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Abstract. The aim of this study is to investigate the rela-
tive contributions of dayside and nightside processes to the
spatial and temporal structure of polar cap plasma convec-
tion. The central parameter is the cross-polar cap potential
(CPCP). Selecting a 10-h-long interval of stable interplane-
tary driving by an interplanetary CME (ICME), we are able
to distinguish between the dayside and nightside sources of
the convection. The event was initiated by an abrupt enhance-
ment of the magnetopause (MP) reconnection rate triggered
by a southward turning of the ICME magnetic field. This was
followed by a long interval (10 h) of steady and strong driv-
ing. Under the latter condition a long series of electrojet in-
tensifications was observed which recurred at 50 min inter-
vals. The detailed temporal structure of polar cap convection
in relation to polar cap contraction events is obtained by com-
bining continuous ground observations of convection-related
magnetic deflections (including polar cap magnetic indices in
the Northern and Southern Hemispheres, PCN and PCS) and
the more direct, but lower-resolution ion drift data obtained
from a satellite (DMSP F13) in polar orbit. The observed
PCN enhancements combined with DMSP satellite observa-
tions (F13 and F15 data) of polar cap contractions during the
evolution of selected substorm expansions allowed us to es-
timate the CPCP enhancements (25 %) associated with indi-
vidual events in the series. Ground-satellite conjunctions are
further used to investigate the spatial structure of polar cap
convection, i.e., the homogeneous plasma flow in the cen-
tre (Vi ≤ 1 km s−1) versus channels of enhanced antisunward
flows (Vi ≥ 1 km s−1) along the periphery of the polar cap.
We emphasise the temporal structure of these polar cap flow

phenomena in relation to the prevailing solar wind forcing
and the repetitive substorm activity.

Keywords. Ionosphere (Plasma convection) – Magne-
tospheric physics (Polar cap phenomena; Solar wind-
magnetosphere interactions)

1 Introduction

The two-source nature of polar cap convection is a basic fea-
ture of the expansion–contraction model of magnetospheric
plasma convection (Siscoe and Huang, 1985; Lockwood
et al., 1990; Cowley and Lockwood, 1992). The relative
contributions to the cross-polar cap potential (CPCP) from
the dayside (CPCP/day) and nightside (CPCP/night) sources
during intervals of substorm activity have been studied in re-
cent years, applying different observational techniques (Bris-
tow et al., 2004; Lockwood et al., 2009; Kullen et al., 2010;
Gordeev et al., 2011; Andalsvik et al., 2011, 2012).

Fox et al.(1999), Grocott et al.(2002) andProvan et al.
(2004) estimated the convection response to isolated sub-
storms by continuous observations, applying a ground-based
radar technique.Grocott et al.(2010) studied the convection
responses in the dayside and nightside sectors of the polar
cap to substorms occurring during intervals of positive and
negative interplanetary magnetic field (IMF)By polarity, ap-
plying a superposed epoch analysis.

Bristow et al. (2004) documented CPCP fluctuations of
20 kV amplitude, as obtained from DMSP satellite ion drift
measurements during intervals of steady interplanetary con-
ditions. In the MHD simulation study ofGordeev et al.
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(2011) substorm onsets gave rise to rapid, moderate (25 %)
CPCP increases in intervals of steady southward-directed
IMF. Lockwood et al.(2009) reported a statistical study of
CPCP variability in the context of substorm phases. They
found that the nightside contribution (CPCP/night) is larger
than the dayside source (CPCP/day) in all substorm phases
except for the growth phase.

A documentation of polar cap convection in the con-
text of (i) repetitive substorms and (ii) the detailed sub-
structure of substorm evolution, from the pre-breakup arc
through breakup and poleward expansion, poleward bound-
ary intensifications (PBIs) and auroral streamers, is lacking
at present. A relevant approach to shed light on these issues
by direct observations is to select intervals of clearly de-
fined substorms occurring during conditions of quasi-steady
solar wind forcing, as measured by the geoeffective inter-
planetary electric field (EKL ; seeKan and Lee, 1979). (EKL
is defined asV BT sin2(θ/2)) whereBT = (B2

y + B2
z )1/2 in

GSM coordinates andθ is the IMF clock angle.) Quasi-
steady driving can be observed during Earth passage of in-
terplanetary CMEs (ICMEs), an approach that was first sug-
gested byFarrugia et al.(1993). One can then take advan-
tage of the well-organised behaviour of the magnetic fields
in ICMEs (Burlaga et al., 1981; Andalsvik et al., 2012). An
increase of the CPCP of about 33 % (from 120 to 160 kV)
during the evolution of a substorm, under extremely steady
interplanetary CME conditions, was observed byAndalsvik
et al.(2012).

The polar cap (PC) index is a measure of equivalent iono-
spheric convection in the center of the polar cap which is con-
sidered to be linearly related toEKL (Troshichev et al., 2000).
The general, statistical response of the PC index (in both win-
ter and summer hemispheres) to substorm activity, as mea-
sured by the AE/AL-index, has been studied byJanzhura
et al.(2007), Kullen et al.(2010) andGao et al.(2012). In the
detailed case study ofKullen et al.(2009) 10 (mostly weak
substorms) tail dipolarisations is compared with AE index,
PC indices and solar wind parameters. It shows that clear cor-
relations between AE and PC index exist only for substorms
with peak AE clearly above 200 nT.Janzhura et al.(2007)
found that in the growth phase of substorms the PC index in
summer polar cap rises faster and reaches a higher value than
in the winter hemisphere. In expansion phase development
of substorms the response is strongest in the winter hemi-
sphere. The winter PC index always reflects better the AL-
events, independent on whether the winter PC index is mea-
sured in the same hemisphere or not. This is a most relevant
background for our case study of repetitive substorm activ-
ity where we aim at distinguishing between the dayside and
nightside sources of the PC index (summer and winter hemi-
spheres) and the CPCP. In this context we also refer to the
results ofKullen et al.(2010) who were able to separate the
dayside and nightside contributions to the CPCP (CPCP/day
and CPCP/night), (see their Fig. 7). We shall get back to these
earlier results when discussing our main findings.

A critical point in such studies is to monitor the temporal
evolution of polar cap convection and the CPCP with high
temporal resolution. The two currently available techniques
of direct CPCP measurements, i.e., via satellite ion drift data
(Hairston et al., 1998) and ground-based radars (Greenwald
et al., 1999; Grocott et al., 2002; Provan et al., 2004), are both
incomplete. This is due to the limited temporal resolution of
the satellite measurements, on one hand, and the missing spa-
tial coverage at high latitudes of the present radars, on the
other. In this study, we shall, therefore, use the polar cap in-
dex obtained for the Northern (summer) and Southern (win-
ter) Hemispheres (PCN and PCS) as a proxy for antisunward
convection in the near-pole region (Troshichev et al., 2000).
For a sub-interval of four hours, including four major AL-
excursions, we combine the DMSP F13 ion drift data from
the three best polar cap passes, i.e., successive passes that all
reach high latitudes, and the PCN-index, in order to to de-
rive a detailed temporal evolution of the CPCP. The result is
compared with the Hill-Siscoe formula for the CPCP which
is applicable to the prevailing high level of solar wind forcing
(see Eq. 1 inHairston et al., 2003).

Another aim of this study is to follow the detailed evolu-
tion of one substorm using very good ground–satellite con-
junctions in the dusk to pre-midnight sector. In this approach
we apply the combination of passes by satellites DMSP F13
and F15, occurring in different stages of the evolution of this
particular substorm. Latitudinal profiles of precipitation, ion
drift, and Birkeland currents were obtained in the 18:00–
20:00 MLT sector. This information is combined with the
evolution of auroral electrojet activity inferred from ground
magnetograms. Here we shall take advantage of the wide lat-
itudinal coverage of the ground magnetometer chain (IM-
AGE) in Svalbard – Scandinavia – Finland (Tomita et al.,
2011) in the monitoring of the geomagnetic activity from the
polar cap across the auroral oval to mid-latitudes as these sta-
tions moved from noon to dusk under similar interplanetary
conditions. We shall, thereby, be able to investigate the evo-
lution of the PC indices in the context of the following three
latitude regimes of geomagnetic deflection: (i) polar cap con-
vection bays, (ii) westward electrojet (WEJ) deflections (AL-
index), and (iii) mid-latitude convection bays.

This dataset allows us to study the detailed evolution of
plasma convection in the central polar cap as substorm ac-
tivity progresses from pre-breakup via the expansion phase,
with its series of PBIs and streamers, through recovery (see
e.g.,Sandholt et al., 2002). From the known association be-
tween PBIs/streamers, bursty bulk flows (BBFs) and tran-
sient magnetotail reconnection (see e.g.,Sergeev et al., 2004;
Shi et al., 2012, andLyons et al., 2012) the expected effect on
polar cap convection from such reconnection events can be
investigated on the basis of ground data alone. An initial ob-
servation of this kind of relationship between substorm evo-
lution and polar cap convection has been recently reported
by Andalsvik et al.(2012). Here we follow up with a more
detailed analysis of an interval of ICME passage at Earth,
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characterised by a long-lasting (10 h), southwest-directed
(Bz < 0; By < 0) magnetic field of large amplitude (15 to
17 nT), with the IMF clock angle (polar angle in GSM Y-Z
plane) varying around an average value of∼145◦, with cor-
responding moderateEKL variations within 5.5–7 mV m−1,
on 30 May 2005. In this interval a series of electrojet intensi-
fications (AL-excursions to between−1000 and−2000 nT),
recurring at 40–120 min intervals, were superimposed on a
continuously high disturbance level (AL≤ −500 nT). From
these data we infer that the repetitive substorms gave rise to
a pulsed mode of polar cap convection. The pulsing reflects
the episodic contribution from the repetitive sequence of sub-
storms.

Concerning the second aspect of our study, i.e., the spa-
tial structure of polar cap convection appearing in the form
of flow channels (convection jets) at the boundary of the po-
lar cap in the night sector, these flows are considered to be
preferentially a winter phenomenon and associated with con-
ductivity gradients at the polar cap boundary during inter-
vals of high solar wind forcing, as measured byEKL (Wang
et al., 2010). Their results are confirmed by the present case
study. We observed a strong flow channel with the flow speed
reaching 2 km s−1 at the polar cap boundary in the Southern
(winter) Hemisphere (−74◦ MLAT/20 MLT). We point out
that this flow event is observed at the time of PBI/streamer
activity in the same MLT sector in the Northern (summer)
Hemisphere. This is an interesting observation which is con-
sistent with the ideas and observations ofAndalsvik et al.
(2011, 2012), but the relationship between these polar cap
flow channel events and substorm activity (substorm onset,
PBIs, streamers, and BBFs) is still uncertain and needs fur-
ther documentation (see e.g.,Lyons et al., 2012).

2 Data description

2.1 Wind interplanetary data

Figure1 shows interplanetary (IP) data from spacecraft Wind
during passage of an ICME on 30 May 2005. The ICME ex-
tends from 01:00–23:00 UT (Richardson and Cane, 2010).
Features of the ICME are (i) strong magnetic fields, (ii) high
α particle-to-proton number density ratios, and a low proton
β. In the middle of the interval we study (12:00 UT) Wind
was located at (225.4, 99.8, 8.0)RE (GSE coordinates). A
clear directional discontinuity (DD) occur at 05:45 UT, when
theB-field changed orientation from beingBy-dominated to
Bz-dominated. This type of DD is often referred to as a south-
ward turning. It is associated with a sharp increase in theα/p
density ratio. At this time the geoeffective IPE-field, EKL ,
increased sharply from 4 to 7 mV m−1 (see bottom panel).
The new south-west orientation is exceptionally stable dur-
ing the 10-h long interval from 05:40–15:40 UT whenEKL
stays between 5.5–7 mV m−1. The clock angle of theB-field
in the GSM Y-Z plane fluctuates between 135–165◦.

Fig. 1. Interplanetary data from spacecraft Wind on 30 May 2005.
Panels from top to bottom shows proton density, bulk speed, proton
temperature, alpha/proton number density ratio, dynamic pressure,
magnetic field componentsBx, By, andBz (GSM coordinates), the
total field, plasma beta, clock angle of theB-field, and the reconnec-
tion electric fieldEKL . The ICME interval from 01:00 to 23:00 UT
is delimited by the vertical dashed guidelines.

Among the other relevant IP parameters of this ICME we
mention: (i) proton density between 5–10 cm−3, (ii) bulk
speed around 475 km s−1, (iii) dynamic pressure between 2–
6 nPa, (iv) strong magnetic field (15–20 nT), and (v) low pro-
ton beta (βp).

We shall study the magnetosphere-ionosphere response
to (i) the initial southward turning and (ii) the long inter-
val of steady and strong forcing of the magnetosphere fol-
lowing this southward turning, with emphasis on temporal-
spatial structure of polar cap convection in relation to sub-
storm activity. The interval selected is particularly interest-
ing for our purpose of investigating the relative contribu-
tions of the dayside and nightside magnetospheric sources
of spatial-temporal structure of polar cap convection. The
dayside source as measured by geoeffective interplanetary
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electric field,EKL , increased rapidly at 06:40 UT, taking into
account the DD propagation delay (60 min) from Wind to
Earth, and then stayed at a relatively constant level (5.5–
7 mV m−1) for 10 h. In such a case, it is easy to separate the
dayside (magnetopause reconnection) and nightside (mag-
netotail reconnection) sources of polar cap convection. The
level of interplanetary driving from 06:40 UT onwards is at
such a high value (5.5–7 mV m−1) that its contribution to
dayside magnetic flux erosion and the cross-polar cap po-
tential (CPCP) is expected to approach a level of satura-
tion (Siscoe et al., 2002; Muhlbachler et al., 2005) after the
initial phase of R1 field-aligned current build-up (seeSiscoe
et al., 2011). The magnetosphere-ionosphere response to the
enhanced level of magnetopause reconnection rate, with em-
phasis on ground magnetic deflections in the cusp region and
polar cap convection in the near-pole region, as measured by
the PC-indices, is a central topic of this study.

2.2 Observation geometry

Figure 2 shows a schematic illustration of the observation
geometry with emphasis on the substorm interval 14:40–
15:25 UT, which includes passes of spacecraft DMSP F15
(pre-midnight to pre-noon) and F13 (dusk-to-dawn) during
the intervals 14:37–14:58 and 15:09–15:24, respectively. The
track of spacecraft F15 from pre-noon to pre-midnight in the
Southern Hemisphere during the interval 15:32–15:53 UT is
marked by the blue dashed arrowed line.

Based on the combined ground-satellite data we have
drawn an approximate pattern of large-scale convection
(streamlines) as well as electrojet currents and precipitation
features observed along the satellite tracks: (i) auroral oval
crossing marked by double-arrowed lines, (ii) ion isotropy
boundary (arrows), (iii) westward electrojets (WEJ; red) and
associated outward-directed FACs in two phases (14:42 and
15:13 UT) of the substorm, (iv) polar cap boundary/boundary
intensification (PBI; 15:13 UT)), and (v) flow channel at the
polar cap boundary in the south (marked FC 3; blue).

The convection state indicated in the figure was initiated
by the rapid southward turning of the ICME magnetic field
affecting the Earth’s magnetosphere from 06:40 UT onwards.
We shall follow the ground magnetic responses to the indi-
cated convection features, as well as the substorm electrojet
currents, within the MLAT range 57–75◦, as the ground sta-
tions in Svalbard – Scandinavia – Finland moved with the
Earth from∼10:00 to 19:00 MLT within the interval 06:40–
16:30 UT, during the continuous, strong and stable forcing of
the magnetosphere by the presence of the large amplitude,
south-west directed magnetic field of the ICME.

We selected the interval 14:40–16:10 UT for a detailed
study of substorm evolution since (i) this interval is repre-
sentative for the long interval of repetitive substorms (07:00–
20:00 UT), and (ii) in this interval we have a very good cover-
age of ground-satellite data in the different substorm phases.
Recall that we want to study the evolution of polar cap con-
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Fig. 2. Illustration of observation geometry on 30 May 2005 with
schematic convection pattern and flow channels along the polar
cap boundary superimposed. Three satellite passes occurring dur-
ing different phases of substorm evolution are marked: (i) DMSP
F15 (pre-midnight to pre-noon) and DMSP F13 (dusk to dawn)
during the intervals 14:37–14:58 and 15:09–15:24 UT, respectively,
in the Northern Hemisphere and (ii) one F15 pass in the south
(blue dashed line) from pre-noon to pre-midnight during the inter-
val 15:32–15:53 UT. Approximate convection pattern (streamlines)
and merging line (dashed curved line) are shown as well as east-
ward (EEJ) and westward (WEJ; 14:42 and 15:13 UT; red arrows)
electrojets and precipitation features at dusk/pre-midnight (isotropy
boundary, pre-breakup arc (PBA; 14:43 UT), poleward boundary in-
tensification (PBI; 15:13 UT) observed along the satellite tracks in
the north and south (see text for details). FC 3 marks a nightside
flow channel (Vi > 2 km s−1) at the the polar cap boundary in the
south traversed by spacecraft F15 just before 15:47 UT (see data
below). Flow channels along the polar cap boundary on the dayside
are marked FC 1 (newly open field lines) and FC 2 (old open field
lines). The coordinate system is MLAT versus MLT.

vection (CPCP) in relation to the different substorm phases
and substructures (PBIs/streamers).

The three satellite passes marked in the figure occurred
in different stages of substorm evolution in this interval
(14:40–16:10 UT): (i) F15 crossed the evening sector oval
in the pre-breakup phase (14:40–14:44 UT) and flow chan-
nel FC 1 (14:57 UT) at∼10:00 MLT; (ii) F13 crossed the
oval at dusk with a poleward boundary arc in the expan-
sion phase (15:09–15:15 UT), and polar cap during 15:15–
15:25 UT; and (iii) F15 crossed a flow channel at the po-
lar cap boundary in the pre-midnight sector of the Southern
Hemisphere (blue arrow marked FC 3; 15:46 UT) during the
late expansion phase.

We remark that flow channels FC 1 and FC 2 represent
flows in different stages of the evolution of open field lines
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in the Dungey(1961) convection cycle. FC 1 is located on
newly open field lines and is accompanied by poleward mov-
ing auroral forms (PMAFs) appearing on either side of noon,
as documented during winter conditions (Sandholt and Far-
rugia, 2007). FC 2 is a few 100 km wide channel of enhanced
(>1 km s−1) antisunward convection on old open field lines
(embedded in polar rain precipitation) along the periphery of
the dayside polar cap. This represents the flow excited dur-
ing an intermediate interval occurring approximately from
10–20 min after magnetopause reconnection, when the open
field lines are connected to the solar wind, before these field
lines sink into the tail lobes. The fastest flows in this chan-
nel are expected to be associated with the large conductivity
gradient appearing at the polar cap boundary in the winter
hemisphere (Sandholt and Farrugia, 2009). The spatial struc-
ture (theE-field gradient) in these flows is expected to be less
prominent in the summer hemisphere, but the temporal struc-
ture, attributed to flux transfer event (FTE) flux tubes mov-
ing along the periphery of the polar cap, as first predicted by
Southwood(1987), is still prominent even during the sum-
mer conditions.

2.3 Ground magnetometer data

Figure3 shows the geoeffective interplanetary electric field
(EKL ), the geomagnetic indices PCN (north; summer), PCS
(south; winter) and the AL-index.EKL is based on the Wind
data given in Fig. 1. Here we added 1 h to the Wind mea-
surements in order to take into account the Wind-to-Earth
propagation delay.

The PC-index (in both hemispheres) is a measure of equiv-
alent convection in the near-pole region (Troshichev et al.,
2000). It is derived from ground magnetic deflection due to
the ionospheric Hall-current associated with plasma convec-
tion. Because of the two-source nature of polar cap convec-
tion the PC-index is shown to be linearly related toEKL and
the AL-index (Gao et al., 2012). It is expressed in the unit of
mV m−1.

We note the following features: (i) abrupt increase ofEKL
from 4–7 mV m−1 at 06:40 UT, associated with southward
turning of the ICME magnetic field; (ii) stable, high level of
EKL (5–7 mV m−1) during the subsequent 10 h; (iii) initial
phase of increasing PC-index from 06:40–07:10 UT; (iv) a
series of PCN/PCS enhancements during the interval 07:10–
20:00 UT; and (v) a long series of negative AL-excursions
(westward electrojet enhancements) during the same interval
(07:10–20:00 UT).

The two sources of the PC-index, i.e.,EKL and the AL-
index, (seeGao et al., 2012), are clearly manifest in this case,
i.e., the initial response to theEKL enhancement and the re-
sponse to the repetitive substorm activity (AL-excursions).
The sensitivity to the AL-excursions is observed to be high-
est in the PCS (winter)-index. A particularly high sensitivity
of PCS to AL-events (PCS/night) is observed from 14:40 UT
onwards (PCS reaching∼15 mV m−1). This seasonal depen-

Fig. 3.Panels from top to bottom showsEKL based on observations
from spacecraft Wind, the polar cap indices in the Northern (PCN)
and Southern (PCS) Hemispheres, and the AL-index (bottom panel)
for the interval 06:00–22:00 UT (30 May 2005).

dence of the AL-response is in good agreement with previous
work (Janzhura et al., 2007).

Since the dayside source of polar cap convection, as mea-
sured byEKL , is relatively constant after the southward turn-
ing, this case is particularly suitable for separating the day-
side and nightside sources of polar cap convection. We start
by distinguishing between the dayside and nightside sources
of the PC index, which we shall refer to as PC/day and
PC/night, respectively. PC/night is the component which is
related to substorm activity, as measured by the AL-index.
The PC/day component may be inferred from the background
(inter-substorm) trend that is obtained by subtracting the
short-lived, AL-related enhancements in the PC-index traces.

Based on the above reasoning on the two sources of the
PC-index and the observed PCN trace we may infer from
Fig. 3 a three-stage evolution of the PCN-index: (i) an ini-
tial transient phase of PC enhancement with contributions
from both dayside (polar cap expansion phase) and nightside
sources, (ii) an intermediate phase with decreasing PCN/day
component, and (iii) a long interval of relatively constant
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Fig. 4. X-component magnetic deflections from ground stations
in Svalbard – Scandinavia – Finland during the interval 04:00–
17:00 UT (30 May 2005), ordered by decreasing latitude: NAL
(75.2◦ MLAT), HOR (74.1◦ MLAT), BJN (71.4◦ MLAT), SOR
(67.3◦ MLAT), MAS (66.2◦ MLAT), MUO (64.7◦ MLAT), PEL
(63.6◦ MLAT), and NUR (56.9◦ MLAT). Magnetic effects related
to specific flow features and electrojet currents have been marked.
See text for details.

PCN/day (= 3) with a series of PCN/night events (recurring
at 50 min intervals) superimposed from 12:00 UT onwards.

Figure4 shows X-component magnetic deflections from
ground stations in Svalbard – Scandinavia – Finland during
the interval 04:00–17:00 UT. We shall point out the follow-
ing magnetic deflection features, corresponding to different
spatial (MLT/MLAT) plasma flow regimes: (i) FC 2 flows
in the prenoon polar cap (06:40–08:20 UT/71–75◦ MLAT),
(ii) FC 1 flows at lower latitudes in the cusp region (06:40–
08:20 UT/64–67◦ MLAT), (iii) flows associated with polar
cap boundary motions (ground stations being alternatively
in positive and negative X-component regimes) in postnoon
sector (09:00–12:00 UT; 66–67◦ MLAT), (iv) substorm-
related polar cap flow events (09:00–15:00 UT), and (v) elec-
trojet events in the postnoon-dusk sector from 12:00 UT on-
wards (polar cap – auroral oval (WEJ) – mid-latitudes (EEJ)).

From the measurements shown in Fig.4, we may distin-
guish between magnetic deflection events associated with

the dayside magnetopause source of plasma convection
(events in the interval 06:40–08:20 UT marked FC 1/FC 2),
and events relating to the nightside (magnetotail) source.
From the top and bottom panels we infer that the IMAGE
chain of stations are increasingly sensitive to the nightside
source during the interval 09:00–15:00 UT. The three ma-
jor AL-deflections in the interval 09:00–12:00 UT (Fig.3)
are well correlated with the oscillating negative/positive X-
component deflections appearing in the SOR–MAS (66–
67◦ MLAT) traces in the same interval. This behaviour is in-
dicative of PC boundary motions in the close vicinity of these
stations.

The magnetic deflections in the interval 06:40–08:20 UT
represent the response to the rapid southward turning of
the ICME magnetic field recorded by spacecraft Wind at
05:45 UT whose arrival at Earth is shown by the first ver-
tical guideline. This response consists of (i) large negative
X-deflections with the centre expanding equatorward in the
MLAT range from 71–65◦ MLAT (BJN-MUO) and (ii) posi-
tive X-deflections expanding equatorward from NAL to BJN
(75–71◦ MLAT). These magnetic effects at∼10:00 MLT can
be explained by the establishment of a convection pattern as
shown in Fig.2 and the corresponding ionospheric Hall cur-
rents.

Feature (i) is related to the noonward flow marked FC 1,
while the positive X-deflection at NAL (75◦ MLAT) is re-
lated to the antisunward convection near this latitude, marked
FC 2 (prenoon) in the NAL magnetogram. From these mag-
netograms we infer that the convection reversal between the
FC 1 and FC 2 flows descended in latitude from that of
NAL (75◦ MLAT) to that of BJN (71◦ MLAT) during the
interval 06:40–07:20 UT. From 07:20 to 08:20 UT station
BJN is sensitive to the FC 2 (prenoon) flow regime. After
08:20 UT BJN is increasingly sensitive to FC 3 (substorm-
related) events. This is seen in the series of negative X-
deflections during the interval 08:20–15:00 UT, as marked
in Fig. 4. From the present data, we may infer that the cen-
tre of the FC 1/prenoon flows expanded equatorward from
∼71◦ MLAT (station BJN) to∼65◦ MLAT (MAS–MUO) in
response to the southward turning.

The observed change in the deflection pattern from
06:40 UT onwards reflects the erosion event and associated
polar cap expansion triggered by the rapid southward turning
of the ICME magnetic field as it reached Earth. Just before
06:40 UT the polar cap is in a relatively contracted state. This
convection state, corresponding toBy-dominant ICME mag-
netic field (clock angle of approx. 90◦), probably consists
of a composite pattern of merging and lobe cells (see e.g.,
Crooker et al., 1998). The lobe cell is expected to disappear
on arrival of the southward turning.

The interval 06:40–08:20 UT is characterised by strong
Hall currents (FC 1 flows) maximising at stations MAS–
MUO. The corresponding X-component negative bay (cen-
tred at∼65◦ MLAT, as observed in the 10:00–11:30 MLT
sector) is marked “EROSION” in Fig.4. The convection
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pattern shown in the schematic overview figure represents
the state of expanded polar cap after the initial erosion event.

Later in the interval of south-west directed ICME mag-
netic field (09:00 UT onwards), ground deflections associ-
ated with the following features (see Fig.2) can be identified
in Fig. 4: (i) mid-latitude positive bays reflecting the east-
ward electrojet (EEJ) activity from∼12:00 UT (15:00 MLT)
onwards, (ii) the westward electrojet (WEJ) from∼14:40 UT
onwards, and (iii) polar cap flow events (see negative convec-
tion bays in NAL and HOR magnetograms) from 09:00 UT
(12:00 MLT) onwards, with the nightside source (see the AL-
index) dominating.

Concerning the spatial distributions of the different
regimes of convection and electrojet currents for the present
high disturbance level, we also refer toFeldstein et al.(2006)
(see their Fig. 15e). We note that our stations become sensi-
tive to the westward electrojet (WEJ) after 14:40 UT. Next
we shall, therefore, focus on the evolution of substorm activ-
ity appearing at dusk in the interval 14:40–16:10 UT.

Figure 5 shows X-component ground magnetic records
from the same stations in Svalbard – Scandinavia – Finland.
Here we place focus on the shorter interval 12:00–17:00 UT
and we shall emphasise the substorm evolution during the
interval 14:40–16:10 UT which contains the following ele-
ments: (i) pre-breakup event (pre-breakup arc/PBA identified
in satellite data; see below) at the latitudes of MUO–PEL
at 14:43 UT, (ii) poleward boundary intensifications (PBIs;
see satellite data below) at HOR – BJN – SOR followed by
(iii) streamers (blue tilted lines) during the interval 14:55–
16:10 UT. This substorm activity is placed in the context of
polar cap flow events as marked in the top panel. These polar
cap flow enhancements are inferred from the PCN index (see
Fig. 3).

On the association between auroral streamers (equator-
ward moving auroral forms emanating from poleward bound-
ary intensifications; PBIs) and their ground magnetic signa-
tures we refer toSandholt et al.(2002). The phenomenon
of auroral streamers is a distinct substructure of the sub-
storm process. It is the auroral signature of bursty bulk flows
(BBFs) in the magnetotail (see e.g.,Sergeev et al., 2004). In
Fig.5 we document the magnetic signature of auroral stream-
ers and their associated convection channels (streamer chan-
nels).

Passages of satellite DMSP F15 across the auroral oval
poleward boundary in the pre-midnight sector in the north
(pre-breakup phase) and in the Southern Hemisphere during
the late expansion phase have been marked at the top of the
figure.

2.4 DMSP F13 and F15 data

Here we shall report satellite data from two Northern Hemi-
sphere passages and one Southern Hemisphere pass of the
auroral oval/polar cap in different stages of substorm evolu-
tion.
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Fig. 5. X-component magnetic deflections from ground stations in
Svalbard – Scandinavia – Finland, ordered by decreasing latitude,
during the interval 12:00–17:00 UT on 30 May 2005. Various fea-
tures are marked in the figure: (i) polar cap flow enhancements (up-
per panel), (ii) poleward boundary intensifications (PBIs) (second
and third panels), (iii) auroral streamers (blue tilted lines), (iv) PBA
at 14:43 UT and EEJ enhancements (bottom panel). Passes of satel-
lites F15 across the pre-midnight auroral oval in the Northern (NH)
and Southern (SH) Hemispheres are marked at the top.

Figure 6 shows DMSP F15 data obtained during the
pass from pre-midnight to pre-noon in the interval 14:34–
15:04 UT. The track is marked in Fig.2. The crossing of
the oval in the pre-midnight sector occurred in the pre-
breakup phase. We draw attention to the following features:
(i) ion isotropy boundary (Newell et al., 1996) identified at
60◦ MLAT (equatorward boundary of zone of homogeneous
and isotropic ion precipitation; marked by first vertical guide-
line), (ii) pre-breakup arc (Sergeev et al., 2012) located at
63◦ MLAT (14:42 UT), (iii) crossing from oval into the polar
cap at 71◦ MLAT (14:44 UT), and (iv) flow channel at 67–
69◦ MLAT/10 MLT.

Feature (ii) is also marked in Fig.5. The crossing of this
arc marks a perfect ground-satellite conjunction (see mag-
netograms from stations MUO–PEL in Fig.5). This arc is
located at the flow reversal boundary between the eastward
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WEJEEJ

Fig. 6. DMSP F15 data obtained during the pass from pre-midnight to pre-noon in the interval 14:34–15:04 UT. Panels from top to bottom
show electron and ion energy spectrograms, ion density, cross-track ion drift (horizontal component in violet), and magnetic deflection
componentsBx, By, andBz (Bz is the east-west component shown in green). Ion isotropy boundary, pre-breakup arc (PBA), polar cap
boundary and flow channel at 67–69◦ MLAT/10 MLT are marked by vertical guidelines. Latitude regimes of auroral electrojets (EEJ and
WEJ) are indicated.

and westward electrojets. According toSergeev et al.(2012)
the pre-breakup arc maps to a magnetospheric location which
is close to the earthward-most edge of the thin cross-tail cur-
rent sheet. The latter magnetotail location maps to the ion
isotropy boundary (Newell et al., 1996).

Immediately after 14:42 UT, the AL-index goes negative
(Fig. 3; electrojet enhancement) and the PCN index starts the
increase from 3 to 4.3 during the interval 14:43–15:15 UT.
The latter is an indication of enhanced antisunward convec-
tion (Troshichev et al., 2000).

Figure7 shows DMSP F13 data obtained during the pass
from dusk to dawn in the interval 15:03–15:33 UT. The track
is marked in Fig.2.

We note the following: (i) ion isotropy boundary at
63.8◦ MLAT, (ii) poleward boundary arc at 72–74◦ MLAT
traversed at 15:13 UT (at the time of auroral streamer sig-
natures in the local magnetograms), and (iii) strong homoge-
neous antisunward convection (1 km s−1) across the central
polar cap.

The poleward boundary arc (15:13 UT; 72–74◦ MLAT) is
accompanied by outward-directed Birkeland current as in-
ferred from the negativeBz-gradient in the bottom panel of
Fig. 7. The Birkeland current and the westward electrojet as-

sociated with this poleward boundary intensification (PBI;
see negative X-deflections at stations HOR and BJN) have
been marked in Fig.2.

Figure 8 shows F15 data obtained during the Southern
Hemisphere pass from pre-noon to pre-midnight in the in-
terval 15:26–15:56 UT. The track is marked in Fig.2. We
notice the presence of an FC 3 flow channel (flow speed ap-
proaching 2 km s−1) at the polar cap boundary traversed at
15:46 UT. This flow channel, which is marked in Fig.2, oc-
curred during the substorm phase characterised by auroral
streamer activity (see Fig.5).

2.5 The cross-polar cap potential

Figure 9 shows successive DMSP F13 tracks in the north
and south and cross-track ion drifts for the interval 13:30–
18:00 UT. These passes are the most suitable for CPCP es-
timates on this day since they reach such high latitudes
that relevant CPCP values may be derived (see criteria in
Hairston et al., 1998). We notice the contrast between the
relatively homogeneous antisunward convection at 1 km s−1

in the summer hemisphere and the more inhomogeneous
flows in the winter hemisphere, characterised by channels
of enhanced (1–2 km s−1) flows along the periphery of the
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Fig. 7. DMSP F13 data obtained during the pass from dusk to dawn in the interval 15:03–15:33 UT on 30 May 2005. Same format as in
Fig. 6.

polar cap. The CPCP values derived for the three NH passes
are: 159 (13:37 UT), 127 (15:18 UT) and 147 kV (16:59 UT).
These values are plotted in the next figure where we shall use
the PCN index to interpolate between the three DMSP F13
data points for the purpose of obtaining an estimate of the
more detailed temporal variability of the CPCP in this inter-
val.

Figure 10 shows an estimate of the CPCP development
during the interval 13:00–17:00 UT. This is based on ion
drift data (circled crosses) from the three best Northern
Hemisphere passes of satellite DMSP F13 in our interval
of study (see Fig.9). The F13 data points at 13:37, 15:18,
and 16:59 UT refer to the centre times of polar cap crossings.
PCN index values shown at selected times (dots) illustrate
the trend in the variation of the polar cap convection in this
interval.

The CPCP estimates in Fig.10 are based on the fol-
lowing assumptions (approximations): (i) homogeneous po-
lar cap convection (see Fig.9), (ii) the approximate em-
pirical relationship between CPCP and PCN applicable to
the interval from 12:00 UT onwards (persistent phase of
solar wind-magnetosphere coupling): CPCP (V) = 10 PCN
(mV m−1) × LPC (km), whereLPC is the cross-polar cap dis-
tance in the dawn-dusk direction, and (iii) fluctuations ofLPC
from ∼3000 to 4000 km (see Fig.9).

The observed PCN-fluctuations (3–6 mV m−1) and the es-
timated CPCP fluctuations (120–180 kV) during the inter-
val 13:00–16:30 UT occurred at the time of relatively steady
interplanetary driving, as given byEKL (slowly increasing
from 5.5 to 7 mV m−1). We notice that all three CPCP max-
ima are associated with negative AL-excursions (westward
electrojet events). AL-recoveries during the intervals 14:10–
14:40 and 15:50–16:40 UT are accompanied by significant
PCN (and PCS) decreases.

The LPC scale on the right-side axis of Fig.10 gives the
LPC values which corresponds to the CPCP values marked
on the left side axis if we apply the empirical relationship
given in point (ii) above. The CPCP variability can then
be expressed as:1CPCP/CPCP =1PCN/PCN +1LPC/LPC,
for the prevailing conditions of steady solar wind forcing.
According to the expansion–contraction model, PCN and
LPC are expected to vary in counter-phase, i.e., PCN en-
hancements are accompanied by polar cap contractions. This
association is confirmed in our case. The estimated range of
CPCP variations in Fig.10(120–180 kV) are consistent with
PCN andLPC variations between 3–6 mV m−1 and 4000–
3200 km, respectively. Related to this we note that the lati-
tudes of the dusk-side polar cap boundary crossings of satel-
lites DMSP F15 and F13 at 14:44 and 15:14 UT correspond
to different stages of substorm evolution. The two boundary
crossings occurred at 71◦ MLAT in the breakup phase (F13
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FC3

Fig. 8. DMSP F15 data obtained during the Southern Hemisphere pass from pre-noon to pre-midnight in the interval 15:26–15:56 UT on
30 May 2005. Same format as in Fig.6.

at 14:44 UT) and 74◦ MLAT, well into the expansion phase
(F13 at 15:14 UT), respectively, and they where close in MLT
(see the geometry in Fig.2). From this observation we infer
that the interval between these two crossings is characterised
by a significant polar cap contraction, as expected during the
substorm expansion phase.

From the above considerations we obtain the following es-
timates of CPCP average increases occurring during the indi-
vidual events in the series of PCN-enhancements (substorm
expansions) from 3 to 4.5 mV m−1 (with correspondingLPC
decreases) in our case (see the interval from 12:00 UT on-
wards in Fig.1): 120–150 kV.

In Fig. 11we plotEKL and the Hill-Siscoe cross-polar cap
potential (8H-S) for our case. Both expressions are based on
interplanetary parameters given in Fig.1. Quantity8H-S de-
pends onEKL , the conductance (6P), and the solar wind dy-
namic pressure. The curves in the middle and bottom panels
of the figure show results for ionospheric conductance values
6P = 5 and 10 mhos, respectively.8H-S is taken from Eq. (1)
in Hairston et al.(2003) and it takes into account the possible
CPCP saturation appearing at high levels of interplanetary
driving (EKL > 5 mV m−1). In the interval we study in de-
tail (13:00–17:00 UT)8H-S increases slightly from 110–115
(150–170) kV, when applying6P = 10 (5) mhos, before the
abrupt decrease associated with the northward turning of the

ICME magnetic field affecting Earth from∼16:40 UT on-
wards.

The three CPCP values measured by DMSP F13 in the
interval 13:00–17:00 UT were 159, 127, and 147 kV. These
values typically lie between the8H-S (6P = 10 mho) and
8H-S (6P = 5 mho) curves. One exception is the CPCP value
derived from the F13 ion drift measurements centred at
16:59 UT, which did not reflect theEKL drop estimated to oc-
cur at 16:40 UT. The convection response to the abruptEKL
decrease is seen in the PCS (winter) index but not in PCN
(summer). Reduced polar cap convection velocities are also
seen in the Southern Hemisphere data at 17:47 UT (see the
bottom right panel in Fig.9).

We note that the Hill-Siscoe potential shows smooth and
small variations which are closely related to the correspond-
ing smooth and small changes of the interplanetary parame-
ters (EKL ). 8H-S (6P = 10 mho) represents a good estimate
of the background inter-substorm level of polar cap convec-
tion in the persistent phase of our case.

3 Discussion

Contrary to most previous studies of the convection re-
sponse to magnetospheric substorms, emphasising intervals
of isolated substorms (see Introduction), we focus here on
the phenomenon of repetitive substorm expansions. In a
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Fig. 9. DMSP F13 cross-track ion drifts on 30 May 2005 obtained during consecutive passes of the polar cap in the Northern (summer;
left panels) and in the Southern (winter; right panels) Hemispheres during the interval 13:30–18:00 UT. The centre times of each polar cap
crossing are given. The coordinate system is MLAT/MLT.

ground-satellite conjunction study we documented a mode of
50 min period pulsed polar cap convection (PC-index fluc-
tuations) driven by the repetitive substorm activity charac-
terised by∼15-min-long, major electrojet intensifications.
We apply the 1 min resolution PC-index as a continuous
monitor of the detailed temporal evolution of polar cap con-
vection (Troshichev et al., 2000). This indirect information
(equivalent convection) from the central polar cap is com-

bined with the more direct, but at lower resolution, ion drift
data obtained from satellites in polar orbit. This combination
of different datasets is used to estimate the CPCP temporal
variability for a selected time interval of the several hours
long repetitive substorm activity. Our estimate of a 30 kV
CPCP enhancement (25 %) during the individual substorm
expansions in this case study compares well with the MHD
simulation results ofGordeev et al.(2011).
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Fig. 10. The top panel shows CPCP estimates during the interval
13:00–17:00 UT on 30 May 2005 as derived from DMSP F13 cross-
track ion drifts (circled crosses at 13:37, 15:18, and 16:59 UT) and
the trend of the PCN-index (dots) taken from Fig.3. The AL-index
is shown in the bottom panel. Crossings of the dusk-side polar cap
boundary by satellites F15 at 14:44 UT (71◦ MLAT) and F13 at
15:14 UT (74◦ MLAT) are indicated.

This interval was initiated by an abrupt enhancement
of EKL from 4 to 7 mV m−1 associated with the south-
ward turning of the ICME magnetic field recorded by
Wind at 05:40 UT. The general response to abruptEKL -
enhancements are divided into two phases, as suggested by
Siscoe et al.(2011): (i) an initial transient phase of dayside
magnetic flux erosion and the build-up of the dayside R1
current system with associated plasma convection enhance-
ment, and (ii) a long persistent phase characterised by repet-
itive substorm activity accompanied by convection events.
From the PCN trace in our case we may distinguish between
three phases: (i) initial transient phase (PCN/day increase),
(ii) intermediate phase (PCN/day decreasing from 6 to 3),
and (iii) persistent phase with steady PCN/day component
(PCN/day = 3) and repetitive PCN/night enhancements from
12:00 UT onwards.

The case of repetitive substorm activity occurred during
a 10-h-long interval of continuously high solar wind forcing
associated with the ICME Earth passage on 30 May 2005.
The series of PC-index enhancements occurring on time
scales of the electrojet intensifications is attributed to the
nightside source of polar cap convection. Our separation of
the PC index into a component driven by the dayside con-
vection source (PC/day) and another component driven by
the nightside source (PC/night) is consistent with the re-
sults of Kullen et al. (2010) on the separation of the day-
side and nightside contributions to the CPCP, CPCP/day and
CPCP/night (see their Fig. 7).

The response of the PC-index (fluctuations) to substorm
activity (AL-events) is even larger in the winter (PCS-index)

Fig. 11. The geoeffective interplanetaryE-field (EKL ) and Hill-
Siscoe CPCPs (8H-S) during the interval 06:00–22:00 UT on
30 May 2005.8H-S is taken from Eq. (1) inHairston et al.(2003).
Hill-Siscoe potentials are calculated for the two ionospheric con-
ductance values6P = 5 mho (second panel) and 10 mho (bottom).

than in the summer hemisphere, consistent with the results of
Janzhura et al.(2007) andTroshichev and Janzhura(2009).
Like us, Troshichev and Janzhura(2009) reported a study
of the PC-index where they included intervals of repetitive
substorm activity appearing whenEKL reached 5–6 mV m−1.
We emphasise the role of the nightside source of polar cap
convection, as predicted by the expansion–contraction model
of polar cap convection (Siscoe and Huang, 1985; Cowley
and Lockwood, 1992). The latter perspective is lacking in
Troshichev and Janzhura(2009).

The AL-events we study show some characteristics in
common with the so-called sawtooth events (SEs) (Hender-
son et al., 2006), i.e., their quasi-periodicity and occurrence
during intervals of continuously moderate-to-strong inter-
planetary forcing. The∼50 min average recurrence period
observed in our case, is, however, different from the 2–4 h
periods of recurring SEs that has been reported in the liter-
ature (see e.g.,Henderson et al., 2006, andHuang, 2011).
The short recurrence period in our case may be due to the
short or absent growth phase as has been pointed out in rela-
tion to similar cases documented byTroshichev and Janzhura
(2009). According toHuang(2011) substorms may be trig-
gered by moderate solar wind dynamic pressure pulses if the
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magnetotail lobe flux lies at a critical level of 1 GWb. We no-
tice the presence of repetitive pressure pulses in our case (see
Fig. 1).

We selected the sub-interval 14:40–16:30 UT for a detailed
study of polar cap convection during the evolution of the sub-
storm, since (i) this interval is representative for the long in-
terval of repetitive substorm activity, and (ii) there is very
good coverage of ground-satellite data in the different sub-
storm phases. This allowed us to document the detailed as-
sociation between polar cap contraction and convection en-
hancement during the substorm expansion phase. The am-
plitude of the fluctuations in the estimated CPCP (∼120–
180 kV) we obtained during the slowly increasing IP driv-
ing (EKL = 5.5–7 mV m−1) in the interval 13:00–16:30 UT
is larger than observed in previous studies that are restricted
to lower levels of external forcing (EKL ≤ 3 mV m−1; see
Bristow et al., 2004). The estimated 25 % CPCP enhance-
ments in response to individual substorm expansions in our
case are not captured by the Hill-Siscoe formula (Hairston
et al., 2003) which is based on interplanetary parameters and
ionospheric conductivity.

During winter conditions, when large conductivity gradi-
ents are present at the polar cap boundary, the condition of
enhanced antisunward convection in the night sector of the
polar cap is expected to give rise to flow channel FC 3 (see
Andalsvik et al., 2011, their Fig. 1). This is exactly what
we observed by spacecraft DMSP F15 when it traversed the
nightside polar cap boundary in the Southern Hemisphere
at 15:46 UT, in the late expansion phase, in our case (see
Fig. 8). This observation confirms the previous results of
Wang et al.(2010), demonstrating that these events occur in
intervals of enhancedEKL in winter. Furthermore, we pos-
tulate that these flows at the nightside polar cap boundary
are also enhanced by substorm activity. This is a natural con-
sequence of the two-source nature of polar cap convection.
The two sources are dayside (magnetopause) and nightside
(magnetotail) reconnection processes. The FC 3 flow chan-
nel observation at 15:46 UT occurred at the time of auro-
ral streamer activity as inferred from the magnetograms in
Fig. 5. On the association between auroral and magnetic sig-
natures of streamers we refer toSandholt et al.(2002).

Auroral streamers have been demonstrated to be an iono-
spheric signature of localised magnetotail magnetic field
dipolarizations and bursty bulk flows (BBFs) (Sergeev et al.,
2004; Lyons et al., 2012). It is likely that such smaller
scale dipolarizations (compared to substorm onset events)
also give rise to enhancedE-fields in the tail lobe, such
as observed bySauvaud et al.(2012) at substorm onsets.
The role of Earthward-propagating dipolarisation front flow
bursts withinX = −20 to −10RE as a basic element (sub-
structure) in the substorm process in the magnetotail is em-
phasized byLyons et al.(2012). On the association between
dipolarization of flux tubes, inward transport of flux from the
tail, and the generation of twin-cell flow in the ionosphere

we refer to the review paper byCowley (2000) and the re-
cent simulation results ofYang et al.(2012).

Our study of the substructure of one substorm inter-
val documented the presence of auroral streamer activ-
ity, as inferred from the ground magnetograms (series of
equatorward-moving X-component deflections), and a po-
lar cap flow channel (F13/F15 ion drift data) in the win-
ter hemisphere. These observations may indicate a relation-
ship between Earthward-moving magnetotail dipolarisation
fronts/BBFs (Lyons et al., 2012) and the activation of iono-
spheric convection channel events along the nightside polar
cap boundary (our FC 3; marked in Fig. 2).

4 Summary

In a case study, we documented interesting spatial and tem-
poral structure of polar cap convection during a long interval
of strong and steady interplanetary driving. This was char-
acterised by a series of substorm expansions – polar cap
contractions recurring at∼50 min intervals. The temporal
structure consists of quasi-periodic enhancements of antisun-
ward convection associated with the repetitive substorm ex-
pansions. The convection response to these substorms is ob-
served in both the summer and winter hemispheres, but it is
larger in the winter hemisphere (1PCS/PCS> 1PCN/PCN).
The observed behaviour of polar cap contraction and convec-
tion enhancement can be explained by the two-component
expansion–contraction model of plasma convection. A com-
bination of ground and satellite observations allowed us to
estimate typical (average) CPCP enhancements of∼30 kV
(25 %) occurring in the Northern (summer) Hemisphere
(PCN-enhancements from 3 to 4.5 mV m−1) associated with
the individual polar cap contraction events in the series of
substorm expansions in the persistent phase of solar wind-
magnetosphere coupling. The spatial convection structure we
emphasize consists of flow channels along the nightside po-
lar cap boundary which is restricted to the winter hemisphere
in this case. Plasma flows in these channels are possibly en-
hanced during the intervals of substorm expansion.
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