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Abstract. The beam-plasma mechanism, based on the Lang-
muir decay process, has been proposed to explain naturally
enhanced ion-acoustic lines (NEIALs), which are spectral
distortions in incoherent scatter radar (ISR) data frequently
observed in the vicinity of auroral arcs. In this work the ef-
fect of the Langmuir decay process on the ISR spectrum
is studied and compared with an analytical model for dif-
ferent plasma parameters by using an electrostatic paral-
lel particle-in-cell (EPPIC) code. Simulations show that the
code is working in accordance with theory for a wide range
of beam and plasma values and that the features of the spec-
trum are sensitive to changes of those values. These re-
sults suggest that the EPPIC code might be used to build a
spectrum-plasma parameter model which will allow estima-
tion of beam and plasma parameters from observed spectra.
Simulations also confirm that background electron density
(ne) plays an important role in determining the maximum
detectable wavenumber of the enhancement. Specifically, re-
sults demonstrate that an increase inne makes the enhance-
ments of the ion acoustic more likely line at large wavenum-
bers, a finding consistent with statistical studies showing
more frequent NEIAL occurrence near solar maximum. Fi-
nally, the simulations expose some inaccuracies of the cur-
rent theoretical model in quantifying the energy passed from
the beam to the Langmuir waves as well as with the range
of enhanced wavenumbers. These differences may be at-
tributable to the weak Langmuir turbulent regime assumption
used in the theory.

Keywords. Ionosphere (Auroral ionosphere; Particle pre-
cipitation; Plasma waves and instabilities)

1 Introduction

Incoherent scatter radar (ISR) is a technique used to esti-
mate the plasma parameters of the ionosphere (Evans, 1969).
Accurate estimation of plasma density, drift, and tempera-
ture, depends on detailed knowledge of the spectral charac-
teristics of the received signal. Under certain circumstances
and in certain locations, the ISR spectrum has strongly en-
hanced, denoted Natural Enhancement of Ion Acoustic Lines
(NEIALs) (Sedgemore-Schulthess and St Maurice, 2001).
Although standard ISR fitting techniques are not applica-
ble for these cases, these spectral anomalies are a valu-
able remote sensing diagnostic since they provide insight
into kinetic processes relevant to small scale magnetosphere-
ionosphere coupling. There are four major explanations of
NEIALs. Two are based on two-stream instabilities (e.g.Fos-
ter et al., 1988; Rietveld et al., 1991; Wahlund et al., 1992),
and two are based on wave–wave interaction (Forme, 1993;
Bahcivan and Cosgrove, 2008). The latest experiments (Gry-
deland et al., 2004; Blixt et al., 2005; Strømme et al., 2005;
Michell et al., 2009; Akbari et al., 2012; Isham et al., 2012)
suggest that the Langmuir wave decay process (Forme, 1993,
1999) is a plausible explanation to this phenomenon. In this
explanation, the free energy is provided by an electron beam
which can trigger either weak Langmuir turbulence (WLT)
or strong Langmuir turbulence (SLT), depending on the en-
ergy of the beam. Recent results presented byAkbari et al.
(2012) andIsham et al.(2012) show evidence of the first ISR
observations of SLT.

The Langmuir decay process explanation comprises two
steps. First, a down-going beam of electrons destabilizes
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Langmuir waves of the ionosphere through a plasma-beam
instability. The beam-plasma instability can favor, depend-
ing upon the parameters of the beam and the plasma, either
the Langmuir beam instability (LBI), where the Langmuir
waves are enhanced (0b < 1), or the beam mode instability
(BMI), where the beam mode is enhanced (0b > 1), where
0b is defined as (Gary, 1985; Diaz et al., 2010)

0b ≡

[
vb

1vb

]3[
nb

ne

]
, (1)

wherevb, 1vb, nb and ne are the beam bulk velocity, the
beam velocity spread, the beam density and the background
electron density, respectively. Second, if the beam/plasma pa-
rameters produce the LBI, the enhanced Langmuir waves,
with wavenumberkL0 and frequencyωL0, can potentially
decay into up-going Langmuir waves (kL1,ωL1) and down-
going ion acoustic waves (ks1,ωs1). To produce the decay, the
electric field amplitude of the excited Langmuir wave, given
by Melrose(1986) (assuming a WLT regime and1vb < vb),

E2
L ≈

2menb

ε0(vb − 1vb)

[
1

3
(v3

b − 1v3
b) −

1vb

2
(v2

b − 1v2
b)

]
,

(2)

has to overcome the threshold given byFejer(1979),

E2
thr =

2nikBTiCthr

ε0
, (3)

whereni is the ion density,kB the Boltzmann constant,Ti
the ion temperature andCthr is a constant value that accounts
for effects that can prevent the cascading, such as Landau
damping. The valueCthr is obtained from the expression pre-
sented byFejer (1979) and Diaz et al. (2010), and is ap-
proximately 0.05 for the beam/plasma parameters of the sim-
ulations presented in this work. If the up going Langmuir
waves gain enough energy from this process, they might also
trigger a second cascading to downgoing Langmuir waves
(kL2,ωL2) and up-going ion acoustic waves (ks2,ωs2). Since
downward traveling Langmuir waves excite downgoing ion-
acoustic waves, and upward traveling Langmuir waves excite
upgoing ion-acoustic waves, ion-acoustic waves traveling in
both directions could be destabilized in regions of intense
electron precipitation.

Diaz et al.(2010) summarize the theoretical model of the
Langmuir decay process, which emphasizes the possibility
that the first Langmuir harmonic should be present if Lang-
muir decay is producing NEIALs. Due to the complexity of
the beam-plasma instability, numerical simulation is the most
important method to study the characteristic of ion acous-
tic enhancements due to a beam-plasma instability (Kasaba
et al., 2001; Guio and Forme, 2006; Yi et al., 2010; Ziebell
et al., 2011; Diaz et al., 2011). In recent research based on an
electrostatic parallel particle-in-cell (EPPIC) code,Diaz et al.

(2011) showed that the first Langmuir harmonic is present
and might have enough power to be detected with current
ISRs. The work ofDiaz et al.(2011) represents the starting
point for the present paper which presents more systematic
treatment of the Langmuir decay process. The purpose of this
exercise is to analyze simulation results from the EPPIC code
for different beam-plasma scenarios, and to synthesize these
results in a way that will facilitate future development of an
estimation scheme for distorted spectrum.

2 Simulation description

The simulations performed in this work use an electrostatic
parallel particle-in-cell (EPPIC) code (Oppenheim and Di-
mant, 2004). The code and the procedures needed to obtain
the simulation parameters for different plasma states are de-
scribed in more detail in previous works (Oppenheim and
Dimant, 2004; Diaz et al., 2008, 2011). The 2-D simula-
tion scenario of this work utilizes three species: electrons
and protons (H+) which compose the background plasma,
and a weak electron beam. Representative values for these
species and computational parameters are summarized in Ta-
ble 1. In simulations presented below some of these param-
eters will be changed while leaving all others constant in an
effort to characterize spectral distortions under various cir-
cumstances.

In order to simulate the behavior of the plasma when a
beam is injected through it, particles leaving the volume must
be discarded, while new particles with the original statistical
characteristics must be continuously injected atx = 0 uni-
formly along y. The beam is set to travel on the positive
x-direction (see axes in Fig.3). Because the injection is in
this direction, an open boundary condition is applied to the
x-direction only, while a periodic boundary condition is used
for the y-direction. Since the code is electrostatic the Pois-
son’s equation is used to obtain, through finite difference ap-
proach, the potential as function ofx andy for each instant
of time, which is used to obtain the electric field in each point
of the volume. Since the volume has open boundaries along
x, the Poisson’s solver uses a direct method of solution of the
system of equation obtained by the finite difference method
for this dimension, while a Fourier transform approach is
used alongy taking advantage of the periodicity of this di-
mension. With the electric field, the particles are advanced
by using a leap frog method, obtaining a new charge den-
sity distribution for the next time. The simulation continues
executing these basic steps (update particle positions, then
fields) until a stop condition is reached (Birdsall and Lang-
don, 1985).

No constraints are imposed on the velocity distribution of
the particles except at the beginning of the simulation and
at the boundaries of the volume. The initial velocity distri-
bution is Maxwellian for all species. Zero drift is used for
the background plasma while the beam has a bulk velocity

Ann. Geophys., 30, 1169–1183, 2012 www.ann-geophys.net/30/1169/2012/



M. A. Diaz et al.: Plasma parameter analysis of the Langmuir Decay process via PIC simulations 1171

Table 1.Summary of the parameters used to simulate the decay of Langmuir waves.

Parameter Symbol Value

Physical parameters of the background plasma

e− mass me 3.3452× 10−30kg
Ion mass mi 1.6726× 10−27kg
e− temperature Te 2000 K
Ion temperature Ti 1000 K
e− density ne 2.5× 10111 m−3

Ion density ni 2.51× 10111 m−3

Uniform magnetic field alongx Bx 50 000 nT

Physical parameters of the beam

Beam velocity vb 7.8× 105 m s−1

Beam electron density nb 1× 109 m−3 (charge neutrality,ni = ne+ nb)
Beam velocity spread 1vb 1.56× 105 m s−1

Spectral specifications

Maximum back scatter wavenumber kmax 60 m−1

Minimum back scatter wavenumber kmin 20 m−1

Wavenumber resolution 1k 1.5 m−1

Number of lags Nlags 24

Simulation parameters

Step inx 1x 0.004 m
Step iny 1y 0.004 m
Number of cells inx Nx 1024
Number of cells iny Ny 128
Time step 1t 4.5× 10−9 s
Number of time steps to
get the sampling period Ns 32
Number total of steps Nt 96 000
Number of macroparticles Np 500 000
Number of processors Nproc 64

in the x-direction. The current code can perform analysis of
the velocity distribution evolution, however, this process is
very expensive if high velocity resolution is needed since it
implies more outputting which is one of the most costly pro-
cesses of the code. Therefore, velocity distribution analysis
was not performed in this work.

Table 1 also summarizes the values of the desired spec-
tral specifications which together with the parameters of the
plasma and the beam define the inputs with which the sim-
ulation is operated (Diaz et al., 2011). The total size of the
box (Nx1x × Ny1y) is related to the resolution in thek-
space, while spatial steps1x and 1y are related to the
maximum detectable wavenumber (k). When a beam injec-
tion is set (specificallyvb), the time step1t is adjusted to
be small enough to guaranty that no particle in the volume
crosses more than one cell in each advancement of the time
(1t < 1x/vb), ensuring the stability of the simulation (Diaz
et al., 2011). In order to save computational time, data is writ-
ten to files only at the sample times which are given by the

maximum frequency scattered by the plasma. The entryNs
is the number of time steps per sample period. The total time
of the simulation is related to the resolution in theω-space
– longer simulations (with more time steps,Nt) yield higher
resolution in the IS spectrum ion line at low wavenumbers.
Nlags is related to this spectral resolution, since it is the num-
ber of points between the shoulders of the ion acoustic line
at a low wavenumber. The actual “coherent” behaviour of
the particles interacting with the wave modes is leveraged by
grouping the particles into particle clusters, called macropar-
ticles, which reduces the computational time and simulation
noise. The number of a macroparticles per processor is de-
notedNp. The number of particles in each macroparticle can
be obtained using the particle density, the volume of the box
and the number of macroparticles per processor.

The main physical parameters were selected based on av-
eraged measurements observed at high latitudes (Diaz et al.,
2011). The beam parameters were, in general, selected to
have current densities (|J|) between 100 to 300 µ m−2, values
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consistent with observed current densities over the discrete
aurora (Stasiewicz et al., 1997). Since spacecraft potentials
are usually a few volts negative, the electrons with energies
from ∼0.08 to∼6 eV are repelled. Because of this, the ther-
mal electron distribution at those energies has never been
measured effectively in the nighttime mid-altitude auroral
zone. The simulations presented in this work theoretically
explore possible signatures of NEIALs produced by these
low-energy types of electron beam distributions. The distri-
bution function of the electron beam was selected to satisfy
the current density and the enhanced radar wavenumbers ob-
served by experiments.

Although the physical parameters (e.g. the mass of the
species) are changed to facilitate simulations, these input pa-
rameters were selected to obtain growth rate curves similar to
those computed with realistic values. The background elec-
tron density is selected to be close to the peak of the F-region
since this value set (through the plasma frequency) has the
maximum enhanced wavenumber, given a certain beam ve-
locity, that can trigger a decay (k = ωpe/vb). The selection
of this largene imposes a separation between the ion acous-
tic and plasma lines requiring a restrictively short sampling
rate to avoid aliasing between all modes present in the IS
spectrum (including the Langmuir harmonics). In order to
bring the ion acoustic and plasma lines closer in frequency
(smaller ωpe), a smaller ion to electron mass ratio (actu-
ally mi/me ∼ 2000) is used. An analysis performed byDiaz
et al. (2011) shows that the optimal mass ratio to avoid ar-
tificial behavior of the decay process and to preserve spec-
tral accuracy of the ion acoustic line is 500. Usually, the
theory uses two limits for the temperature ratio,Te/Ti = 1
andTe/Ti � 1. However, with the simulation it is possible
to use more realistic ratios. For the present work, the ratio
Te/Ti = 2 is chosen, since lower temperature ratio produces
more “flat” thermal ion acoustic spectra, facilitating iden-
tification of some enhancements (Diaz et al., 2008). Even
though the geomagnetic field has no effect on the longitu-
dinal unstable waves caused by the electron beam, a con-
stant value of 50 000 nT is used to be in accordance with the
reality.

The simulation performed with the parameters presented
in Table1 was able to trigger a Langmuir decay event (Diaz
et al., 2011), a result consistent with theoretical calculations.
In this paper Langmuir decay events are presented in three
different manners: (1) as perturbations of the relative ion den-
sity variation, (2) as an overcoming of the decay threshold by
the average electric field, and (3) as an enhancement of the
ion acoustic line (IS spectrum). The relative density variation
is defined as

1nj (x, t) =
nj (x, t) − n0j

n0j

,

wherenj (x, t) is the density at every point of the mesh at
each sample time of speciesj , andn0j the average density
of speciesj . The total electric field as a function of time is

calculated as

E2
t =

Nx∑
l

Ny∑
m

|El,m,t |
21x1y,

where Nx and Ny are the total points of the mesh in x-
and y-directions, respectively;1x 1y the step in x- and y-
directions, respectively;l andm are indexes for points in the
x- and y-directions, respectively, andt is the time index. Fi-
nally, the IS spectrum is defined as

Sj (k,ω) ∝

〈
|1Nj (k,ω)|2

n0j

〉
,

where 1Nj (k,ω) is the relative density variation of the
speciesj , in k andω space, and the angle brackets represent
an average over multiple independent samples of the spec-
trum.

The spectral convergence to the mean value of the spec-
trum for a plasma in thermal equilibrium can be facilitated
by taking advantage of the angular independence of the spec-
trum over a two-dimensional plane (kx,ky) (Diaz et al., 2008).
In the present work, the angular independence is lost due
to the injected electron beam and the magnetic field. How-
ever, Diaz et al.(2011) show that the asymmetries due to
the beam and the magnetic field are small for angles close
to 0◦ (or alongx). Hereafter, all spectra obtained throughout
this work use the integration of 44 spectra obtained by two
simulation runs. Each run is composed of 22 angular inte-
grated spectra obtained assuming a 3◦ angular resolution be-
tween angles 15◦ to −15◦ and 165◦ to 195◦ over the(kx,ky)

plane (seeDiaz et al., 2008). The spectrum figures are pre-
sented in dB (10 log10[Sj (k,ω)]) to facilitate detection of
the enhanced part of the spectrum together with the part of
the spectrum where no enhancement is present. As a refer-
ence the∼ −90 dB represents the thermal equilibrium power
spectrum level (Fig.5). At this point a clarification has to be
done for the use of the term “IS spectrum” in this work since
the simulated scattered spectrum is not incoherent for the
cases simulated here. The term “IS spectrum” in this work
refers to the power spectrum obtained from the relative elec-
tron density fluctuations and how an ideal multi-frequency
wide-band IS radar spectrum would appear under the simu-
lated scenarios.

Although most of the simulation parameters remain con-
stant throughout this work (as outlined above), some simula-
tion parameters, such as the sampling rate, are modified be-
tween simulations to take computational advantage offered
by the particular physical parameters under investigation.
Changes from the values presented in Table1 will be high-
lighted where they occur.

3 Parameter analysis of the Langmuir decay

This section presents a systematic study of the sensitivity of
the Langmuir decay process to the physical parameters of
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Fig. 1.Area over thevb/1vb-nb/ne plane for which both equations
(Eqs.4 and5) ensure LBI and Langmuir decay. The area of Lang-
muir decay is increased whenα0 is increased (1vb is increased).

the background plasma and the beam. The conditions given
by 0b < 1 andE2

L > E2
thr can be rearranged as[

vb

1vb

]3
nb

ne
− 1 < 0, (4)

and

1v2
b

(kBTi/me)︸ ︷︷ ︸
α0

1
vb

1vb
− 1

(
1

3

{[
vb

1vb

]3

− 1

}
−

1

2

{[
vb

1vb

]2

− 1

})

−
Cthr

nb/ne
> 0, (5)

by using Eqs. (1), (2) and (3).
From Eqs. (4) and (5), it is possible to see that the crit-

ical parameters are the ratiosnb/ne andvb/1vb as shown
in Fig. 1. All the simulations presented in this section sat-
isfy the condition given by Eq. (4), analyzing the validity of
the condition given by Eq. (5). In order to keep the factor
α0 in Eq. (5) constant (at 5.9, with the values presented in
Table1), 1vb will be kept constant through the simulations
presented in this section. The ratiovb/1vb is varied by al-
teringvb. Therefore, the beam density (nb), velocity (vb) and
background electron (ion) density (ne) are chosen to explore
the response of the decay process.

3.1 Density of the electron beam (nb)

Four different values ofnb are simulated in this subsection.
Besides the different densities, only the parametersNs andNt
were changed from the original selection. Those parameters
were changed to 16 and 34 000 respectively. The four cases
are selected to produce enhancement of the Langmuir waves

Fig. 2. Growth rate (Diaz et al., 2010, Eq. 7) for the four electron
beam densities presented in Table2 (Sect.3.1).

Table 2. Summary of electron beam densities used in the simu-
lations of Sect.3.1 with vb = 7.8× 105 m s−1 (∼6.4 eV),1vb =

1.56× 105 m s−1 (vb/1vb = 5), ne = 2.5× 1011m−3 andE2
thr =

39 (V2 m−2).

nb nb/ne |J| E2
L − E2

thr 0b − 1
(m−3) (µA m−2) (V2 m−2)

1× 109 0.004 125 96 −0.5
7.5× 108 0.003 94 62 −0.625
5× 108 0.002 63 28 −0.75

2.5× 108 0.001 31 −5 −0.875

over wavenumbers estimated from the growth rate equation
(Diaz et al., 2010, Eq. 7) and shown in Fig.2. Three of
the cases satisfy the theoretical decay condition presented
in Eq. (5) as shown in Table2. Thus, those densities are
expected to produce a decay from excited Langmuir waves
into ion acoustic waves. The last density is selected to have
E2

L − E2
thr less than zero (∼ −5 V2 m−2), therefore no decay

is expected for that density.
All simulated beams enhanced Langmuir waves which can

be observable in the electron density variations. The growth
of all four E2

L(t) curves from thermal level also confirm this
fact in Fig.4. Figure3 shows that ions are perturbed, as ex-
pected, for the three largest densities and that larger beam
density produces larger and faster perturbations of the ions
(see video 1 in supplementary material). The weakest elec-
tron beam, unexpectedly also generates enhanced ion acous-
tic waves. The simulatedE2

L(t) curves for all beam densities
are able to overcome the decay threshold producing perturba-
tions of the ions. It is important to notice that the inaccuracy
in the prediction is inE2

L (Eq. 2) and not in the threshold
value (Eq.3) since the curves forE2

L(t) show that the lowest
beam density crosses the threshold value at∼0.12 ms, which
agrees with the time when perturbations start to appear in the
ion density variation (Fig.3).
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Fig. 3. Snapshots of the ion density variation for simulations with
parameters presented in Sect.3.1for (a)nb = 1×109 m−3, (b) nb =

7.5×108 m−3, (c) nb = 5×108 m−3 and(d) nb = 2.5×108 m−3.
The snapshots represent the times where the perturbations start to
be evident (left) and for the final state of the simulation (right).

Even though the spectral resolution is not the best (the res-
olution can be improved with longer simulations), it is pos-
sible to see the same basic characteristics in the IS spectrum
as in the density variation plots. Larger beam densities pro-
duce stronger wave mode enhancements on the spectrum.
First Langmuir harmonic (at∼ +2ωpe and k ∼ +2ωpe/vb,
seeYoon et al.(2003) for more detailed estimations forω
andk of the first harmonic) is also clearly produced and its
enhancement is higher for larger densities (see Fig.5). An
interesting characteristic shown by the simulations is that the
first Langmuir harmonic is present for negative frequencies
when the Langmuir decay occurs. The possible detection of
the first Langmuir harmonic might be useful to constrain the
values of the beam and the electron density. When the decay
is established, the values of those parameters are restricted to
a much smaller region over the plane (vb/1vb,nb/ne) as it
is shown in Fig.1. The Langmuir harmonic at negative fre-
quency also serves as evidence that the Langmuir decay pro-
cess is happening at lower wavenumbers (or radar frequen-
cies). Figure6 shows a zoom on the ion acoustic line. Larger
beam densities clearly produce larger amplifications of the
ion acoustic waves and over a wider range of wavenumbers.
This may be due to a secondary cascade over a larger range
of wavenumbers.

A more detailed analysis on the spectral characteristics
will be conducted for one specific case. Similar analysis ap-
plies to the rest of the cases of Sect.3.1. Table3 summa-

Fig. 4.Magnitude squared electric field versus time for simulations
with parameters presented in Sect.3.1for the four beam densities.

rizes the predicted wavenumbers where the enhancements
should be produced for the plasma line as well as for the
ion acoustic line of a beam with parameters presented in
Table 1. Figure5b shows the incoherent spectrum for this
beam. The prediction of the wavenumber of the excited pos-
itive Langmuir wave (kL0) is in approximate agreement with
the one obtained by the simulation (Fig.5b). The power of
the enhancement of the positive Langmuir mode is∼50 dB
above the thermal case (Diaz et al., 2011). The calculated
range for the excited wavenumbers of the first cascaded
Langmuir wave (kL1 ∈ [10.4,31.4] m−1) also approximately
agrees with the range obtained by the simulation. Given the
low resolution of the ion acoustic line, it is difficult to say if
the wavenumber of the first cascaded ion acoustic wave (ks1),
which should enhance the shoulder at positive frequencies,
exhibits the predicted behavior. The excited wavenumbers of
the ion acoustic line covers most of the wavenumbers from 0
to 60 m−1 (Fig. 6b). However, the highest wavenumber en-
hanced of the positive Langmuir mode (kmax

L0 ∼38 m−1 in
Fig. 2) would produce an enhancement atkmax

s1 ∼ 68.4 m−1

(Table3), which seems to agree with the highest wavenumber
excited in the ion acoustic mode. The first cascaded Lang-
muir wave (L1) seems to trigger a secondary decay. The sec-
ondary decay produces an excitement of the positive Lang-
muir mode (kL2) close to the theoretically calculated values
of [2.8,22.8] m−1. This decay should also produce an en-
hancement on the negative shoulder of ion acoustic mode
(ks2) at wavenumbers close toks2 ∈ [13.2 ,53.2] m−1, which
can be observed. Figure6b shows a predominant enhance-
ment over both shoulders of the ion acoustic line between
the wavenumbers 0 to 60 m−1, the enhancement of low
wavenumber might be an indication of a third decay process
of the second enhanced Langmuir wavekL2.
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Fig. 5. Incoherent scatter spectrum for simulations with parameters presented in Sect.3.1for (a) nb = 1×109 m−3, (b) nb = 7.5×108 m−3,
(c) nb = 5× 108 m−3 and(d) nb = 2.5× 108 m−3.

Table 3.Summary of theoretical wavenumbers of the cascaded waves for the case wherenb = 7.5× 108 andvb = 7.8× 105 m s−1.

Wavenumber (withk0 ∼ 7.6 m−1 (Diaz et al., 2010)) Value Frequency sign

|kL0| = ωpe/vb ∼ 19 m−1
+ω

|kmin
L0 | (Fig. 2) ∼ 18 m−1

+ω

|kmax
L0 | (Fig. 2) ∼ 38 m−1

+ω

|kmin
L1 | (kmin

L0 and Eq. (16) inDiaz et al.(2010)) ∼ 10.4 m−1
−ω

|kmax
L1 | (kmax

L0 and Eq. (16) inDiaz et al.(2010)) ∼ 31.4 m−1
−ω

|kmin
s1 | (kmin

L0 and Eq. (17) inDiaz et al.(2010)) ∼ 28.4 m−1
+ω

|kmax
s1 | (kmax

L0 and Eq. (17) inDiaz et al.(2010)) ∼ 68.4 m−1
+ω

|kmin
L2 | (kmin

L0 and Eq. (18) inDiaz et al.(2010)) ∼ 2.8 m−1
+ω

|kmax
L2 | (kmax

L0 and Eq. (18) inDiaz et al.(2010)) ∼ 22.8 m−1
+ω

|kmin
s2 | (kmin

L0 and Eq. (19) inDiaz et al.(2010)) ∼ 13.2 m−1
−ω

|kmax
s2 | (kmax

L0 and Eq. (19) inDiaz et al.(2010)) ∼ 53.2 m−1
−ω

3.2 Velocity of the beam (vb)

Three beam velocities are simulated leaving the remaining
parameters unchanged. Onlynb, Ns, and Nt are changed
from the original configuration to 7.5× 108m−3, 16 and

34 000 respectively. Table4 presents the electron beam ve-
locities under investigation.

The three speed values are selected to produce enhance-
ment of the Langmuir waves over wavenumbers estimated
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Fig. 6. Ion acoustic line of incoherent scatter spectrum for simulations with parameters presented in Sect.3.1 for (a) nb = 1× 109 m−3,
(b) nb = 7.5× 108 m−3, (c) nb = 5× 108 m−3 and(d) nb = 2.5× 108 m−3.

Table 4. Summary of electron beam bulk velocities used in the
simulations of Sect.3.2 with nb = 7.5× 108 m−3, ne = 2.5×

1011m−3 (nb/ne = 0.003), 1vb = 1.56× 105 m s−1, andE2
thr =

39 (V2 m−2).

vb E (eV) vb/1vb |J| E2
L − E2

thr 0b − 1
(m s−1) (µA m−2) (V2 m−2)

7.8× 105 6.4 5 94 µA m−2 62 −0.625
6.75× 105 4.8 4.3 81 µA m−2 35 −0.76
4.9× 105 2.5 3.1 59 µA m−2

−3 −0.91

from the growth rate equation (Diaz et al., 2010, Eq. 7), sim-
ilarly to those obtained in Sect.3.1(Fig. 2). The two highest
selected velocities should produce Langmuir decay, unlike
the lowest selected electron beam velocity. Figures7a and
3b present the ion density variation for two of the three sim-
ulated velocities, showing that for the two largest velocities
the decay is triggered. The lowest selected electron beam ve-

locity, as expected, does not produce a decay. However, the
relationE2

L once again appears to be inexact in quantifying
the amount of energy transferred from the electron beam to
the LWs. On the other hand, the theoretical threshold for the
magnitude squared electric field (E2

thr) once more shows its
accuracy. Figure7b shows that for the two largest beam ve-
locities,E2

L(t) cross the threshold att ∼ 40 µs andt ∼ 90 µs,
respectively, which agrees with the appearance times of the
structures in the ion density variation (Figs.7a and3b).

Figure 8a shows IS spectrum, for the beam velocity of
vb = 6.75×105 m s−1. The wave number (|k|) where the en-
hancement of the positive Langmuir mode starts to be evi-
dent (|k| ≈ 18 m−1) approximately agrees with the theoreti-
cal calucalations|k| ∼ ωpe/vb ≈ 22 m−1). However, because
the maximum growth rate is reached at larger wavenumbers,
the maximum enhancement is reached in the simulations at
|k| ≈ 29 m−1. The expected result for a slower electron beam
velocity is to shift the enhancement toward larger wavenum-
bers. Figure8b shows the IS spectrum for the case when
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Fig. 7. (a) Snapshots of the ion density variation for simulations
with parameters presented in Sect.3.2 for vb = 6.75× 105 m s−1.
The ion density variation associated withvb = 7.8× 105 m s−1 is
shown in Fig.3b. The beam with velocityvb = 4.9× 105 m s−1

does not triger the decay; therefore, the ion density variation has a
noise-like appearence being omitted for this reason.(b) Simulated
magnitude squared electric field (E2

t ) versus time for simulations
with parameters presented in Sect.3.2.

vb = 4.9× 105 m s−1, where it is possible to see that the en-
hancement starts around|k| ≈ 24 m−1 (∼ ωpe/vb ≈ 30 m−1,
from the model). In addition to the shift, the intensity of
the power is reduced (∼2 to 3 dB) along the whole range of
wavenumber where the Langmuir waves are excited.

Characteristics similar to those exhibited for the positive
Langmuir mode can be seen in the ion acoustic mode in
Fig. 9. The enhancement covers a large range of wavenum-
bers for both beam velocities with a lower intensity for the
lower beam velocity. Some preference can be noticed for the
positive ion acoustic mode (positive shoulder), although the
resolution is not good enough for more detailed analysis.

Figure8a together with the theoretical expressions of the
decay made byDiaz et al.(2010) (similar to those presented
in Table3) can be used to make a more quantitative analy-
sis of the spectrum of one of the cases simulated in Sect.3.2.
Figure8a shows the incoherent scatter spectrum for the beam
velocity vb = 6.75× 105 m s−1. As expected, the range of
the excited wavenumbers for the positive Langmuir mode is
narrower and shifted toward larger wavenumbers compared
with the case wherevb = 7.5×105 m s−1 (Fig. 5b). The pre-
diction for the lowest wavenumber for the excited positive

Fig. 8. Incoherent scatter spectrum for simulations with parameters
presented in Sect.3.2 for (a) vb = 6.75× 105 m s−1 and(b) vb =

4.9×105 m s−1. The spectrum associated withvb = 7.8×105 m s−1

is shown in Fig.5b.

Langmuir wave (kmin
L0 ∼ 22 m−1) approximately agrees with

the one obtained from the simulation (Fig.8a). The power
of the enhancement is 40 dB higher than that of the ther-
mal case (Diaz et al., 2011). The wavenumber range of the
first cascaded Langmuir wave (kL1 ∈ [14.4,33.4] m−1) also
approximately agrees with those obtained from the simula-
tion. Those wavenumbers are associated with the negative
Langmuir mode (−ωpe). The enhancement of the ion acous-
tic mode (ks1) appears at wavenumbers lower than those cal-
culated theoretically (ks1 ∈ [36.4,74.4] m−1), developing a
maximum at wavenumbers close to 30 m−1 (Fig. 9a). This
reveals a likely problem with the theoretical expressions. The
first cascaded Langmuir wave (kL1) does not seem to gener-
ate a secondary decay, or if it does, it is too weak to be de-
tected. If the secondary decay had occurred, an excitation of
the positive Langmuir mode would be visible at wavenum-
bers close tokL2 (∼6.5 m−1), which is not present. Figure9a
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Fig. 9. Ion acoustic line of the incoherent scatter spectrum for
simulations with parameters presented in Sect.3.2 for (a) vb =

6.75× 105 m s−1 and(b) vb = 4.9× 105 m s−1. The spectrum as-
sociated withvb = 7.8× 105 m s−1 is shown in Fig.6b.

shows a close up of the ion acoustic line and presents a ten-
dency to enhance the positive ion acoustic mode (positive
shoulder), as expected. The enhancement of the ion acous-
tic line increased the power level over 20 to 30 dB above the
thermal level.

3.3 Background electron density (ne)

The velocities simulated previously in Sects.3.1 and 3.2
put most of the distortions in the wavenumber range be-
tween 8 m−1 and 60 m−1, a wavenumber range where most
of the IS radars operates. However, the strongest enhance-
ments of the incoherent scatter spectra (the most likely to
be detected) appeared far below|k| = 54 m−1 which is the
wavenumber of Sondrestrom radar. For the beam presented
in Table 1 (first case) andne = 2.5× 1011 m−3, the simu-
lation showed a decay of the Langmuir waves. This case
would place the approximated wavenumber of the enhanced

Table 5. Summary of parameters changed from those presented in
Table1.

Parameter Symbol Value
Step inx 1x 0.0022 m
Step iny 1y 0.0022 m
Time Step 1t 2.2× 10−9 s
Number of time steps to
get the sampling period Ns 20
Number total of steps Nt 32000

Langmuir waves atk ∼ ωpe/vb = 19 m−1. If we want the
wavenumber to be higher, in order to detect the enhance-
ments with ISRs of higher frequency, the beam velocity
should be decreased. For instance, if the beam velocity is de-
creased tovb = 3.9×105 m s−1, the approximated wavenum-
ber of the enhanced Langmuir waves would bek ∼ ωpe/vb =

38 m−1. This low velocity would not be able to trigger the de-
cay withnb = 7.5×108 m−3 andne = 2.5×1011 m−3 (E2

L −

E2
thr = −14< 0). However, ifne is increased to 1×1012 m−3

and used with the original beam (Table1), the LBI is en-
hanced (0b−1 = −0.69), the decay is triggered (E2

L −E2
thr =

181V2m−2 > 0) and the approximate wavenumber of the en-
hanced Langmuir waves would be placed atk ∼ ωpe/vb =

38 m−1 as desired. Therefore, this section will explore if
increasing the background density (ne = 1012 m−3), which
determines the plasma frequency, will allow higher veloc-
ities (Table1) to destabilize ion acoustic waves at larger
wavenumbers. The physical parameters, changed from those
in Table 1, are nb = 2.5× 109m−3, ne = 1012m−3, vb =

7.8×105 m s−1, |J| = 312µAm−2, E2
L −E2

thr = 181V2m−2

and0b−1 = −0.7. The new background density changes the
Debye length; therefore, the simulation parameters must be
changed. Those parameters are summarized in Table5.

Figure 10a shows the ion density variations for a simu-
lation with a larger background density. This figure shows
structures, which demonstrate that a beam triggers a bump
on tail instability of Langmuir waves and a decay of those
into ion acoustic waves. It is possible to see that struc-
tures start to appear att ≈ 0.014 ms, which agrees with the
time when theE2

L(t) curve crosses the theoretical threshold
E2

thr = 154 V2 m−2 (Fig. 10b). Even with the spectral reso-
lution of this simulation (1t was reduced by half, making
it more difficult to reach larger times), the spectral analy-
sis (Fig.11) shows, as expected, that the enhancement over
the ion acoustic and positive Langmuir waves were shifted to
higher wavenumbers with respect to the previous simulations
due to the larger background density used.

4 Density variation for a low velocity beam

This section will explore the precondition0b < 1 (Eq. 1).
In Sect.3.2 was shown that lower beam velocities places
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Fig. 10. (a)Snapshots of the ion density variation for simulations
with parameters presented in Sect.3.3 (ne = 1012m−3). (b) Mag-
nitude squared electric fieldE2

t versus time for simulation with pa-
rameters presented in Sect.3.3.

enhancement of the Langmuir waves at higher wavenum-
bers, which eventually might produce enhancement of the
ion acoustic waves also at higher wavenumbers (or radar fre-
quencies). However, Sect.3.2 also showed that for a den-
sity of the electron beam equal to 0.3 % of the background
density, a beam velocity too low (. 5× 105 m s−1) cannot
trigger a decay. In this sectionvb and1vb are changed to
3.9×105 m s−1 and 7.8×104 m s−1, respectively, leaving the
ratiovb/1vb = 5 equal to that used in Sect.3.1. If the density
of the beam is selected to benb = 7.5× 108 m−3, this beam
would be unable to trigger the decay (E2

L −E2
thr = −14< 0).

Increasingnb to 1.16× 109 m−3, the decay should be pro-
duced (E2

L − E2
thr = 0.12> 0). Increasingnb increases the

value ofE2
L −E2

thr ensuring the decay (however it has a limit)
when the precondition0b − 1 < 0 is violated. This happens
whennb overcomes the value ofn∗

b ≈ 2×109 m−3 (0.8 % of
ne). For values over this beam densityn∗

b, no decay should be
produced; therefore, to verify this prediction made by theory,
two values of the beam density much larger than 2×109 m−3

are selected. Besides the two used beam densities (Table6),

Fig. 11. (a) Incoherent scatter spectrum and(b) ion acoustic line
of the incoherent scatter spectrum for simulations with parameters
presented in Sect.3.3.

vb, 1vb, Ns andNt are the only changed parameters, changed
to 3.9× 105 m s−1, 7.8× 104 m s−1, 16 and 22 000, respec-
tively, for these simulations with respect to the original val-
ues. Table6 also shows the theoreticalE2

L − E2
thr calculated

with the new beam parameters, which reach extremely high
values compared to the threshold needed to trigger the decay
(> 0), but with values of0b−1 larger than zero. As expected,
none of the beam densities triggers a decay. For bothnb the
electron density variations are perturbed, however no pertur-
bations are perceived on the ion variation density for both
cases. Figure12a shows that the BMI is being enhanced. Fig-
ure12b shows no enhancement on the ion acoustic line. The
curveE2

L(t) converges to a value∼ 3 V2 m−2 for both den-
sities, below the threshold to trigger the decay and far below
the values theoretically obtained, confirming that Eq. (2) is
only valid if 0b < 1 (see video 2 in supplementary material).

The current densities of the two latest simulations are
∼781 µA m−2 and∼312 µA m−2, respectively, which do not
trigger the decay. On the other hand, current densities as low
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Fig. 12. (a)Incoherent scatter spectrum and(b) close up to the ion
acoustic line of the IS spectrum for simulations withnb = 1.25×

1010 (Sect.4).

as ∼81 µA m−2 (Sect.3.2) and ∼31 µA m−2 (lowest nb in
Sect.3.1) achieved the decay. Consequently, it is possible to
conclude that the current density is not a good indicator to
evaluate the decay capacity of a beam.

5 Discussion

The simulations performed in previous sections show that,
for some beams, it is possible to simultaneously observe en-
hancement of the plasma lines, the ion acoustic line, and the
Langmuir harmonic line (e.g. Fig.5a). Although these re-
sults agree with simultaneous enhancements of plasma line
and ion acoustic line reported previously (Strømme et al.,
2005; Akbari et al., 2012; Isham et al., 2012), those events
are not common. On the other hand, no Langmuir harmonic
has been reported to be produced naturally and simultane-
ously with enhancements of either plasma or ion acoustic
lines. Simulations also show that NEIALs could be observed

Table 6.Summary of electron beam density used in the simulations.
Con vb = 3.9× 105 m s−1 (∼1.6 eV) y 1vb = 7.8× 104 m s−1

(vb/1vb = 5), ne = 2.5× 1011m−3 andE2
thr = 39 V2 m−2.

nb nb/ne |J| E2
L − E2

thr 0b − 1
(m−3) (µA m−2) (V2 m−2)

5× 109 0.02 312 130 1.5
1.25× 1010 0.05 781 382 5.25

at different wavenumbers (or radar frequencies). However,
there have never been simultaneous NEIALs observations re-
ported at EISCAT UHF and VHF radars, which operate at
two different frequencies but observe a common scattering
volume.Cabrit et al.(1996) suggests that this is due to the
difference between the UHF and VHF radar beam widths.
Guio and Forme(2006) argue that the enhancement in the IS
spectra can vary by orders of magnitude between two differ-
ent frequencies. This difference of the enhancements can be
increased by the integration process of the radar (seconds)
rendering the enhancement at one of the frequencies unde-
tectable. The simulations performed at this work do not in-
clude the possible diminishing effect that the integration pro-
cess can have over the spectrum, which might be important
given the ephemeral nature of the phenomenon. Therefore,
the simulated enhancements may be larger than those observ-
able by radar.

Although the integration procedure (temporal and spatial)
might explain some of the lack of detections at the current
ISRs; it is also possible that the simulations of this work are
overestimating the electron beam, thus giving the impression
that the simultaneous detection is likely. The beam was se-
lected to be in agreement with some of the data collected
for beams at the top of the ionosphere. However, low energy
beams at lower altitudes have not yet been measured accu-
rately, which necessarily led us to an arbitrary selection of
the beam. Future work will attempt a closer connection of the
model to beam measurements at the top of the ionosphere.
Furthermore, measurements in the topside ionosphere might
be extrapolated to altitudes where NEIALs are being detected
by modeling the beam degradation due to collisions.

Section4 tested the validity of the precondition0b < 1.
If this condition is not satisfied, the decay cannot be trig-
gered and the decay conditionE2

L > E2
thr cannot be used to

predict the Langmuir decay process. On the other hand, in
Sect.3.3 it was shown that larger background densities (ne)
can help to place the enhancement at higher wavenumbers
(k ∼ ωpe/vb) and to compensate for the increament of the
vb/1vb ratio of slow-cold beams by thenb/ne ratio ensur-
ing that0b stays less than one. At high altitudes the beam is
expected to be fast and warm, placing the possible enhance-
ment at low wavenumbers. While the beam is penetrating the
atmosphere, it might become slower and colder. Although
this is speculative, the lack of data allows the assumption.
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On the other hand, the background density increases un-
til a maximum at 300 km of altitude. The combination of
these two effects could produce an increase of the enhanced
wavenumbers (k ∼ ωpe/vb) with decreasing altitude down
to 300 km. For altitudes lower than 300 km the background
density decreases with altitude and the beam velocity will
keep decreasing. Whichever parameter decreases faster will
determine the maximum wavenumber. For instance, if

√
ne

(ωpe ∝
√

ne) decreases faster thanvb, then the wavenumber
will be lower than that obtained at 300 km (maximumne). If
√

ne decreases at the same rate asvb, then the wavenumber
will be similar to that reached at∼300 km. Finally, if

√
ne

decreases slower thanvb, the wavenumber will be higher
than that reached at 300 km. Since the beam is becoming
slower and colder, it is also possible that the parameter0b
overcomes one, passing the energy to the beam mode in-
stead of the Langmuir mode, thus inhibiting the decay pro-
cess. Even so, some detailed investigation of the evolution
of the beam while it penetrates the atmosphere is necessary
to see if Eqs. (5) and (4) are satisfied. It seems likely that
the maximum enhanced wavenumber is obtained at the max-
imum background densityne.

Statistical studies of radar data (seeBuchert et al., 1999)
had shown that it is more likely to observe coherent echoes in
incoherent scatter radars of lower frequency or wavenumber
than for higher frequency radars. The simulations presented
in this work agree with this fact. Since Sondrestrom operates
at a high wavenumber, it has never observed a coherent echo
or NEIAL. The simulations and the previous discussion sug-
gest that such a high wavenumber cannot be reached because
the maximum values of ionosphericne are too low to fa-
vor instabilities at such high wavenumbers. For example, the
maximum background density ofne = 2.5× 1011 m−3 can-
not favor the decay at high altitudes and high wavenumbers
because low beam velocities would be needed. However, the
simulations show that low velocities cannot trigger the decay
of Langmuir waves because they are too weak (or warm not
satisfing Eq.5). Slower and colder beams might be reached
at lower altitudes where lowne is found making the beam
too strong (not satisfying Eq.4). It is difficult to estimate
the precise background density needed to actually place en-
hancements of the ion acoustic mode close tok ∼ 54m−1.
However, it is possible to argue that the actual value of the
background density needed to trigger detectable instabili-
ties at high wavenumbers may be larger than the value ob-
tained in this work, 1012 m−3. This is because, although the
plasma frequency would be higher for realisticme, allow-
ing larger beam velocities for large wavenumbers, the actual
mass of the ions (O+ instead H+) would increase the thresh-
old needed to trigger the decay (Eq.3). Hence, this situation
would require even larger beam velocities to produce a desta-
bilization of the ion acoustic waves.

Rietveld et al.(1996) showed that an increment of the so-
lar activity increases the number of events of ion acoustic
enhancement detected by a given incoherent scatter radar.

Apparently, there is a contradiction of this result, with the
beam model explanation of NEIALs, since more solar ac-
tivity might produce more energetic beams. These energetic
beams might generate enhancement of ion acoustic waves at
lower wavenumbers (or radar frequencies) making the detec-
tion of this enhancement unlikely with the same incoherent
scatter radar. However, an increment in solar activity would
also produce an increment of the background density (ne) so
that the enhancement of those more energetic beams can be
detected at the same (or even larger) wavenumbers as was
shown in Sect.3.3.

It is also important to notice the behavior exhibited for the
ion acoustic enhancement at high wavenumbers. For most
of the simulations performed in this work, the enhancement
stops quite suddenly at large wavenumbers, before decreas-
ing to an unnoticeable level. The enhancements exhibit a
Gaussian noise-like shape. This kind of enhancement might
lead to misestimation of the plasma parameters, especially
the electron density, because this kind of enhancement is not
strong enough to be noticed and it does not produce any sig-
nificant change in the shape of the ISR spectrum.

Guio and Forme(2006) got results where the upgoing
plasma line were more enhanced than the downgoing plasma
line for a downgoing beam for both weak and strong turbu-
lent regimes. However, it is not clear that the simulations per-
formed in this work agree with this result. Figure11a shows
an enhancement on the negative plasma line stronger than
the one produced on the positive plasma line fork < 36 m−1.
Nevertheless, this feature can be attributed to the fact that
after the decay the Langmuir waves traveling in opposition
to the beam are enhanced at lower wavenumbers than the
Langmuir waves traveling in the same direction that the beam
(Diaz et al., 2010, Eq. 16). This possible disagreement has to
be analyzed in more detail in future works.

The model summarized byDiaz et al.(2010) assumes a
weak Langmuir turbulent regime, although simulations can
be developing either weak or strong Langmuir regimes. The
main goal was to explore the accuracy of the weak Lang-
muir model for different plasma and beam parameters. Since
the beam has to be appropriate to trigger the decay (Beam
Mode Instability limitation) it was hypothesized that the
weak Langmuir turbulent model was accurate enough to rep-
resent the phenomenon. However, the inaccuracies in the
quantification of the transferred energy from the beam to the
Langmuir waves for both regimes (weak and strong) imposes
the need to review the validity of Eq. (2). Problems with the
accuracy of the enhanced wavenumbers (after decay) are also
revealed. However, these issues might be due to the lack of
resolution in the current simulations.

All of the expected characteristics of enhanced ISR spectra
are present in the simulations. This implies that the simulator
might be used in a systematic way to formulate an empirical-
simulated model of the ISR spectrum for different plasma
and beam parameters which could be used to estimate the pa-
rameters with actual distorted ISR data. However, if the code
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wants to be used to obtain a simulation-empirical model of
the distorted spectrum, the frequency (ω) resolution has to
be improved on each line of the radar making longer sim-
ulations. Although a simulation of millisecond can actually
take many hours of computation, the computing time can be
significantly reduced by reducing the need of outputting data
which can be done discarding the initial time and focusing in
the simulated time where the decay is taking place.

6 Conclusion

The EPPIC code was successfully used to study natural en-
hancement of ion acoustic waves via injection of an electron
beam into a background plasma. This work shows that the
signatures of the spectrum are sensitive to the parameters of
the beam and plasma, reinforcing the idea that the parameter
estimation is possible for beam-distorted ISR spectra. The
EPPIC code might help to build a semi-empirical spectrum-
plasma parameter model which might allow a parameter es-
timation process. Simulations also show that a multi-channel
(0,±ωpe, ±2ωpe) and multi-wavenumber (multiple radar fre-
quencies) IS radar system would help to constrain the estima-
tion procedure and discriminate the driver of the ion acoustic
enhancement. Other explanations of NEIALs would not pro-
duce some of the signature of the beam-plasma process. For
instance, the first Langmuir harmonic would not be present
if a beam is not the cause of the observed NEIAL. There-
fore, design of experiments that look for Langmuir harmon-
ics arise as a future task to do.

Simulations confirm that the main parameter driving the
Langmuir enhancement-decay process is the ratiovb/1vb.
While the velocity of the beam,vb, is relevant to set up the
wavenumber enhanced of the plasma and ion acoustic lines,
thevb/1vb ratio is relevant to select which wave mode is en-
hanced by the beam (either the Langmuir or the beam mode).

The simulations suggest that this strong dependence of
the decay on the ratio of beam velocity to beam velocity
spread and background density limits the maximum value
of wavenumber (near the F-region peak). This might explain
why radars of high frequency, such as Sondrestrom, are un-
able to detect NEIALs.

Simulations also show that the first Langmuir harmonic is
evident for negative frequencies when the decay is triggered,
which might be used by ISR of higher wavenumbers as indi-
cation of a Langmuir decay process at lower wavenumbers
in case those radars could detect the first up-going Lang-
muir harmonic (−2ωpe). Although NEIAL model, in general,
works well, these simulations found some issues with the
model. The main problems are as follows: Decay prediction
of waves close to the threshold due to the inaccuracies in the
value of the energy transferred from the beam to the Lang-
muir waves; and the wavenumber placement of the ion acous-
tic waves that will be excited, especially those coming from a
secondary decay. Both issues might be related to the validity

of the equations used for the different regimes. For instance,
Eq. (2) uses quasilinear approach (Vedenov, 1963; Boyd and
Sanderson, 2003) assuming WLT regime to calculate the en-
ergy transferred from the beam to the Langmuir waves. How-
ever, this equation shows some inaccuracies not only for the
SLT regime (as expected) but also for the WLT regime tested
with the simulation (e.g. weakest beam in Sect.3.1).

Supplementary material related to this article is
available online at:http://www.ann-geophys.net/30/1169/
2012/angeo-30-1169-2012-supplement.zip.
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