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Abstract. Modelling the fluctuations of the Earth’s surface
wind has a significant role in understanding the dynamics of
atmosphere besides its impact on various fields ranging from
agriculture to structural engineering. Most of the studies on
the modelling and prediction of wind speed and power re-
ported in the literature are based on statistical methods or the
probabilistic distribution of the wind speed data. In this pa-
per we investigate the suitability of a deterministic model to
represent the wind speed fluctuations by employing tools of
nonlinear dynamics. We have carried out a detailed nonlin-
ear time series analysis of the daily mean wind speed data
measured at Thiruvananthapuram (8.483◦ N,76.950◦ E) from
2000 to 2010. The results of the analysis strongly suggest that
the underlying dynamics is deterministic, low-dimensional
and chaotic suggesting the possibility of accurate short-term
prediction. As most of the chaotic systems are confined to
laboratories, this is another example of a naturally occurring
time series showing chaotic behaviour.

Keywords. Atmospheric composition and structure (Gen-
eral or miscellaneous)

1 Introduction

Surface wind plays a crucial role in climate and weather sys-
tem of the Earth. It has significant impact on agriculture, nav-
igation, structural engineering calculations and reduction of
atmospheric pollution as well as the economy of the region
as an alternate energy source (Mart́ın et al., 1999; Elliott,
2004; Bantaa et al., 2011; Finzi et al., 1984). Recent surge
of interest in research related to wind power is due to its po-
tential as an alternate source of energy because of the fast
depletion of natural resources of Earth. Presently, there is

extensive literature on various areas related to wind energy
acquisition and utilisation such as wind speed modelling and
prediction, wind power production and wind resource quan-
tification (e.g.Finzi et al., 1984; Mart́ın et al., 1999; Elliott,
2004; Celik, 2004; von Bremen, 2007; Mabel and Fernan-
dez, 2009; Kavasseri and Seetharaman, 2009; Bantaa et al.,
2011).

Wind speed modelling and forecasting is an important as-
pect of wind power generation – yet one of the most diffi-
cult due to the myriads of factors affecting it – and over the
years many tools have been developed for this purpose. A
good number of such tools rely on statistical methods, either
moving average models such as ARMA and ARIMA fitted
to the time series of wind speed (Kamal and Jafri, 1997; Tor-
resa et al., 2005; Cadenas and Rivera, 2007; Kavasseri and
Seetharaman, 2009) or models based on probability distribu-
tion of wind speed (Hennessey, 1977; Celik, 2004; Mathew
et al., 2011). Models based on artificial neural networks have
also been developed by many authors for making short-term
predictions of wind speed and generated wind power (Mo-
handes et al., 1998; Cadenas and Rivera, 2007; Bilgili et al.,
2007; Monfared et al., 2009).

As a matter of fact, none of these forecasting methods,
based on time series analysis or meteorological models, is ca-
pable of significantly reducing the prediction error compared
to the elementary method of persistence (Sfetsos, 2002) and
this is usually attributed to the high fluctuations and variabil-
ity in wind speed. Exploring the source of these random fluc-
tuations in wind speed, especially whether it is stochastic or
deterministic, is therefore important both for understanding
the nature of the dynamics and for improving the tools used
for prediction. A few attempts have been made in this direc-
tion, although the focus was not on determining the nature of
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the dynamics, rather on comparing stochastic versus deter-
ministic models constructed from time series of scalar mea-
surements of wind speed.Palmer et al.(1995) have analysed
several time series of wind components and X-band Doppler
radar signals gathered over an area of ocean surface and have
found the presence of a low-dimensional dynamical attractor
in the case of time series of the horizontal wind speed as well
as the vertically polarized radar reflectivity. They were also
able to achieve better short-term predictions from the deter-
ministic models than from statistical models. However, the
analysis carried out on daily mean wind speed (DMWS) data
by Ragwitz et al.(2000) suggests that, on average, no reduc-
tion of the prediction error can be achieved by using a nonlin-
ear model instead of a linear stochastic model. However, they
could predict intermittent gusts with significantly higher ac-
curacy. These studies are however limited by short times se-
ries (Hirata et al., 2008). Mart́ın et al.(1999) have analysed
the wind speed data by splitting them into deterministic and
stochastic components. Their analysis shows that the deter-
ministic component has 1-year, 24-h and 12-h periods. These
cycles have also been observed by other authors in surface
wind studies (Brett and Tuller, 1991; Gavald́a et al., 1992).
The 1-year and 24-h periods are the natural Earth cycles. The
12-h period for wind speed series is well-defined and cor-
responds to the daytime and nighttime maxima due to the
full development of the land–sea breezes. These periodicities
present in the wind speed time series clearly show presence
of determinism in the data. However, it is not clear whether
the apparentstochasticcomponent is strictly stochastic or
arises out of chaotic underlying dynamics.

In general, the predictability and degree of determinism
of atmospheric parameters depend on the time scale con-
sidered (Palmer, 1993), and this applies in particular to the
case of wind speed predictions. The various models for wind
speed predictions reviewed above are mostly in time scales
ranging from hours to a few days. What follows from this
discussion is that wind is believed to have both determin-
istic and stochastic components in the time scales consid-
ered, but the manner in which these components interact is
still elusive and a matter of debate. The rotation of Earth
and solar heat radiation are two major causes of the sur-
face wind in addition to the local topography. The Earth’s
revolution is clearly deterministic. However, many authors
have argued that the solar radiations are stochastic in na-
ture and hence the underlying dynamics of the surface wind
should be governed by both deterministic as well as stochas-
tic factors. On the other hand, our previous analysis of the
data of total electron content (TEC), which is strongly influ-
enced by the solar radiation, shows strong evidence of de-
terministic low-dimensional character of the underlying dy-
namics (George et al., 2002; Kumar et al., 2004). The sur-
face wind speed is a similar atmospheric parameter to so-
lar influence but its dynamics is further complicated by the
local conditions such as topography. Hence, it is worth in-
vestigating whether a stochastic or a deterministic model is

most suitable for the underlying dynamics of surface wind
fluctuations. In this work we carry out a detailed system-
atic analysis of the time series of daily mean wind speed
(DMWS) measured at Thiruvananthapuram, Kerala, India
(8.483◦ N,76.950◦ E ; elevation: 64 m) using tools of nonlin-
ear dynamics for the period from year 2000 to 2010. Note
that the length of the time series is about the length of a solar
cycle. The data were obtained from National Climatic Data
Centre (http://www.ncdc.noaa.gov). We demonstrate, using
the DMWS-data, that the dynamics of wind speed is essen-
tially deterministic with a low-dimensional chaotic charac-
ter. The chaotic behaviour is what makes the long-term pre-
dictions of wind speed erroneous, but it should be possible
to obtain better short-term predictions using the determinis-
tic model than would otherwise be made with the statistical
methods. It is reported that short-term predictions of one to
six hours ahead at intervals of 10 min are important in power
dispatching systems (Mabel and Fernandez, 2009).

We assume that there is also a stochastic component in
the data arising mainly from measurement and averaging er-
rors. The averaging errors are a result of considering the
meanwind speeds and not the actual wind speeds equidis-
tant in time as it should be for a time series. The effects of
these errors are assumed to contribute an additive noise to
the data which is independent of the true deterministic dy-
namics of the system. Hence, the first step in our analysis
is to remove the effect of this noise process using a suitable
noise reduction technique to reveal the true dynamics behind
the data. The denoised data still contain irregular persistent
fluctuations, which upon analysis using tools of non-linear
dynamics reveals many attributes of a chaotic system with
a low-dimensional attractor. Since some of these attributes
may also be found in linear stochastic processes, we further
subject the denoised data to a detailed surrogate analysis to
confirm that the underlying dynamics is indeed deterministic
and could not be described by a linear Gaussian stochastic
model. Most of these analyses were carried out using tools
implemented in the TISEAN package (Hegger et al., 1999).

2 Time delay coordinates and attractor reconstruction

The time series of DMWS is plotted in Fig.1 which shows
that the wind speed exhibits persistent temporal fluctuations.
The underlying mechanism giving rise to these irregular fluc-
tuations could either be stochastic or a deterministic system
exhibiting chaotic behaviour. Prior to the advent of chaos the-
ory through the pioneering work ofLorenz(1963), it was be-
lieved that random-like fluctuations such as the one in Fig.1
could only originate from a stochastic system and not from
a deterministic system. However, chaos theory has demon-
strated that deterministic systems can also lead to behaviour
that is quite complex and, like stochastic systems affected
by noise, unpredictable in the long term. Deterministic dy-
namical systems, which evolve continuously over time, are
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Fig. 1. Time series of the measured daily mean wind speed
(DMWS) in knots.

described by a state vectorx(t) and an equation of motion:

ẋ ≡
dx

dt
= f (x). (1)

Such systems are usually characterised by an attractor, which
is a bounded subset of the phase space reached asymptoti-
cally by a set of trajectories over an open set of initial condi-
tions as timet → ∞.

A striking feature of some dynamical systems is that the
trajectories on the attractor may exhibitsensitive dependence
on initial conditions. This means that trajectories starting
from neighbouring initial conditions may separate from each
other at an exponential rate, evolving independently of each
other and in an apparently uncorrelated manner after a suf-
ficiently long period of time, and yet remain confined to a
bounded subset of the phase space.Chaos is the bounded
aperiodic behaviour in a deterministic system that shows
sensitive dependence on initial conditions(Alligood et al.,
1997). A detailed illustration of the sensitivity to initial con-
ditions of a chaotic system, particularly in the setting of at-
mospheric prediction, has been presented byPalmer(1993).
The term chaos is reminiscent of the intricate dynamics ex-
perienced by the trajectories on the attractor; the exponential
divergence stretches out the trajectories as it evolves in time,
which is then folded back to remain confined to a finite re-
gion of the phase space. The attractor is the result of these
sequences of stretching and folding repeated indefinitely.

Exponential divergence of trajectories on the attractor
makes long-term predictions in a chaotic system difficult
while the stretching and folding of trajectories cause mea-
surements of quantities that depend on the state space to look
random. Together, these attributes often make a chaotic sys-
tem indistinguishable from a truly stochastic system. In fact,
many systems that were earlier dubbed as stochastic were
later shown to be chaotic (Alligood et al., 1997; Ott, 1993).

Most of the time the state vectorx(t) is not measured di-
rectly but indirectly at discrete time intervalsτ using a scalar
measurement functiony(t) = h(x(t)) leading to a time series
yi = y(iτ ). The central idea in time series analysis is that the
dynamics of the state vectorx(t) on the attractor can be re-
captured from the time seriesy(t) using a technique called
attractor reconstruction, first suggested byPackard et al.
(1980) and successfully used by many others. This technique
is based on the fact that the dynamics of then-dimensional
state vectorx(t) on the attractor is topologically identical to
that of them-dimensional delay vector:

y(t) = (y(t), y(t + τ), · · ·y(t + (m − 1)τ ), (2)

which was constructed from samples ofy(t) taken at regu-
lar time intervalsτ (also called “delay”), under the mapping
x(t) −→ y(t) which is an embedding under rather general
conditions. The embedding theorem ofTakens(1981) and
its extensions (Sauer et al., 1991; Sauer and Yorke, 1993)
furnishes the mathematical theory behind reconstruction and
asserts that the embedding is valid for almost all values of
time delayτ and all smooth measurement functionsh as
long asm > 2D whereD is the box-counting dimension of
the attractor. This means that the dynamical and geometrical
characteristics of the original system, in particular the geo-
metrical invariants such as the fractal dimension, Lyapunov
exponents and entropies, are preserved in the reconstructed
space and can be computed from the flow defined byy(t)

(Kantz and Schreiber, 1997; Ott et al., 1994). The analysis
of the DMWS-data, presented in the next section, relies on
attractor reconstruction for computing many such character-
istics.

3 Analysis of the denoised data

For the purpose of our analysis of the DMWS-data, we
heuristically assume that the dynamics underlying wind can
be modelled by a deterministic system with state vectorx(t).
The daily mean wind speed can be regarded as observations
of a measurement functiony(t) = h(x(t)) made at regular
intervals. However, since we are considering themeanwind
speeds and not the actual wind speeds at regular daily inter-
vals, regarding them as observations made at equal intervals
of time contributes an averaging error. We assume that these
averaging errors along with other measurement errors can to-
gether be modelled as an additive noise process with zero
average and delta correlation. It is therefore important to re-
duce the effect of this noise before analysing the data. For
reducing noise we have applied the noise reduction method
of Schreiber(1993), which employs a locally constant ap-
proximation of the dynamics to reduce noise.

Despite the apparent random oscillations, recurring annual
variations are evident in the times series plot (Fig.1) of the
DMWS-data. To confirm this we have plotted the space-time
separation plot of the data (Fig.2), which helps in identifying
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Fig. 2. Space-time separation plot for the time series in Fig.1 for
τ = 1 andm = 14.

temporal correlations inside the time series (Provenzale et
al., 1992). Each point in the plot represents a pair of points
on the trajectory with their relative separation in time along
the horizontal axis and separation in space along the verti-
cal. Marked variations are observed in the graph at multiples
of around 365 days indicating annual variations. The mod-
ulation effects due to these annual variations were reduced
in subsequent analysis by applyingepoch analysison the
data, by deducting from each of the data points which are
365 days apart their average value (Kumar et al., 2004). The
resulting time series showed prominent variations, in periods
of 28 days, arising from lunar influence. Hence, epoch anal-
ysis was repeated for these 28-day variations as well. The
plot of the resultant denoised and detrended time series is
shown in Fig.3 and its space-time separation plot in Fig.4
which clearly show considerable reduction in the effect of
the annual and lunar variations. The autocorrelation function
(Eq.3, discussed later) of the observed time series is plotted
in Fig. 5a and of the detrended time series in Fig.5b which
also show that the temporal correlation due to the annual vari-
ation and lunar influence has significantly been reduced by
the epoch analysis. As is clear from the Fig.3, the denoised
detrended data still show persistent temporal fluctuations.

As a first step in the analysis of the denoised data, we de-
termine the embedding parameters – the delayτ and the em-
bedding dimensionm – for the proper reconstruction of the
attractor using the method discussed in the previous section.
The embedding theorems do not place any restriction what-
soever on the delayτ and the embedding dimensionm, but
their choice can nonetheless affect the inferences deduced
from reconstruction significantly, especially when the data
come from experiment. Small delays, for example, result in
highly correlated vectorsy(t) leading to unduly larger val-
ues for the correlation dimension, while large delays yield
vectors with fairly uncorrelated components resulting in data
randomly distributed in the embedding space (Kantz and
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Fig. 3. Time series of the detrended denoised daily mean wind
speed shown in Fig.1.
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Fig. 4. Space-time separation plot for the detrended time series for
τ = 1 andm = 14.

Schreiber, 1997). Proper choice of the time delay is, there-
fore, important, and a first guess of a suitable delay may be
obtained from the autocorrelation function of the sample data
yi given by

ρ(τ) =

∑
i(yi − ȳ)(yi+τ − ȳ)∑

i(yi − ȳ)2
(3)

whereȳ is the sample mean. The value ofτ , at which the au-
tocorrelation attains its first zero or its first local minimum, is
usually an optimal choice for the delay (Kantz and Schreiber,
1997).

Another tool to determine an optimal delay, which takes
into account non-linear correlations also, is the method of
time-delayed mutual information suggested byFraser and
Swinney(1986). In this method, a quantity called average
mutual information is computed for various delays as a mea-
sure of the predictability ofy(t + τ) given y(τ). The mu-
tual informationI (τ ) for a given delayτ is calculated by
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Fig. 5. (a) The autocorrelation function of the observed DMWS
data.(b) The autocorrelation function of the detrended time series.
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Fig. 6. Mutual information of the time series of the measured
DMWS data.

regarding the sequences(yi) and(yi+τ ) as values of random
variablesX andY and using the formula

I (τ ) =

∑
y∈Y

∑
x∈X

p(x,y) log2

(
p(x,y)

p(x)p(y)

)
(4)

wherep(x,y) is the joint probability mass function ofX and
Y , andp(x) andp(y) are the marginals. The probabilities
are calculated by constructing a histogram of the data points.
A good choice for time delay is then the value ofτ at which
the graph of mutual information exhibits a marked minimum.
For the DMWS-data, the plots of autocorrelation (Fig.5b)
and mutual information (Fig.6) suggest a value aroundτ = 1
as an optimal choice for the delay. Our preliminary analysis
with valueτ = 2 also gave identical results for the choice of
embedding dimension.

As for the choice of the embedding dimensionm, it should
be large enough for the attractor to fully unfold in the embed-
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Fig. 7. The fraction of false nearest neighbours as a function of
the embedding dimensionm for the detrended time series withτ =

1,ω = 25, showing that anym ≥ 13 can be considered optimal.

ding space but choosing too large of anm may cause the vari-
ous algorithms to underperform (Kantz and Schreiber, 1997).
A practical method for choosing the right embedding dimen-
sion, proposed byKennel et al.(1992), is to find the fraction
of false neighboursas a function of the embedding dimen-
sion. False neighbours arise when the current dimension is
not large enough for the attractor to unfold its true geome-
try, leading to crossing of trajectories due to projection onto
a smaller dimension. The method checks the neighbours in
progressively higher dimensions until it finds only a negli-
gible number of false neighbours in passing from dimension
m to m + 1. The first time the fraction of false neighbours
attains a minimum indicates a suitable value for the embed-
ding dimension. For the present data, Fig.7 plots the frac-
tion of false neighbours as a function of embedding dimen-
sion and it can be seen that an optimal choice ofm must be
higher than 13, since form ≥ 13 the fraction of false neigh-
bours becomes negligibly small. We have chosenm = 14 for
the further analysis. It may be noted that, for most of the
practical purposes, the important embedding parameter is the
productmτ of the embedding dimension and the delay time
becausemτ is the time span represented by an embedding
vector. Only a precise knowledge ofm is required to exploit
the determinism of the underlying dynamics with minimal
computational effort (Kantz and Schreiber, 1997). The de-
lay representation of the denoised detrended time series with
m = 14 andτ = 1 is shown in Fig.8. The definite structure
in the Fig.8 indicates the deterministic nature of the data.

A quantitative measure of the structure and self-similarity
of the attractor is provided by various dimension estimates,
such as the box-counting dimension, the Hausdorff dimen-
sion etc., all of which generalise the Euclidean definition of
dimension to take care of the self-similar structure of chaotic
attractors at arbitrary fine scales. As it turns out, chaotic at-
tractors commonly have non-integer dimensions. Among the
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various dimension estimates, the easiest to compute from a
given time series, and which has also become the standard
now, is the correlation dimension introduced byGrassberger
and Procaccia(1983). The correlation dimensionD2 is de-
fined in terms of the correlation integralC(ε), which is de-
fined as the probability that a pair of points chosen randomly
on the attractor is separated by a distance less thanε. On the
attractor, the correlation integral is empirically found to scale
like C(ε) ∝ εD2 asε → 0, so that the correlation dimension
may be estimated as the slope of the curve of lnC(ε) versus
ln(ε) given by

D2 = lim
ε→0

d lnC(ε)

d lnε
. (5)

In practical computations involving a single time series and
N data points ofm-dimensional delay vectorsyi , the corre-
lation integralC(ε) is approximated by the correlation sum
C(ε,m) given by (Kantz and Schreiber, 1997)

C(ε,m) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

2(ε − ‖yi − yj‖), (6)

for sufficiently largeN , where2(a) = 1 if a > 0, 2(a) = 0
if a ≤ 0. The scaling exponent in Eq. (5), when calculated
using the correlation sumsC(ε,m), typically increases with
m and saturates to a final value for sufficiently largem which
is then taken as an estimate forD2. In practice, one computes
the local slopes with the following equation:

D2(ε,m) =
d lnC(ε,m)

d lnε
(7)

and plots them as a function ofε for variousm; the value
corresponding to a plateau in the curves is identified as an
approximation toD2. There are, however, some subtleties
to be taken care of in the computation of correlation di-
mension. While only the spatial closeness of points should
be accounted for in Eq. (7), the actual computations may
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Fig. 9. The local slopesD2(ε,m) for the detrended time series for
m ranging from 14 to 16 withτ = 1,ω = 25 giving a plateau for
small values ofε and giving an estimate ofD2 = 3.7967± 0.0116.
The convergence of the plateau for higher dimensions is also evident
in Fig. 11a indicating evidence of low dimensionality.

be affected by the temporal closeness of points as well. To
guard against this, points that are closer in time by less than
a Theiler windowω – which is approximately equal to the
product of the time delay and the embedding dimension –
are excluded while calculating the correlation sum (Theiler,
1986). Hegger et al.(1999) have suggested that the value of
ω should be chosen generously.

Figure9 plots the local slopesD2(ε,m) for the DMWS-
data with the previous choice of delay and for embedding
dimensions ranging from 14 to 16 using 25 as value for
Theiler window. The curves exhibit convergence for larger
m, an indication of low dimensionality of the attractor, and
suggest a value ofD2 = 3.7967± 0.0116. This shows that,
while the original system may be affected by a multitude of
factors, the eventual behaviour can be characterised by a low-
dimensional attractor.

As mentioned previously, chaotic systems are charac-
terised by their sensitive dependence on initial conditions,
meaning that trajectories that start from neighbouring ini-
tial conditions may diverge exponentially over time. Letx0
be any point on the basin of attraction, and consider an in-
finitesimal sphere of perturbed initial conditions. This sphere
distorts into an ellipsoid as the system evolves in time (Alli-
good et al., 1997). Letεk(t), k = 1,2, · · · ,n denote the length
of thek-th principal axis of the ellipsoid. In general we can
write εk(t) = εk(0)eλk t where theλks may be positive, zero,
or negative, and are called theLyapunov exponents. The Lya-
punov exponents quantify the average rate of divergence or
convergence of nearby orbits, and the existence of a positive
Lyapunov exponent is one of the most striking signatures of
chaos (Ott, 1993). In such a system the growth of the sepa-
rationδ(t) between two neighbour trajectories will be even-
tually dominated by the maximum Lyapunov exponentλ, so
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that‖δ(t)| = ‖δ(0)‖eλt , and hence

λ = lim
t→∞

1

t
ln

‖δ(t)‖

‖δ(0)‖
. (8)

In practice one computesλ by plotting lnδ(t) versust , which
should fall nearly on a straight line, the slope of which then
gives an estimate ofλ. Lyapunov exponents are invariant un-
der smooth transformations of the attractor; hence, they are
preserved under delay reconstruction and may be estimated
from a time series. There are many algorithms for estimat-
ing the maximal Lyapunov exponent from time series, all of
which implement the above ideas to delay vectors in the em-
bedding space. Most popular among them is the Kantz algo-
rithm (Kantz, 1994; Kantz and Schreiber, 1997), which pro-
ceeds by computing the sum:

S(1n) =

1

N

N∑
n0=1

ln

(
1

‖U(yn0
)‖

∑
yn∈U(yn0)

∥∥∥yn0+1n − yn+1n

∥∥∥)
(9)

for a pointyn0
of the time series in the embedded space and

over a neighbourhoodU(yn0
) of yn0

with diameterε. If the
plot of S(1n) against1n is linear over small1n and for a
reasonable range ofε, and all have identical slope for suf-
ficiently large values of the embedding dimensionm, then
that slope can be taken as an estimate of the maximum Lya-
punov exponent (Kantz, 1994; Kantz and Schreiber, 1997).
For our time series, Fig.10 shows curves ofS(1n) for
m = 14,15,16 which increase linearly with1n and then set-
tle down. An estimate for the maximum Lyapunov exponent
as obtained from the figure isλ = 0.0265±0.0008. The com-
putations were repeated for various values of the embedding
dimension and the diameter of the neighbourhoodU(yn0

),
all of which gave results identical to the above. The estimated
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Fig. 11. (a)The local slopesD2(ε,m) of original time series for the
embedding dimensionsm = 1, . . . ,24 with τ = 1,ω = 25. (b) The
same for the phase randomized time series.

positive value of the maximum Lyapunov exponent indicates
that the underlying system is chaotic.

A colour noise time series can mimic many characteristics
of a chaotic time series. In order to make a distinction be-
tween these two, we compared the DMWS time series with
its phase randomized time series. The phase randomization
of a chaotic signal can destroy its profile, whereas a colour
noise time series retains its profile (Pavlos et al., 1992). The
phase randomized time series of DMWS data was obtained
by representing it by Fourier series and then reconstructing
the time series after adding a random phase distribution. We
calculated the local slopes of the logarithmD2(ε,m) of the
correlation sum for both the original time series and the phase
randomized time series and plotted the values in Fig.11a and
b respectively. These figures clearly show that phase random-
ization destroys deterministic profile.

The estimated values of the correlation dimension and the
fraction of false nearest neighbours obtained for various em-
bedding dimensions show that the underlying dynamics of
the fluctuations in the DMWS data is low-dimensional. The
positive value of the maximum Lyapunov exponent indicates
that the underlying system is chaotic. The comparison of the
DMWS data with its phase randomized time series further
confirms the chaotic nature of the underlying system.

4 Comparison with surrogate data

The analysis of the DMWS-data in the previous section re-
veals a number of features that are characteristic of time se-
ries originating from non-linear deterministic systems, which
are chaotic. However, many of these features could also be
exhibited by stochastic systems driven by a linear Gaussian
process, which may possibly be distorted by some non-linear
process. So to further validate the results of the previous
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Fig. 12. (a)The mean values of the fraction of false nearest neigh-
bours of the surrogates with standard deviation.(b) Plot of the sig-
nificance of differenceS versusm.

section, we must ascertain that the source of the complex be-
haviour exhibited by the DMWS-data is not stochastic.

The method of surrogate data (Theiler et al., 1992) is
widely used as a tool for discriminating whether the source
of random fluctuations in time series data is deterministic or
stochastic. It is basically a statistical test to formally reject
the hypothesis that the observed data convey a linear noise
process. The method proceeds by first formulating a null hy-
pothesis, which is usually an assumption that the observed
data are random, and then generating an ensemble of time
series of random numbers, called surrogate data, which are
consistent with the null hypothesis and are otherwise similar
to the original data. In other words, these surrogate data are
what independent, repeated observations of the process that
generated the original data would yield if that process were
consistent with the null hypothesis. Then one compares the
values of some discriminating statistic, such as correlation
dimension, computed from the given data to the distribution
of values obtained from the surrogates. If the values differ
significantly, then the null hypothesis may be rejected.
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Fig. 13. (a)The mean values of the local slopes of the surrogates
with standard deviation.(b) Plot of the significance of differenceS
versusε. Here the normalised data sets are used, andm = 14,τ = 1,

andω = 25.

In what follows we apply the surrogate data analysis to test
the null hypothesis that the observed time series is a linear
Gaussian noise process. We used the algorithm ofSchreiber
and Schmitz(1996) to generate a set of 40 surrogates con-
sistent with the null hypothesis. Generated by the amplitude-
adjusted Fourier transform method, the surrogates preserve
the amplitude distribution, power spectrum and autocorrela-
tion of the DMWS-data, so that they can be regarded as what
the realisations of the process underlying the DMWS-data
would be like, if that process had the properties enjoined
by the null hypothesis. The null hypothesis is tested using,
as discriminating statistic, both geometrical and dynamical
characteristics such as fraction of false nearest neighbours,
the local slopes of the correlation sums and the curves of
S(1n) which are related to the maximal Lyapunov exponent.
Each of the above characteristics are calculated for both the
original data and the surrogate data, and the null hypothesis
is accepted or rejected depending on the value of the signif-
icance of difference given by (Mitschke and D̈ammig, 1993;
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1n.

Pavlos et al., 1999)

S =
µ − µorig

σ
(10)

whereµ andσ are the mean and standard deviation of the
characteristic computed from the surrogates andµorig is the
mean of the characteristic on the original data. It is estimated
that we may reject the null hypothesis with 95 % confidence
if S > 2, which means that the probability is 95 % or more
that the observed time series is not a realisation of a Gaussian
stochastic process (Pavlos et al., 1999).

Figure12a plots the mean values of fraction of false near-
est neighbours of all the surrogates and values one standard
deviation away from the mean, alongside the values of frac-
tion of false nearest neighbours of the DMWS-data. We can
observe that the curves of fraction of false nearest neighbours
versusm of all the surrogates deviate significantly from the
corresponding curve of the original data for a range of the
embedding dimensions. As shown in Fig.12b, the signifi-
cance of differenceS for the fraction of false nearest neigh-
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bours reaches up to 9, and hence the null hypothesis can be
safely rejected.

Next we compared the local slopes of the correlation sums.
Figure13a compares the local slopesD2(ε,14) of the corre-
lation sums (Eq.7), of the DMWS-data with the mean values
of the slopes of all the surrogates along with values one stan-
dard deviation away from the mean. It is clear that the val-
ues of the slopes of the surrogates deviate considerably from
those of the original data, especially in the region of smaller
ε. As is clear from Fig.13b, the significance of difference is
large enough to reject the null hypothesis.

We further compared the original data with their surro-
gates usingS(1n) of Eq. (9) as the test statistic. Figure14a
compares the curves ofS(1n) of the surrogates with those
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of the original data plotted for delayτ = 1 Theiler win-
dow ω = 25 and embedding dimensionm = 14. We observe
strong differences between the values ofS(1n) correspond-
ing to the original data and the surrogates. The significance
of differenceS, shown in Fig.14b, is larger than 2 for all
1n ≤ 40. Here again, based on the values ofS, we can reject
the null hypothesis.

The alignment of the neighbouring segments of trajecto-
ries in a flow, which ultimately leads to a definite structure
for the attractor if the dynamics is deterministic, can be used
as a criterion to distinguish determinism from stochastic dy-
namics. A straightforward way to quantify this is the non-
linear prediction error which computes the deviations of the
values predicted using past data from the actual values in the
trajectory. It is reported that the non-linear prediction error
is a consistently good tool for discriminating non-linearity
(Schreiber and Schmitz, 1997). We calculated the prediction
errors by using a locally constant approximation to predict
future values (Tong, 1983; Hegger et al., 1999), and the root-
mean-square prediction errors of each of the 40 surrogates
and the original data were computed. The results are dis-
played in Fig.15 which shows that the prediction errors are
significantly lower for the original data than all the surrogates
with S = 4.15, and hence the null hypothesis can be rejected.
The time reversal asymmetry statistic defined by

T rev
=

〈(yn − yn−τ )
3
〉

〈(yn − yn−τ )2〉
(11)

is frequently used as a measure of deviations from time re-
versibility which is a characteristic of linear systems. Fig-
ure16 showsT rev for all the surrogates and the original data
,and it is seen that time reversal asymmetry of the original
data is larger than that of the surrogates withS = 2.95; hence,
we can reject the null hypothesis.

To summarise, based on the results of these series of statis-
tical tests comparing the DMWS-data with their surrogates,

we can reject the null hypothesis with 95 % confidence level
and infer that the DMWS-data do not originate from a linear
Gaussian process. This further confirms that the results re-
ported in the previous section are not an artefact of a stochas-
tic system but of a system that is indeed deterministic with
a low-dimensional chaotic attractor. Although deterministic,
the chaotic nature of the data makes long-term predictions
prone to errors, but short-term predictions can be made with
fairly good accuracy by carefully chosen methods adapted to
the data. The average prediction errors of DMWS-data based
on a locally constant approximation are shown in Fig.17 as
function of embedding dimension. As is clear from the fig-
ure, the prediction error becomes smaller and stabilised for
embedding dimensionm ≥ 14 which, besides being a further
justification for our choice ofm = 14 in the previous analy-
sis, furnishes another piece of evidence for the determinism
in the data. However, the locally constant approximation is
by no means the most suitable for all types of data, and a
proper choice of prediction method requires a careful anal-
ysis of the data against the various prediction schemes. This
will be addressed in a future work.

5 Conclusions

We have carried out a detailed analysis of the daily mean
wind speed measured at Thiruvananthapuram from 2000 to
2010 using tools of non-linear time series analysis. The pur-
pose of the study was to examine whether the persistent irreg-
ular temporal fluctuations exhibited by the data arose from
deterministic or stochastic dynamics of the underlying sys-
tem. The analysis reveals that the underlying dynamics of
DMWS-data is deterministic, low-dimensional and chaotic.
The estimated values of correlation dimension and the frac-
tion of false nearest neighbours as a function of embedding
dimension indicate the low dimensionality of the system,
and the positive value of the maximum Lyapunov exponent
shows that the system is chaotic. The reduction and stabiliza-
tion of prediction errors with increase of embedding dimen-
sion is further evidence for determinism. A detailed surrogate
data analysis, using a number of measures as discriminating
statistic, shows that the characteristics shown by the data are
not of a stochastic system exhibiting chaos-like behaviour,
and corroborates the deterministic character of the system.
The analysis further shows that the chaotic profile does not
arise from the pseudo-characteristics of a colour noise time
series. While most of the chaotic systems reported in the lit-
erature are confined to laboratories, this is a natural system
showing chaotic behaviour.
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