of He-
lium (Oxygen) ions. The strong emissions with frequen-
cies between the gyrofrequencies of the Helium and Oxygen
ions are EMIC waves. Panel (e) shows the ESA ion spec-
trum. An interesting feature is the sporadic measurement
of a very cold plasma (∼10 eV) from 02:25 to 02:26 UT,
from 02:32 to 02:36 UT, from 02:47 to 02:49 UT, and from
02:57 to 02:59 UT. The cold ions appear when there is a sub-
stantial plasma flowVx component. The cold ions are ac-
celerated plasmaspheric plume populations. Panel (f) shows
the plasma density inferred from the spacecraft potential and
electron thermal speed measured by the EFI and ESA instru-
ments, respectively, including both the cold population (mea-
sured by EFI) and the hot component (measured by ESA).
Details of the method are described byMozer (1973). This
method has been used byLi et al. (2010); Takahashi et al.
(2010), and confirmed that the spacecraft potential can be
used to reliably estimate the plasma density. The density
npot shown in panel (f) has been compared with the ESA
electron density moment (not shown). The ESA electron
density moment is smaller (due to the limited measurable
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Fig. 3. The propagation of the IP shock through the magnetosheath and in the magnetosphere. From top to bottom:(a)–(d) THEMIS B
ESA plasma flowVx component, ion density, temperature, spectrum,(e)–(h) THEMIS C ESA plasma flowVx component, ion density,
temperature, spectrum,(i) and(j) THEMIS D ESA plasma flowVx component, ion spectrum,(k) and(l) THEMIS E ESA plasma flowVx
component, ion spectrum,(m) and(n) THEMIS A ESA plasma flowVx component, ion spectrum. The bow shock crossing was observed
by THEMIS B near 02:25 UT. The vertical black dashed lines mark the transmitted shock (top 8 panels) or the time when the plasma inside
the magnetosphere started to move earthward (bottom 6 panels). The vertical blue dashed lines in the top 8 panels mark the discontinuity
produced by the interaction of the IP shock and the bow shock.

energy range) but overall followsnpot, indicating thatnpot
shows real changes. Before the shock passage at 02:25 UT,
the total densitynpot was 10 cm−3 and the ESA electron den-
sity was 1 cm−3 (not shown). Therefore, the density of the
cold population is 9 cm−3, indicating that THEMIS A most
probably observed a plasmaspheric plume (e.g.,Goldstein
et al., 2004; Zhang et al., 2011). The density increased to
30 cm−3 at 02:26 UT and 100 cm−3 at 02:29 UT. The density
drop from 5 to 0.5 cm−3 observed by THEMIS A at (3.6, 8.1,
−1.3) GSMRE indicates the dusk-side edge of the plume
was located at (3.6, 8.1,−1.3) GSMRE at 03:00 UT.

The EMIC wave activity seems to be closely related to the
accelerated plasmaspheric plume population from panels (d)
and (e) of Fig.4. Ion temperature anisotropies can stimu-
late EMIC waves in the frequency rangeω/�i < Ai/(1+Ai)

(Horne and Thorne, 1993), where�i is the ion gyrofre-
quency, andAi is the ion temperature anisotropy which is
defined byAi = T⊥/T‖ − 1. Panel (g) of Fig.4 presents
ion distributions in theVperp− Vpara (relative to the mag-
netic field) plane for 3 s time intervals before (left) and af-
ter (right) the shock arrival. The ion distribution before the
shock arrival was nearly isotropic, whereas it was strongly
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anisotropic (withT⊥/T‖ > 1) at energies above 50 eV (or
V > 100 km s−1) after the shock passage. The displacement
towards positiveVperp in the right panel is evidence for ac-
celerated flows. The strong anisotropy appeared at around
02:28:30 UT. The anisotropyAi is ∼1 at 02:43:45 UT, and
the EMIC wave frequency should be less than 0.5 Hz which
is consistent with the wave frequency shown in panel (d)
of Fig. 4. Therefore, the observed EMIC waves were most
likely excited by the anisotropic ion distributions caused by

the IP shock impact. One may wonder whether this event is
typical or not. The magnetic field strength compression ratio
of this IP shock is 2 (calculated from the magnetic field mea-
surement across the shock as shown in Fig.1f) which is close
to the average compression ratio of IP shocks for both so-
lar maximum (1.97) and solar minimum (1.93) (Echer et al.,
2004), therefore, this event is common.
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With multiple THEMIS spacecraft, the spatial distribu-
tion of plasmaspheric plumes can be estimated. The bot-
tom six panels in Fig.3 show that while THEMIS A ob-
served an accelerated plasmaspheric plume population at
(3.8, 7.5,−1.1) GSMRE (16:00 MLT, L ≈ 8.5) from 02:25
to 02:26 UT, THEMIS D and E at (−0.7, 11.4, 0.6) GSM
RE and (0.3, 11.6, 0.2) GSMRE (18:00 MLT,L ≈ 11.6) did
not observe any plasmaspheric plume population during this
time interval. This indicates that the dawn-side edge of the
plasmaspheric plume was located between THEMIS A and
D (or E) as illustrated in Fig. 5. THEMIS A was located in
the L-MLT bin where there is a high probability to observe
a plasmaspheric plume as shown in Fig. 8 ofDarrouzet et al.
(2008). The Kp index was 3 during this time interval which
is consistent withDarrouzet et al.(2008) in that plumes are
mostly observed during moderate Kp (3–6). The Dst was
−5 nT which is also consistent with the results ofDarrouzet
et al.(2008) which indicated that plasmaspheric plumes were
never observed for very low Dst (< −110 nT).

3 Conclusions

The global magnetospheric response to an IP shock has been
investigated using the THEMIS spacecraft observations.
With THEMIS B and C in the magnetosheath, THEMIS A

in the mid-afternoon magnetosphere, and THEMIS D and
E in the dusk magnetosphere, the THEMIS spacecraft of-
fer a remarkable opportunity to track the propagation of the
shock and the magnetospheric response. The interaction of
the transmitted IP shock with the magnetosphere has global
effects. Consequently, it can affect geospace plasma signifi-
cantly.

The main conclusions of this paper can be summarized as
follows:

1. The interaction of an IP shock with the bow shock
launched a fast shock and a discontinuity which prop-
agated toward the Earth at speeds of 301 km s−1 and
137 km s−1, respectively.

2. THEMIS A, but not D or E, observed a plasma-
spheric plume in the dayside magnetosphere. Multi-
ple spacecraft observations indicate that the dawn-side
edge of the plasmaspheric plume was located between
THEMIS A and D (or E) as illustrated in Fig. 5.

3. The impact of the IP shock changed the plume prop-
erties significantly. The density increased from 10 to
100 cm−3 in 4 min and the ion distribution changed
from an isotropic to a strongly anisotropic distribution.

4. THEMIS A also observed EMIC waves which were
most likely excited by the anisotropic ion distributions
caused by the IP shock impact.
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