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Abstract. The discussion of exactly which process is causing
the preferred build-up ofv−5-power law tails of the veloc-
ity distribution of suprathermal particles in the solar wind is
still ongoing. Criteria allowing one to discriminate between
the various suggestions that have been made would be useful
in order to clarify the physics behind these tails. With this
study, we draw the attention to the so-called “step feature” of
the velocity distributions and offer a criterion that allows one
to distinguish between those scenarios that employ velocity
diffusion, i.e. second-order Fermi processes, which are prime
candidates in the present debate. With an analytical approx-
imation to the self-consistently obtained velocity diffusion
coefficient, we solve the transport equation for suprathermal
particles. The numerical simulation reveals that this form of
the diffusion coefficient naturally leads to the step feature of
the velocity distributions. This finding favours – at least in
regions of the appearance of the step feature (i.e. for helio-
centric distances up to about 11 AU and at lower energies) –
the standard velocity diffusion as a consequence of the par-
ticle’s interactions with the plasma wave turbulence as op-
posed to that caused by velocity fluctuation-induced com-
pressions and rarefactions.

Keywords. Space plasma physics (Transport processes)

1 Introduction and motivation

During recent years, an intense discussion has been led re-
garding the physical cause of the formation of suprathermal
power law tails of pick-up ions (PUIs) in the solar wind.
While various velocity powers do occur, there appears to be
a preference forv−5-tails (Fisk and Gloeckler, 2007)(see the
examples shown in Fig. 1).

Such tails can, in principle, be explained by a number of
basic processes, like efficient velocity diffusion due to in-
terplanetary turbulence (e.g.Isenberg, 1987; Chalov et al.,
1995; Fichtner et al., 1996; Isenberg, 2005), diffusive accel-
eration at interplanetary shocks (e.g.Baring and Summerlin,
2008) and multiple ion reflection resulting from shock surf-
ing (e.g.Lee et al., 1996; Zank et al., 1996; le Roux et al.,
2000) or newly discussed processes like the action of veloc-
ity fluctuation-induced compressions and rarefactions of the
solar wind plasma (Fisk and Gloeckler, 2007; Zhang, 2010;
Fahr and Siewert, 2011).

It appears, however, that a particular feature of many ob-
servations has not drawn any attention, so far, namely the
step-like feature of the PUI velocity distributions (indicated
in Fig. 1). It can be observed at least out to about 11 AU,
as measurements with the New Horizons spacecraft revealed
(McComas et al., 2010, see Fig. 3 therein). While this “step
feature”, as we will refer to it, has clearly been noticed (see,
e.g., Fig. 1 inFisk and Gloeckler, 2007), we are not aware
that it has been explicitly addressed in detail from a theoret-
ical perspective in the literature. A closer inspection of the
step feature might, however, be valuable because it will help
to answer the question of which of the various suggested pro-
cesses is actually operating and causing this feature.

While the studies invoking diffusive acceleration at in-
terplanetary shocks (Baring and Summerlin, 2008, Fig. 1
therein), shock drift during multiple reflections at a shock
(le Roux et al., 2000, Fig. 3 therein), or the interaction of
particles with 2-D turbulence (le Roux et al., 2001, who re-
ferred to the step feature as a “knee”, Fig. 1 therein) could
successfully generate a step-like feature, it is either rather
less pronounced, demonstrated to exist at the solar wind ter-
mination shock only, or derived for a case without cooling,
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(a)

(b)

Fig. 1. The observed suprathermal ion tails in the fast(a) and
slow (b) solar wind. Three populations are distinguished, namely
the thermal solar wind as well as the suprathermal core and tail
ions. The dashed lines encircle the step feature (adopted fromFisk
and Gloeckler, 2007).

respectively.Schwadron et al.(1996) assumed transit-time
damping in corotating interaction regions to be responsible
for the tail formation, and could reproduce observations un-
der the assumption of anisotropic turbulence, i.e. adopting a
correlation length parallel to the local magnetic field 30 times
longer than that perpendicular to the field.

Interestingly, two prime candidates (for a recent discus-
sion, seeFahr and Fichtner(2011) and Fahr and Siewert
(2011)) suggested to explain that the formation of extended
tails appear to fail to reproduce the step feature: the models of
velocity diffusion due to an interaction of PUIs with plasma
waves (Isenberg, 2005) or with velocity fluctuations (Zhang,
2010) result in suprathermal tails reaching up to the level of
the core distributions, i.e. in distributions exhibiting no step
feature (see Figs. 7 and 2, respectively, in this paper).

We demonstrate here that standard velocity diffusion as
originally suggested byIsenberg(1987) will also result in
velocity distributions with a step feature if only a self-

consistent treatment of the wave-particle interaction is taken
into account. This fact favours this process as the one domi-
nating at lower energies when compared to that suggested by
Fisk and Gloeckler(2007). The effect of compressional fluc-
tuations, suggested by them and critically assessed byJokipii
and Lee(2010), might take over in momentum diffusion ef-
ficiency at higher energies.

In the next Sect. 2, we derive a refined representation of the
velocity diffusion coefficient resulting from self-consistent
approaches; in Sect. 3 we describe and discuss the numeri-
cal simulation employing this coefficient, and in Sect. 4 we
summarize the findings and draw corresponding conclusions.

2 A diffusion threshold implied by a drop-off of velocity
diffusion

Several authors have studied the evolution of pick-up ions
in a self-consistent approach regarding their interaction with
plasma wave turbulence (seeBogdan et al.(1991), le Roux
and Ptuskin(1998) andChalov et al.(2004)). In these self-
consistent treatments, the velocity diffusion coefficient is
represented by (see, e.g.,Miller and Roberts, 1995)
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wheree, m andv denote a particle’s electric charge, mass,
and speed, respectively, andvA andc are the Alfv́en speed
and the speed of light. The waves the particles interact with
have the power spectrumW(k) and are considered above
a limiting wave numberk0 = �/v with the particle’s gyro-
frequency�.

The self-consistently computed wave spectra exhibit a cut-
off at high wave number and can, in zeroth order be approx-
imated by a constantW(k) = W0 in the interval of interest
(see Fig. 2). Consequently, the above integral can be simpli-
fied to
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with D0 = (2π2e2v2
AW0)/(m

2c2) (determined in magnitude
by the PUI injection rate) and the solar wind speedU used for
normalization. Upon introducing the dimensionless variable
x = k/k0, it follows that
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Fig. 2. The normalized wave power spectraW̃ (k) =

(e
√

r0/(mcU)W(k) as functions of the normalized wavenum-
ber k̃ = kU/�E as computed byChalov et al.(2004). The solid
lines are for the case that damping due to resonant interactions
between the waves and pick-up protons is taken into account,
while the dashed lines are spectral powers for vanishing damping.
The vertical dotted lines show the solar wind proton dissipation
wavenumbers.
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where, fromChalov et al.(2004), η�E/� ≈ 1 is estimated.
This approximation for the diffusion coefficient is plotted in
Fig. 3.

Evidently, there is a threshold slightly abovev = U , below
which the velocity diffusion becomes inefficient. This thresh-
old gives rises to a step feature in the velocity distribution of
pick-up protons as is demonstrated in the next section.

3 Numerical simulation

Employing the same integration code as inFahr and Ficht-
ner (2011), we solved the standard transport equation for
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fusion coefficient given by Eq.(3).

the omnidirectional, pitch-angle-averaged velocity distribu-
tion function f(r,v,t)

∂f

∂t
=

1

v2

∂

∂v

(
v2Dvv

∂f

∂v

)
+

3vU

2r

∂f

∂v
−U ∂f

∂r
+S (5)

140

for the case of spherical symmetry. Here, S = S(r,v,t) =
(Q/2)πU2H(t− t0)δ(v−U) is a source function with Q=
const. and H denoting the Heaviside function.

For the simulation we used the diffusion coefficient as in
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Fig. 4. The (normalized) PUI velocity distribution f2U2r/3Q as
a function of normalized PUI speed and heliocentric distance (and,
thus, of time): From bottom to top the curves are for r = 1.2, 1.6,
2.0, 4.0, 8.0 and 29 AU using the velocity diffusion coefficent given
in Eq.(6) with the modification described with Eq.(3).

with B0 = 5 ·10−5G, A0 = 3.5 ·1018G2cm2, α= 8/3, and
vA0

= 50km/s. In difference to our earlier simulations,
however, we consider here additionally the new velocity-
dependent factor from Eq.(3). For numerical reasons the150

modification function was kept constant at 0.1 below v/U =
1.2.

This results in the velocity distributions displayed in
Fig. 4. The strong decrease of the diffusion coefficient with
decreasing particle speed makes diffusion efficient only a lit-155

tle above the injection speed. The cooling below and the
acceleration above clearly result in the formation of the step
feature.

That this step feature is indeed present out to at least 11 AU
can be seen from a comparison to the measurements with the160

New Horizon spacecraft (McComas et al., 2010) mentioned
above: In Fig. 5 our results from Fig. 4, here for 11 AU,
are (after an arbitrary shift corresponding to a normalization
constant) overplotted (as the black dotted line) on the figure
published by McComas et al. (2010). Evidently, the step fea-165

ture can clearly be identified in these data.
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We have pointed out the significance of the so-called step
feature in the total velocity distributions of the solar wind
and suprathermal particles for a discrimination between pro-170

cesses that lead to the formation of power law tails.
We have demonstrated that standard velocity diffusion, as

originally suggested by Isenberg (1987) and studied in some
detail together with different cooling processes in Fahr &
Fichtner (2011), will result in velocity distributions with a175
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with B0 = 5× 10−5G, A0 = 3.5× 1018G2cm2, α = 8/3,
andvA0 = 50kms−1. Differently to our earlier simulations,
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Fig. 5. The (PUI) distribution function as a function of energy per charge as measured with the New Horizon’s spacecraft (black solid line;
McComas et al., 2010). The blue line is an analytical approximation using the model byVasyliunas and Siscoe(1976); the yellow/red line
indicates the unscaled/scaled simulation result obtained byMcComas et al.(2010), and the black dotted line is our (arbitrarily shifted) result
(Figure adopted fromMcComas et al., 2010).

however, we consider here additionally the new velocity-
dependent factor from Eq. (3). For numerical reasons, the
modification function was kept constant at 0.1 belowv/U =

1.2.
This results in the velocity distributions displayed in

Fig. 4. The strong decrease of the diffusion coefficient with
decreasing particle speed makes diffusion efficient only a lit-
tle above the injection speed. The cooling below and the ac-
celeration above clearly result in the formation of the step
feature.

That this step feature is indeed present out to at least 11 AU
can be seen from a comparison to the measurements with the
New Horizon spacecraft (McComas et al., 2010) mentioned
above: In Fig. 5, our results from Fig. 4 (here for 11 AU)
are (after an arbitrary shift corresponding to a normalization
constant) overplotted (as the black dotted line) on the figure
published byMcComas et al.(2010). Evidently, the step fea-
ture can clearly be identified in these data.

4 Conclusions

We have pointed out the significance of the so-called step
feature in the total velocity distributions of the solar wind
and suprathermal particles for a discrimination between pro-
cesses that lead to the formation of power law tails.

We have demonstrated that standard velocity diffusion, as
originally suggested byIsenberg(1987) and studied in some
detail together with different cooling processes inFahr and
Fichtner(2011), will result in velocity distributions with a
step feature if only a diffusion coefficient resulting from a
self-consistent treatment of wave-particle interaction is taken
into account. This finding – at least in regions of the appear-
ance of the step feature, i.e. for heliocentric distances up to
about 11 AU and at low energies – favours this process over

that suggested byFisk and Gloeckler(2007), which has been
critically assessed byJokipii and Lee(2010) and studied in
some more detail byZhang(2010), Fahr and Siewert(2011),
andFahr et al.(2011), recently.
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