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Abstract. This paper presents a method of measuring the
velocity of a hard target using radar pulses reflected from
the target flying through the radar beam. The method has
two stages. First, the Doppler shifts of the echo pulses
are calculated at a high accuracy with an algorithm which
largely improves the accuracy given by the Fourier trans-
form. The algorithm also calculates the standard deviations
of the Doppler frequencies with Monte Carlo simulation.
The second step is to fit the results from a sequence of
radar pulses to a velocity model allowing linear variation
of the second time derivative of target range. The achieved
accuracies are demonstrated using radio pulses reflected by
a satellite passing through the beam of the EISCAT UHF
radar working at 930-MHz frequency. At high SNR levels,
the standard deviations of the frequency from a single pulse
reach typically down to 0.2 Hz. The best standard deviations
of velocity fit are below 5 mm s−1 while those of the second
time derivative of range are below 1 cm s−2.

Keywords. Radio science (Remote sensing; Signal process-
ing)

1 Introduction

Since the beginning of the space ages in the 1950s, the num-
ber of man-made objects flying around the Earth has been
continuously increasing. In addition to satellites operating
for different scientific and economical purposes, these ob-
jects also consist of space debris. The space debris consists
of defunct satellites, explosion fragments of rocket stages and
smaller objects resulting from collisions between larger ob-

jects. The number of space debris is continuously increasing
and becoming more and more harmful to space activity.

Various methods exist for tracking satellites and other or-
biting objects. They include telescopes, TV-cameras, radars
as well as lasers (Wakker et al., 1991; Goldstein et al., 1998;
Isobe and Japan Spaceguard Association, 1998; Janches et
al., 2000; Foster et al., 2005). Exceptionally precise orbit
determination is obtained by means of satellite-to-satellite
ranging and synchronised clocks at the satellites (Vonbun et
al., 1978). In principle, the satellite path is determined by
six orbital elements, but continued observations are needed,
since the satellite orbits are variable. The reasons of varia-
tions are e.g., air drag and the fine structure of the terrestrial
gravitational field.

The EISCAT UHF radar (Folkestad et al., 1983) was de-
signed for observing the ionosphere by means of the incoher-
ent scatter method. From the very beginning of the measure-
ments in the 1980s, short-lived signals were observed which
obviously were not due to incoherent scatter, but were inter-
preted as echoes from satellites or meteors passing through
the main lobe or the sidelobes of the radar beam. It has later
been understood that these echoes, which are disturbances
in the incoherent scatter work, contain useful information on
these targets. The EISCAT UHF radar has actually been used
for meteor studies (Pellinen-Wannberg and Wannberg, 1994;
Janches et al., 2002).

In addition to satellites and meteors, also space debris pro-
duces echo signals in radar receiver. Due to its high trans-
mitting power, the EISCAT UHF radar is a great tool for
observing space debris. For this purpose no specific space
debris measurement is necessarily needed, but observations
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can be made in connection with the normal radar experiments
planned for ionospheric studies. Such investigations have ac-
tually been made and a large number of space debris particles
have been observed (Markkanen et al., 2002, 2005, 2009). It
has turned out that the radar is capable of observing particles
with diameters down to 2 cm at a distance of 1000 km.

For tracking the paths of individual particles, their orbital
elements should be known. A radar is able to measure the dis-
tance and Doppler shift of the target. The latter means that the
line-of-sight velocity can be determined. If a tristatic radar is
available and the target flies through the common scattering
volume, all six orbital elements can be obtained. This is ap-
plicable to man-made objects like satellites and space debris
as well as to natural objects like meteorite heads. The latter
one is a scientific geophysical application, whereas the for-
mer one has mainly a practical use. Still, high-accuracy deter-
mination of satellite or space debris orbits may even have an
importance in space weather studies, since the atmospheric
density is affected by space weather.

The present paper introduces a method of determining the
line-of-sight velocity of a radar target at a very high accu-
racy. A method of very precise determination of the satellite
range will be presented in a later paper. When put together,
the methods in these two works can be used for determining
the orbital parameters of the target with an extremely high
precision. The methods will be demonstrated using observa-
tions of satellite echoes made by the EISCAT UHF radar in
November and December 2010. The power of the two meth-
ods is described by the standard deviations of the results; the
best standard deviations of the velocity are of the order of
a few millimetres per second and those of range are of the
order of a few tens of centimetres.

2 Measurements

The data analysed in this paper is part of a larger dataset
taken with the EISCAT UHF radar (Folkestad et al., 1983)
during a measurement campaign conducted under the Euro-
pean SSA Preparatory Phase CO-VI activity in late Novem-
ber and early December 2010. The radar target in the present
dataset is EUMETSAT’s METOP-A satellite, which has a
body size of about 6.3 m× 2.5 m× 2.5 m and large solar pan-
els. The satellite was on a sun-synchronous polar orbit with
an inclination of 98.7◦ and an altitude of about 820 km. The
radar transmitted pulses with lengths of 1920 µs at intervals
of 20 ms. When the beam is directed to a point on the satel-
lite orbit, several hundreds of echo pulses are received during
a time interval of several seconds while the satellite passes
through the radar beam. The signal is downconverted to the
baseband and sampled at intervals of 1 µs. Data flow is con-
tinuous and it also includes the downconverted and sampled
transmission signal.

The data flow is divided into IPPs (inter pulse periods)
so that each IPP starts with the transmission pulse and, af-
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Fig. 1.Example of data from a single IPP. Top: Real part of the mod-
ulation envelope. Middle: Real part of the echo pulse (only 680 first
samples are shown). Bottom: Same as middle panel after demodula-
tion. Grey shading in the top panel indicates the part of transmission
corresponding to the part of the echo pulse in the other two panels.
The vertical dashed lines in the middle and bottom panel indicate
the positions of the 180◦ phase shifts caused by the modulation en-
velope.

ter some delay, an echo from the satellite is observed. The
transmission contains a phase modulation with a 32-bit alter-
nating code (Lehtinen and Ḧaggstr̈om, 1981). The downcon-
version shifts the transmission frequency to zero and, there-
fore, only the transmission envelope is visible within this part
of the data flow. The echo pulse, on the other hand, lies at a
non-zero frequency due to the Doppler shift caused by the
satellite motion.

The complex modulation envelope of the transmitted pulse
with a lengthT is ε(t) ∝ exp[iφm(t)], whereφm(t) is the
time variation of the modulation phase. Then the signal
x(t) within the echo pulse is also proportional toε(t), i.e.,
x(t) ∝ exp[iφm(t)] · exp[i(ωt + φ)], whereω is the angular
Doppler frequency andφ is the phase. Thus, the echo sig-
nal can be demodulated by multiplying it with the complex
conjugate of the modulation envelope. The resulting signal
z(t) ∝ exp[−iφm(t)]x(t) = exp[i(ωt + φ)] is a monochro-
matic signal multiplied by a boxcar function with a length of
the transmitted pulse. The task is to determine the Doppler
frequency of this pulse, which gives the line-of-sight target
velocity.

Since the target velocity is not constant during the time
when the pulse is reflected from the target, also the frequency
of the echo pulse is not exactly constant. The consequences
of this fact will be discussed later.

Figure 1 demonstrates the application of demodulation to
a single IPP. The top panel shows the real part of the complex
modulation envelope, consisting of several 180◦ phase shifts
of the alternating code. The second panel shows the front end
of the real part of the radar echo. The echo starts at sample
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number 11323 and only 680 points from the beginning of the
echo are shown (the grey area in the top panel corresponds
to this part of the echo pulse). The phase shifts are visible
in the echo pattern, and they are indicated by vertical dashed
lines in the figure. The demodulated echo is plotted in the
bottom panel. This shows that the demodulation removes the
phase shifts. The result is a sinusoidal variation, except for
clear peaks at the points of the phase shifts. These errors can
simply be removed by interpolation. The imaginary parts are
not portrayed here, but they show a similar behaviour.

The top panel of Fig. 1 indicates that the amplitude of
the modulation envelope increases throughout the transmit-
ting pulse. The amplitude of the imaginary part would have a
corresponding decrease. This behaviour mainly results from
a small drift of the signal phase during the transmission. It
is worth pointing out that this phase drift is actually also
phase modulation and the applied demodulation removes it
together with the phase modulation of the alternating code.
Hence, even if the radar would transmit only simple pulses,
they would contain some phase drifts, which could be re-
moved by the present method.

A more detailed study of the amplitude behaviour indi-
cates that the radar power does not remain constant during
the transmission of a single pulse, but it is slightly reduced.
This means that even the amplitude of the echo pulse slightly
changes. It would be possible to make a power correction to
the echo pulses. However, test were made which indicated
that the effects of the power drift on the accuracy of the de-
termined Doppler shift is so small that it could be neglected.
Therefore, no power correction is made in the present paper.

3 Frequency determination

The data from a single satellite pass contains the transmis-
sion envelopes as well as the sampled echo pulses and their
arrival times. The first step in data analysis is to demodulate
the pulses as described in Sect. 2.

The second step is to determine the Doppler frequencyν

of each pulse. Then the the line-of-sight target velocity, i.e.,
the time derivative of range, is given by

v = −
c

2νr
ν, (1)

whereνr is the radar frequency andc is the speed of light.
Here positive velocity means away from the radar. This equa-
tion also defines the required frequency accuracy for a given
velocity accuracy. In the present case,νr = 929.6 MHz. Then
a velocity accuracy of 1 m s−1 implies a frequency accuracy
of 6.2 Hz, but in order to go down to 10 cm s−1, 1 cm s−1

or 1 mm s−1, respective accuracies of 0.62 Hz, 0.062 Hz or
0.0062 Hz would be needed.

The data vector from an echo pulse consists of 1920 points
at 1-µs intervals. A plain discrete Fourier transform of this
data vector leads to a frequency step of 1/(1920×10−6) Hz≈

520 Hz. One can improve the frequency accuracy by padding
the data vector with zeros. However, in order to achieve a fre-
quency step of 6.2 Hz (1-m s−1 velocity accuracy), the length
of the padded data vector should be about 1.6×105 points (to
pass this limit, a 218-point fast Fourier transform should be
used). Decreasing the frequency step by three orders of mag-
nitude, to reach the velocity accuracy of 1 mm s−1, would
mean a data vector of 1.6× 108 points. In order to pass this
accuracy, a fast Fourier transform of 228 points is needed.

A multitude of methods for determining the frequency of a
monochromatic pulse have been developed (Pisarenko, 1973;
Chan et al., 1981; Kay and Marple, 1981; McMahon and
Barett, 1986; Quinn, 1994, 1997; MacLeod, 1998; Aboutan-
ios and Mulgrew, 2005; Provencher, 2010; Candan, 2011).
The method used in this paper is explained in Appendix A.
It gives both the frequency and phase of the echo signal at a
high accuracy. It first calculates fast Fourier transform (216-
point transform is used in this paper) and then finds the maxi-
mum point of the amplitude spectrum at an essentially higher
resolution. The true accuracy, however, depends on the SNR
of the echo signal. The effect of noise on the frequency ac-
curacy is studied in Appendix B, which shows a linear de-
pendence between the logarithm of frequency error and the
logarithm of the SNR.

The frequency analysis itself does not give error limits.
Therefore, the standard deviation of frequency is calculated
for a 1920-µs pulse using a Monte Carlo simulation as ex-
plained in Appendix B. Due to the linear dependence, it
is sufficient to do the simulation for two SNR values only.
When the SNR value of the echo is known, the standard devi-
ation of the determined frequency is obtained from the linear
variation. The Monte Carlo simulation could be done sep-
arately for the frequency of each pulse. However, since the
frequency variation is rather small during a single satellite
pass, the SNR simulation is here made only for a single fre-
quency for each satellite pass.

4 Velocity fit

The duration of a satellite passing through the radar beam is
a few seconds. During this time, the line-of-sight velocity of
the satellite varies and it turns out that neither the second time
derivative of range can be taken as constant. A sequence of
velocity measurementsvi = v(ti), i = 1,2, . . . ,n with stan-
dard deviationsσi, i = 1,2, . . . ,n is obtained from a single
satellite pass. The result of each Doppler measurement cor-
responds to the time when the pulse meets the target. There-
fore, due to the varying distance between the radar and the
satellite, the separations of the timesti are not constant.

The exact timing of the observations is quite important,
since both the first and second time derivatives of target range
change quite rapidly. The times of transmitting the front end
of a pulse and of arrival of the front end of the echo are ob-
served. By putting the start of transmission to zero, the echo

www.ann-geophys.net/30/1555/2012/ Ann. Geophys., 30, 1555–1565, 2012



1558 T. Nygrén et al.: Satellite velocity

from the front end will be received at some instantt = tf and
from the rear end att = tr. Then the front and rear ends will
be reflected from the target at timestf/2 and tr/2, respec-
tively. Since the rear end is transmitted at the timet = T ,
whereT is the length of the transmitted pulse, and the target
is moving at a velocityv, the length of the reflected pulse is
Tr = tr − tf = cT /(c − v). Using a pulse lengthT = 1920 µs
andv = 5000 m s−1, this givesTr − T ≈ 0.03 µs. Therefore,
the change of pulse length is so small that it should not affect
the frequency determination and there is no need to take it
into account.

The next question is timing of an individual Doppler ob-
servation, when the pulse length during the impact can be
taken as constant. An order-of-magnitude value of the sec-
ond time derivative of range (see Sect. 5) could be 25 m s−2,
for instance. Then the variation of velocity within a single
pulse of 1920 µs is 4.8 cm s−1. The results in Sect. 5 show
that this is clearly larger than the smallest standard deviation
of velocity. Therefore, the accuracy of timing should be bet-
ter than the pulse length. Each pulse is actually a chirp rather
than being monochromatic. The Fourier transform of a chirp
pulse is a function containing Dawson’s integrals and, there-
fore, it is too complicated to be studied analytically. Hence,
the problem must be investigated numerically. One would
expect that the present method, which assumes a monochro-
matic pulse, gives the frequency at the centre of a chirp pulse.
This is indeed what happens with chirp rates expected from
satellite echoes. (If the chirp rate is too high, the resulting
spectrum may be double-peaked and then the method does
not work.) Hence, the correct timing is made by putting each
ti to correspond to the time when the centre of the pulse hits
the target.

The observed line-of-sight velocity is the first time deriva-
tive of range. This is given in the frame of reference fixed to
the radar. One should notice that, although the second time
derivative of range is the time derivative of this velocity, it is
not the line-of-sight acceleration of the target, but only an ac-
celeration describing the temporal variation of range. In what
follows, it is still called acceleration for simplicity.

Assuming that the acceleration has a linear variation dur-
ing the small time interval of the satellite pass, the values of
the acceleration at the times of observation can be written as

ai = a(ti) = a0 + ȧti, (2)

wherea0 andȧ are constants. Then the velocities are

vi = v0 + a0ti +
1

2
ȧt2

i . (3)

The velocities can be collected to a singlen-dimensional col-
umn vector

V = (v1, v2, v3, . . . vn)
T , (4)

whereT indicates transpose. Correspondingly, the standard
deviations of the velocities make a single vector

σ = (σ1, σ2, σ3, . . . σn)
T . (5)

The unknown parameters can be collected to an unknown
vector

x = (v0, a0, ȧ)T . (6)

Then the relation between the unknowns and measurements
is

V = B · x + ε, (7)

whereε is a column vector containing the true errors of the
components ofV . The linear relation between the unknowns
and the velocities is given by a matrix

B =

(
1, T ,

1

2
T 2
)

, (8)

where1 is a column vector with each component equal to 1
and the time vectorT is

T = (t1, t2, t3, . . . tn)
T . (9)

Equation (7) presents a linear inversion problem which can
be solved in a standard manner (see e.g., Nygrén et al., 1997).
The solution is

x̂ = (BT
· 6−1

· B)−1
· BT

· 6−1
· V , (10)

where

6 = 〈ε · εT
〉 = σ · σ T (11)

is the diagonal covariance matrix of the velocity vectorV .
The error covariance matrix of the unknown vector is

6x̂ = (BT
· 6−1

· B)−1. (12)

In conclusion, the most probable values of the parameters
v0, a0 andȧ are the three components ofx̂ and the diagonal
components of6x̂ are their variances.

These results can be used to calculate the most probable
value of the velocity at each instant of time. The fitted veloc-
ity vector is

V̂ = B · x̂ (13)

and its covariance matrix is

6
V̂

= B · 6x̂ · BT . (14)

The standard deviations of the velocities are given by the
square roots of the diagonal elements of this matrix.

Knowing the best values and covariances ofa0 andȧ, the
best fit ofai can be calculated. By defining a vectorx̂a =

(a0, ȧ)T and a matrix

Ba = (1, T ), (15)

the fitted values ofai are, according to Eq. (2), given by a
vector

Â = Ba · x̂a . (16)

Their covariance matrix is

6
Â

= Ba · 6x̂a · BT
a , (17)

where the 2× 2 matrix6x̂a is the part of6x̂ corresponding
to the componentŝxa of x̂.
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Fig. 2. Example of SNR (top) and Doppler shift (bottom) from a
single satellite pass. Curves corresponding to SNR> 2 are plotted
in red.

5 Sample results

Figure 2 shows an example of the SNR and the calculated
Doppler shift from a single satellite pass. Here the horizontal
axis is time from the start of the measurement. The top panel
shows clearly the main and first sidelobes of the antenna pat-
tern. The maximum SNR reaches to a maximum value of
about 640.

The Doppler shift in the bottom panel of Fig. 2 is calcu-
lated with the method in Appendix A, starting with a fast
Fourier transform of a length of 216

= 65536 points. The
positive Doppler shift indicates velocity towards the radar
and the velocity is decreasing with time. The result reveals
large inaccuracies between the lobes of the antenna pattern,
where the SNR goes down to 10−2. The results to be shown
later are always calculated from pulses with SNR> 2. These
parts are plotted in red in Fig. 2.

Examples of frequencies determined from four beam
passes are shown in Fig. 3. Here again, zero time refers to
the the start of the measurement, and the analysis is limited to
values SNR> 2. The frequency variations are very small and
they take place around a trend similar to that in the bottom
panel of Fig. 2. Thus, the trend is first calculated by making
a linear weighted fitνL = a · t +b to the determined Doppler
frequencies. The results after subtracting the trend are plot-
ted by dots in Fig. 3, where the continuous lines indicate 3σ

limits. The values of the fitting parametersa andb are shown
in each panel.

The results show that the statistical errors in the centre
parts of the plots (regions of high SNR) are clearly below
1 Hz. Still, the four panels show quite different deviations
from the linear trend. The top panel indicates a smooth sys-
tematic behaviour, while the second panel contains a varia-
tion, which looks sinusoidal with a period of the order of 2 s.
The third panel contains a faster oscillation with a period of
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Fig. 3. Detrended Doppler frequencies from four beam passes
(dots), together with 3σ limits (continuous lines). Time is mea-
sured from the start of each measurement. The subtracted trend is
νL = a · t + b with the numbers given in each panel.

about 0.2 s and, finally, the bottom panel displays a more ir-
regular variation. Considering the indicated 3σ limits, these
variations cannot be due to statistics, but they must be real. A
plausible explanation is that they are caused by satellite ro-
tation. During different passes, the satellite is seen from dif-
ferent directions and, therefore, also the Doppler shifts from
the rotating satellite may vary. This must depend on the geo-
metrical structure of the satellite. However, it is also possible
that some of the oscillations or irregularities are caused by
scintillation due to instabilities in the ionospheric plasma.

When the Doppler velocities and their standard deviations
from individual pulses are known, the velocities and their
standard deviations can be calculated using Eq. (1). These
are shown (after detrending) in Fig. 4 using open dots; here
each panel corresponds to the respective panel in Fig. 4.
The velocity trend is calculated by making a linear weighted
fit vL = a · t + b to individual velocities. Next, fitting of the
model in Eq. (3) is made as described in Sect. 4. The re-
sulting velocities are shown by the heavy lines and the 3σ
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Fig. 4. Detrended velocities calculated from the Doppler frequen-
cies shown in Fig. 3 (open circles), together with velocities fitted to
the modelvi = v0 +a0ti + ȧt2

i
/2 (heavy line). The 3σ limits of the

fitted velocity are shown by the thin lines. The subtracted trend is
vL = a · t + b with the numbers given in each panel.

limits by the thin lines. The standard deviations of velocities
from individual pulses (not shown) lie between 2.5 cm s−1

at the centres and 50 cm s−1 at the edges of the plots. The
behaviour of the fitting results is mainly determined by ob-
servations with small standard deviations and, therefore, the
curves at the edges do not always follow the cloud of dots
near the edges of the panels.

Fitting of the model drastically reduces the error of the
velocity estimate. The standard deviations obtained from the
four beam passes in Fig. 4 are plotted in Fig. 5. The results in-
dicate that the smallest standard deviations from the middle
part of each satellite pass is always smaller than 5 mm s−1

(the smallest minimum value is 3.4 mm s−1 on curve 1).
Almost tenfold standard deviations are encountered on the
edges.

The linearly varying accelerationsai with standard devia-
tions (notice that this acceleration is the second derivative of
range, not the target acceleration) are calculated in the four
cases following Eqs. (16) and (17). The results are plotted in
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Fig. 5. Standard deviations of fitted velocities from the four beam
passes. Numbers on the curves refer to the panels in Fig. 4.
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Fig. 6. Variation of the acceleration calculated from the Doppler
frequencies shown in Fig. 3 (heavy lines). The thin lines indicate
the 3σ limits.

Fig. 6. The results indicate that, indeed, the variation of ac-
celeration is important within the interval of a few seconds
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Table 1. Results from 12 beam passes on 1 December 2010, after 16:00 UT. The beam passes are numbered from 1 to 12. The next two
columns show the beam azimuths and elevations,tmin and ts give the start times of the IPPs in minutes and seconds,1t gives the times
after the start of the IPPs, and the last four columns contain the line-of-sight velocities and accelerations with their standard deviations. The
examples in Fig. 4 are from beam passes 1, 12, 10 and 8.

No. az [◦] el [◦] tmin [min] ts [s] 1t [s] v [m s−1] σv [mm s−1] a [m s−2] σa [mm s−2]

1 77.90 23.34 20 07.0 6.0868075−4442.5980 3.4 17.9172 3.7
2 72.18 26.31 20 34.6 7.6464025 -3854.5391 4.4 22.5535 6.0
3 65.31 29.20 21 4.4 4.8660850−3180.9559 2.2 27.3821 3.9
4 57.00 31.79 21 31.4 4.2258385−2397.4167 5.0 32.0962 8.0
5 47.66 33.78 21 58.4 4.2256635−1475.9394 8.8 35.9282 17.2
6 37.19 34.88 22 25.2 2.7055785 −534.6120 5.3 38.2714 10.8
7 26.45 34.88 22 52.2 3.1055775 517.7974 4.7 38.1725 8.2
8 16.09 33.77 23 18.9 3.6056710 1529.0484 3.5 35.7630 5.7
9 6.67 31.75 23 45.3 4.3058515 2447.8673 3.8 31.8068 6.0

10 −1.47 29.15 24 13.0 4.4661180 3264.4184 3.6 26.8450 5.2
11 −8.31 26.27 24 38.7 6.2264485 3933.2001 11.6 21.9584 13.7
12 −14.04 23.34 25 05.2 3.8867860 4416.3313 4.1 17.9873 5.6
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Fig. 7. Standard deviations of fitted accelerations from the four
beam passes. Numbers on the curves refer to the panels in Fig. 4.

during the satellite pass. The top and bottom panels indicate
increasing and the two centre panels decreasing acceleration
(remembering that positive velocity is away from the radar).

Figure 7 shows the time variations of the standard devi-
ations of accelerationsai during the four beam passes. The
smallest standard deviations in the centre of all passes is al-
ways smaller than 5 mm s−2 and reaches 15–23 mm s−2 at
the edges. The smallest minimum is 3.7 mm s−2 and it is
found on curve 1.

Since the results give the minimum points of the two stan-
dard deviations, it is possible to calculate the most accurate
values of velocity and acceleration. They are obtained from
Eqs. (13) and (16) using times of the minimum standard devi-
ations. However, the minima of the two standard deviations

do not occur quite at the same time. Since giving only si-
multaneous velocity and acceleration is feasible, one has to
choose between giving either the most accurate velocity or
the most accurate acceleration. In what follows, both veloc-
ity and acceleration are given at times when the standard de-
viation of velocity gets its minimum.

Table 1 contains results from a single satellite path on
1 December 2010 after 16:00 UT, obtained by this method.
The radar beam is pointed sequentially at 12 different po-
sitions along the satellite trajectory waiting for the satellite
to pass the beam. The beam directions are defined by the
azimuth and elevation angles in columns 2 and 3 (the real
pointing accuracy of the beam may be weaker than indicated
and most likely the satellite does not pass through the beam
centre). Positive and negative azimuth values mean east-
wards and westwards from geographic north, respectively.
Columns 4 and 5 contain start times (tmin gives minutes and
ts gives seconds) of the IPPs giving the smallest standard de-
viations. In column 6,1t gives the times of the measured
smallest standard deviations of velocity with respect to the
start times. These should be added to the start times to get
the times of the results. The correct timing also depends on
the synchronisation of the EISCAT clock with UTC and on
possible delays in the radar electronics, but these are not con-
sidered here. The next two columns contain the velocities and
their standard deviations and the last two columns the accel-
erations and their standard deviations.

The azimuth behaviour shows that the satellite is flying
westwards at latitudes to the north of the radar position. The
maximum elevation angle is below 30◦ so that the trajec-
tory lies far from the radar zenith. The velocities are first
negative, in accordance with the trajectory and then they
turn to positive. The maximum velocities at the two ends of
the trajectory exceed 4 km s−1. Except for a single case of
low SNR, the standard deviations of the velocity are always
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below 1 cm s−1. The acceleration is always positive and the
values lie below 40 m s−2 with standard deviations which are
usually only a few mm s−2. Again, one should remember that
the acceleration here is the second time derivative of range,
not the acceleration of the target.

6 Discussion and conclusions

This paper introduces a method of measuring the beam
aligned satellite velocity from radar observations. The
method consists of two parts: determining the Doppler shift
from individual pulses and fitting a physical model to the re-
sults. In order to achieve the best possible accuracy of veloc-
ity measurements, the Doppler shift must be determined at
an accuracy of the order of a few mHz. This is achieved by
a method explained in Appendix A. After obtaining Doppler
shifts of a sequence of echo pulses, a physical velocity model
is fitted to the results. Model fitting is made by means of
stochastic inversion, which implies that standard deviations
of individual Doppler shifts must be known. The standard
deviations depend of the SNR of the radar pulses. Although
the pulses themselves do not give the standard deviations di-
rectly, the standard deviation for any frequency, pulse length
and SNR value are obtained using the Monte Carlo method.
This is explained in Appendix B and it gives the tools needed
in model fitting.

The model takes into account the fact that the time
derivative of the target range, i.e., the line-of-sight velocity,
changes while the target is passing through the radar beam.
In addition, it also allows that the second time derivative has
a linear time variation. Although the satellite passes the radar
beam in a short time interval of the order of 5–10 s, the latter
variation must be taken into account when aiming at the best
possible accuracies.

The effect of model fitting is that all applied measurements
affect the results at each time of observation. Therefore, even
Doppler shifts with large standard deviations reduce the stan-
dard deviations at times of the most accurate Doppler shifts.
The result is that the model fitting reduces the standard devi-
ations of the most accurate velocities by an order of magni-
tude.

The achieved velocity accuracy is so high that a very pre-
cise timing of measurements becomes important. For in-
stance, if we consider that the second derivative of range is
25 m s−2, which is a typical value in the above results, the ve-
locity change during a single pulse of 1920 µs is 4.8 cm s−1.
This is larger than the best standard deviations of velocity
by an order of magnitude. Hence, timing must be better than
the pulse length. A more precise timing was obtained when it
was noticed that, within the Doppler chirp rates encountered
in practice, the frequency analysis always gives the frequency
at the centre of a chirp pulse.

It turns out that the results contain features which are not
completely in agreement with the applied model of satellite

motion. These variations are larger than the statistical stan-
dard deviations. In some cases they seem irregular or in other
cases they contain regular structures with periods of a couple
of seconds or fractions of a second. It is possible that these
structures are caused by the rotation of the satellite which
has large solar panels and periodic structures on its surface.
When the satellite is observed at different times on its or-
bit, the radar probes it from different directions with respect
to the rotation axis and, therefore, the time variation of the
Doppler shift may vary from one satellite pass to another. A
second possible reason which could cause the variations is
that scintillation due to ionospheric irregularities might af-
fect variations in the signal path which show up as changes
in the Doppler shift. In both cases, the model applied in fit-
ting is not exactly valid and this causes errors which are not
of statistical origin. There is no means of getting rid of such
errors and the best one can hope for is that they more or less
cancel out in model fitting.

The radar experiment applied in the present paper was de-
signed for investigating the capabilities of the EISCAT radars
in probing the paths of satellites and space debris particles.
The resulting statistical accuracy of satellite velocity is of the
order of a few millimetres per second, and that of range (to be
presented in a second paper) is a few tens of centimetres. It
seems clear that these accuracies are insurmountable. Hence,
these methods have a permanent practical value. Due to the
lower SNR values, however, the velocity accuracies of small
space debris particles are not expected to be as high as those
shown in the present paper.

In addition to practical purposes, the methods are also
expected to have importance in geophysical investigations.
The most obvious topic is velocities and positions of meteor
heads with improved accuracy. Since the atmospheric density
at high altitudes is affected by space weather, satellite orbits
must vary accordingly. This offers a view on studies of geo-
physical conditions on the variations of orbital parameters.

Appendix A

Determination of frequency and phase

Consider a monochromatic complex pulse

z(t) = exp[i(2πν0t + φ)] when 0< t < T (A1)

andz(t) = 0 whent < 0 or t > T . Heret is time,ν0 is the
signal frequency andφ is the signal phase. The Fourier trans-
form of this pulse is

Z(ν) = T exp{−i[π(ν−ν0)T −φ]}
sin[π(ν−ν0)T ]

π(ν−ν0)T
. (A2)

Whenz(t) is sampled at equal intervals,n0 samples are ob-
tained. Then a discrete Fourier transform can be calculated
from the sample sequence. The frequency resolution is de-
termined by the length of the sample sequence and it can be
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improved by padding the sequence with zeros up to a total
length ofn. This results to a frequency resolution 1/n, where
the sampling interval is taken as time unit. The Fourier trans-
form will be obtained atn frequenciesνi , i = 1,2, . . . ,n ac-
cording to

νi =

{
−0.5+ (i − 1)/n, whenn is even
−0.5+ (i − 1/2)/n, whenn is odd.

(A3)

The discrete Fourier transform gives a spectrumZ(νi) and
the phase ofZ(νi) is

8(νi) = −πνin0 + πν0(n0 + 2) + φ. (A4)

The task is to determineν0 andφ from a given sample se-
quence at the best possible accuracy.

The amplitude spectrum|Z(νi)| has a maximum|Z(νm)|

at some frequencyνm. The neighbouring frequencies are
νm+1 andνm-1, and the respective amplitudes are|Z(νm+1)|

and|Z(νm-1)|. The ratio of these amplitudes is

R=
|Z(νm+1)|

|Z(νm-1)|
=

sin[n0π(νm+1−ν0)]

sin[n0π(νm-1−ν0)]
·
(νm-1−ν0)

(νm+1−ν0)
. (A5)

Using notationsδν = νm+1− νm = νm − νm-1 andνx = ν0 −

νm, this can also be written as

R =
sin[n0π(νx − δν)]

sin[n0π(νx + δν)]
·
(νx + δν)

(νx − δν)
. (A6)

WhenR is obtained from the discrete Fourier transform,νx

can be solved from this equation. Then the unknown signal
frequency is given by

ν0 = νx + νm. (A7)

Equation (A6) is transcendental, but it can be solved very
accurately using Taylor’s expansion. With notations

x = πn0νx (A8)

and

d = πn0δν (A9)

the right hand side of Eq. (A6) can be written as

f (x) =
sin(x − d)

sin(x + d)
·
x + d

x − d
. (A10)

The four first derivatives of this function at zero are(
df

dx

)
0
= 2

(
1

d
−

1

tand

)
, (A11)

(
d2f

dx2

)
0

= 4

(
1

d2
+

1

tan2d
−

2

d tand

)
, (A12)

(
d3f

dx3

)
0

= 2

(
6

d3
−

3

d
−

12

d2 tand
+

9

d tan2d

+
3

d sin2d
+

2

tand
−

2

tan3d
− 4

cosd

sin3d

)
, (A13)

and(
d4f

dx4

)
0

=
48

d4
−

96

d3 tand
−

24

d2
+

72

d2 tan2d
+

24

d2sin2d

+
5

tan4d
−

32

d tan3d
−

32

d tan3d
−

10

tan2d

+
32

d tand
+

5

sin4d
−

6

sin2d

+
38

tan2d · sin2d
−

64

d tand · sin2d
+ 1. (A14)

Sincef (0) = 1, the solution of Eq. (A6) is obtained by solv-
ing numerically the equation

1

24

(
d4f

dx4

)
0

x4
+

1

6

(
d3f

dx3

)
0

x3
+

1

2

(
d2f

dx2

)
0

x2
+(

df

dx

)
0
x + 1 = R, (A15)

The correct rootx can be easily identified and it gives the
unknown frequency

ν0 =
x

n0π
+ νm. (A16)

The signal phase can be calculated form Eq. (A4) by
choosing the phase angle8(νm). This gives

φ = 8(νm) + πνmn0 − πν0(n0 + 2). (A17)

Although this approach already gives quite accurate results,
the accuracy can still be improved in a simple way using the
following error correction method. One can create a pulse
with the frequency and phase obtained by the above method.
When the analysis is repeated with this pulse, slightly dif-
ferent results are obtained. Since the original frequency and
phase are known in this case, the errors of the second analy-
sis are also known. Furthermore, since the results of the first
analysis are already quite close to the true values, these errors
are also quite close to the errors of the first analysis. Hence,
these errors can be used to correct the results of the first anal-
ysis. Numerical tests indicate that this correction may in-
crease the accuracy, for example, by two or three orders of
magnitude.

Figure A1 shows the errors from frequency and phase
analysis of pulses with frequencies ranging from zero to
0.5, where the frequency unit is the reciprocal of the sam-
pling interval. The pulse length is 1920 samples and the data
sequences have been padded with zeros up to a length of
213

= 8192 points. In this case, the frequency error is of the
order of 10−11, while the frequency step given by the Fourier
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Fig. A1. Errors of frequency (top) and phase (bottom) determina-
tion for pulses with different frequencies. The pulse length is 1920
samples and the length of Fourier transform is 213 points. A sin-
gle phase value ofπ/3 is used in all cases and the error correction
method is applied.

transform is only 1/8192≈ 1.22× 10−4. The phase error is
of the order of 10−7 rad.

Even more accurate results are obtained if longer Fourier
transforms are used. If the length of the Fourier transform
is 216

= 65536 points, the frequency error is of the order of
10−12 before error correction and goes down to 10−16 (the
computer eps) after correction. The phase error after cor-
rection is of the order of 10−12 rad. These accuracies are
achieved, although the frequency step of the Fourier trans-
form is only 1/216

≈ 1.5× 10−5.

Appendix B

The effect of noise

The pulses used for calculating the results in Appendix A
were free of noise. It is obvious that the presence of noise
affects the signal spectrum even at frequencies close to
the main peak. This necessarily reduces the accuracy of
frequency and phase determination. Since noise is always
present, it is important to study the effect of noise to the ac-
curacy of frequency determination. An easy way of investi-
gating this is to use Monte Carlo simulation with noise added
to the monochromatic signal.

As an example, a pulse of 1920 data samples with unit
amplitude, a frequency of 0.01 and a phaseπ/3 is used here.
Gaussian random noise is added to the pulse. If the standard
deviation of a basic random Gaussian signal is unity, a noise
signal leading to a signal-to-noise value SNR is obtained by
multiplying the basic random signal by an amplitude
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Fig. B1. The errors (standard deviations) of frequency determina-
tion as a function of SNR. The pulse frequency is 0.01 and the pulse
length is 1920 samples before padding with zeros up to a length of
213 points.

a = (2 · SNR)−1/2. (B1)

The noisy pulse is padded with zeros up to a length of 213

points, and the frequency is determined using the method
in Appendix A. This is repeated 10 000 times for a set of
SNR values. The standard deviations of the resulting fre-
quency distributions give the error estimates in each case.
These are shown in Fig. B1 for SNR values extending from
1 to 900. The results indicate that the errors are always better
than 5× 10−6 but, at SNR values greater than about 10, the
errors with the chosen frequency vary from 10−6 to 10−7.
In spite of the noise, the errors are always much better than
1/213

= 1.22× 10−4, which is the frequency resolution pro-
vided by the Fourier transform. In order to obtain a frequency
resolution of 10−6, for instance, a 106-point Fourier trans-
form would be needed.
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