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Abstract. Aerosols have great impacts on atmospheric en-
vironment, human health, and earth’s climate. Therefore,
information on their spatial and temporal distribution is of
paramount importance. Despite numerous studies have ex-
amined the variation and trends of BC and AOD over In-
dia, only very few have focused on their spatial distribu-
tion or even correlating the observations with model sim-
ulations. In the present study, a three-dimensional aerosol
transport-radiation model coupled with a general circulation
model. SPRINTARS, simulated atmospheric aerosol dis-
tributions including BC and aerosol optical properties, i.e.,
aerosol optical thickness (AOT),̊Angstr̈om Exponent (AE),
and single scattering albedo (SSA). The simulated results are
compared with both BC measurements by aethalometer and
aerosol optical properties measured by ground-based skyra-
diometer and by satellite sensor, MODIS/Terra over Hyder-
abad, which is a tropical urban area of India, for the year
2008. The simulated AOT and AE in Hyderabad are found
to be comparable to ground-based measured ones. The simu-
lated SSA tends to be higher than the ground-based measure-
ments. Both these comparisons of aerosol optical properties
between the simulations with different emission inventories
and the measurements indicate that, firstly the model uncer-
tainties derived from aerosol emission inventory cannot ex-
plain the gaps between the simulations and the measurements
and secondly the vertical transport of BC and the treatment
of BC-containing particles can be the main issue in the global
model to solve the gap.
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1 Introduction

Atmospheric aerosols have great impacts on the environ-
ment, human health, and earth’s climate (Forster et al., 2007).
In Asia, especially, atmospheric black carbon (BC) emissions
are modulated by anthropogenic activities related to fossil-
fuel combustion, biomass burning and industrial activities
(Ramanathan et al., 2008). Also South Asia, apart from other
industrial regions in the world such as North America and
Europe, is located in subtropical or tropical regions where
dry and wet seasons arrive periodically. In the dry season,
biomass burning and other combustion processes often oc-
cur and emit a large amount of BC and organic carbon (OC)
in the atmosphere (Bond et al., 2004). Biomass burning has
been reported to be the main cause of the dense brown clouds
that plague South Asia each winter and affects the health of
people inhaling the pollutants, causing bronchitis and asthma
(Gustafson et al., 2009). BC, which is the optically absorb-
ing part of carbonaceous aerosols, has significant optical and
radiative properties, as compared to the other constituents,
i.e., sulfate and nitrate. The BC emission is the second
strongest impact on global warming, next to carbon dioxide
emission according to Ramanathan and Carmichael (2008);
it can heat the atmosphere and then can cause changes in the
atmospheric circulation (Tripathi et al., 2007). However, the
radiative effects of BC are one of the largest uncertainties
in climate modeling (Andreae et al., 2005; Ramanathan et
al., 2007). In order to improve the model simulations, mea-
surements of both BC and aerosol optical information are re-
quired. Several studies on continuous and simultaneous mea-
surements of both BC and aerosol optical information over
the South-Asian region are reported in literature (Ganguly et
al., 2006; Sreekanth et al., 2007; Safai et al., 2007; Gadhavi
and Jayaraman, 2010; Singh et al., 2010). Validation stud-
ies on aerosol model simulations with these measurements
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has been less attempted in this region except for few studies
(Adhikari et al., 2007), which validated their simulation re-
sults with the observed ones over South Asia during almost
one year.

Evaluation of simulated aerosol optical properties in
global models with measurements is very important for
proper estimation of the aerosol radiative forcing. In the esti-
mation of the aerosol radiative focing, the AOT and the SSA
are two important parameters. In the present study, observed
data on these parameters in Hyderabad, which is located in
a tropical urban area of India (Badarinath et al., 2007a, b),
are used for model evaluation by comparing them with simu-
lated aerosol optical properties using a global aerosol model,
SPRINTARS (Takemura et al., 2000, 2002, 2005, 2009).

2 Methodology

2.1 Data collection

The study area of Hyderabad, India is located between
17◦10′ and 17◦50′ N and 78◦10′ and 78◦50′ E. Hyderabad is
the fifth largest city of India, highly urbanized with popula-
tion of 5 751 780 inhabitants (census 2001). The city is influ-
enced not only by vehicular pollutants, but also by industrial
as well as biomass-burning emissions. The climate of the
region is semi-arid with a total rainfall of∼700 mm occur-
ring mostly during the monsoon season in the June–October
period. The climatology of the area experiences four dom-
inant seasons each year, winter (December–February), pre-
monsoon (March–May), monsoon (June–September), and
post-monsoon (October–November). The measurements re-
ported in this work were carried out under clear-sky con-
ditions in the premises of the National Remote Sensing
Centre (NRSC) campus located at Balanagar (17◦28′ N and
78◦26′ E) well within the urban center of Hyderabad.

BC aerosols measurements were carried out using seven
channels aethalometer (model AE31, Magee Scientific,
USA) at NRSC. The aethalometer uses quartz fiber filter
tape through which air is passed for a fixed amount of time
(typically 5 min) with a selected constant flow rate (2.9 l per
minute). At the end of each measurement cycle, changes in
the filter transmission at seven wavelengths (370 nm, 470 nm,
520 nm, 590 nm, 660 nm, 880 nm and 950 nm) are recorded.
The 880 nm channel is considered as standard channel for
BC measurement (Wiengartner et al., 2003). BC mass con-
centrations are estimated by the change in transmittance of
this quartz fiber tape over which the deposition of the par-
ticles takes place. The beam attenuation (ATN) provides
a measure of the absorbing mass. The mass concentration
of BC is obtained from an incremental ATN between two
measurements using the effective specific mass absorption
cross-section value of 16.6 m2 g−1 for 880 nm channel for
the BC deposited on the filter area of the sample spot and the
flow rate. The uncertainty in BC measurement will be in the

range 0.040–0.060 µg m−3. The limitations and uncertainties
of aethalometer in BC measurements and corrections needed
are well documented in the recent literature (Hansen et al.,
1984; Arnott et al., 2005; Schmid et al., 2006).

Aerosol observations were carried out using a PREDE
Sun/sky radiometer (POM-01L, PREDE Incorporated,
Japan) during January–December 2008. This instrument
is widely used in the SKYNET aerosol radiation network
in the world (http://atmos.cr.chiba-u.ac.jp/aerosol/skynet) for
Sun/sky observation. This instrument makes measurements
of both direct and diffuse sky radiances at pre-defined scatter-
ing angles at regular intervals. The Sun/sky radiometer was
operated on clear-sky days at 10-min interval. The Sun/sky
radiance data were analysed with the radiative transfer inver-
sion code SkyRad Pack version 4.2 (Nakajima et al., 1996;
http://www.ccsr.u-tokyo.ac.jp/∼clastr/) to retrieve AOT, AE,
SSA and volume size distribution. AOT is calculated on
the basis of the Beer-Lambert-Bouger law with correction
for Rayleigh scattering, the change of Sun-Earth distance,
and ozone optical depth. The sky radiometer was operated
in disc scan mode to estimate solid view angles at different
wavelengths as part of a calibration procedure recommended
by the manufacturer. Detailed calibration and data reduc-
tion procedures for this instrument were described elsewhere
(Nakajima et al., 1996; Pandithurai et al., 2007).

2.2 Model description

In this study, we use a global three-dimensional aerosol
transport-radiation model, the Spectral Radiation-Transport
Model for Aerosol Species (SPRINTARS), which is de-
scribed elsewhere (Takemura et al., 2000, 2002, 2005, 2009).
The SPRINTARS has been implemented in an atmospheric
general circulation model (AGCM) developed by the Cen-
ter for Climate System Research of the University of Tokyo,
National Institute for Environmental Studies, and the Fron-
tier Research Center for Global Change (K-1 Model Devel-
opers, 2004; hereafter referred to as MIROC AGCM). The
version of SPRINTARS is 3.84, which is the latest version
since August 2010. In this study, we use T42 horizontal res-
olution (approximately 2.8◦ by 2.8◦ in latitude and longitude)
and 20 layers of the vertical resolution. The time step is set
to 20 min. The model calculates mass mixing ratios of the
main tropospheric aerosols, i.e., carbonaceous aerosol (BC
and OC), sulfate, soil dust, sea salt, and the precursor gases
of sulfate, i.e., sulfur dioxide (SO2) and dimethylsulfide. The
aerosol transport processes include emission, advection, dif-
fusion, sulfur chemistry, wet deposition, and gravitational
settling. In all experiments, the monthly averaged global dis-
tributions for sea-surface temperature (SST) and sea ice were
provided by Hadley Centre, Met Office, UK. For proper sim-
ulations of the aerosol distribution, all experiments were con-
ducted with NCAR/NCEP six-hourly nudged meteorological
fields on winds, water vapor, and temperature.
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Fig. 1. Mean annual BC emissions for 2008 as used in the AeroCom
standard experiment.

The radiation transfer with a k-distribution scheme,
MSTRN-8, in the MIROC AGCM can handle scattering,
absorption, and emission by aerosol and cloud particles, as
well as absorption by gaseous constituents (Nakajima et al.,
2000). The particles are treated as external mixtures except
for carbonaceous aerosols. The secondary OC and 50 % BC
mass from fossil fuel source are treated as externally mixed
particles, but other carbonaceous particles are treated as in-
ternal mixtures of BC and primary OC. For soil dust and
sea salt aerosols, mixing ratios are calculated for various size
bins from 0.1 to 10 µm (Takemura et al., 2009). On the other
hand, for carbonaceous and sulfate aerosols, the dry mode
radii are set to 0.1 and 0.0695 µm, respectively (Takemura
et al., 2002). Aerosol densities are set to the same values as
Takemura et al. (2002). The scattering properties by Mie the-
ory used in this study are described elsewhere (Schutgens et
al., 2010).

Emission inventories of aerosols (primary OC and BC)
and its precursors (SO2) used in the model simulations
are widely used in the AeroCom (AC) project. The
anthropogenic primary organic aerosol and BC emis-
sions are based on Bond et al. (2004). The spa-
tial distribution of anthropogenic BC emission invento-
ries in the AC emission inventory is shown in Fig. 1.
The anthropogenic SO2 emissions are based on EDGAR
32FT2000 database (http://www.pbl.nl/en/themasites/edgar/
emissiondata/edgar32ft2000/index.html). Biomass burn-
ing emissions in each month is based on the fire maps derived
from MODIS. The oxidant concentrations such as ozone
and hydroxyl radical, which are not predicted in SPRINT-
ARS but are needed to calculate sulfate chemistry, are given
by a global chemical transport model, CHASER by Sudo

Fig. 2. BC mass concentration in Hyderabad for the year 2008.
There are two simulations: SPRINTARS with the AeroCom emis-
sions (solid line with white circles) and with the modified emissions
by scaling a factor of 20 around Hyderabad (solid line with black
circle) and skyradiometer measurements (dashed line with crosses).

Fig. 3. As in Fig. 1, but for AOT except for MODIS/Terra observa-
tions (dashed line with black triangles).

et al. (2002), which also was implemented in the MIROC
AGCM. In addition to the standard AC emission inventory,
we have added scaling factor of 20 to the AC inventory in the
grid including the Hyderabad measurement site and gener-
ated modified AC emission inventory. This has been carried
out to account for the higher BC concentrations over the mea-
surement site compared to the standard AC emission inven-
tory. Model simulations are carried out with the standard AC
emission inventory and the modified AC emission inventory.
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Fig. 4. Model simulation of mean monthly AOTs for the year 2008 with ranging atmospheric composition, i.e., dust with orange, sulfate
with yellow, carbonaceous with red and sea salt with blue. The measurement values are shown in dashed line.

3 Results and discussion

BC mass concentrations near the surface in Hyderabad are
compared with model simulations and are shown in Fig. 2.
BC is the strongest light-absorbing aerosol and it can have
a great impact on the SSA and then radiative fluxes. The
observed BC in Hyderabad is significantly higher compared
to other areas around India and comparable to New Delhi
(Beegum et al., 2009). The simulated BC with the standard
AC emission inventory is significantly underestimated com-
pared to the ground-based measured BC by a factor of 20. We
modified the standard AC emission of BC by scaling a factor
of 20 only around Hyderabad to bring parity between simu-
lated BC and ground measured BC. The model simulated BC
with the modified AC emission is closer to the observed BC
in monthly averages within the measured variations except
for January and February. During these two winter months,
lower values of BC are observed compared to simulations
using the modified BC emission. Previous studies over Hy-
derabad (Latha and Badarinath, 2005) as well as over India
(Sreekanth et al., 2007; Rastogi and Sarin, 2009; Singh et
al., 2010) suggest that the variation of measured BC is min-
imum during the wet season and maximum during winter
even though the magnitude of the BC concentration varies
in the year due to anthropogenic factors. These factors may
cause some difficulties both in making a corrected monthly
variation in BC emission inventory for each year and thus in
simulating BC aerosol distributions.

The ground-based measured AOTs tend to be higher than
MODIS/Terra-retrieved AOTs with monthly-averages rang-
ing from 0.2 to 0.8 as shown in Fig. 3. These differences
are sometimes found all over the world because MODIS-
retrieved AOTs over land include large uncertainties (Prasad
and Singh, 2007). Although the magnitudes of the AOT
are different from each result, the seasonal variations, which
represent lower AOTs during winter and higher AOTs dur-
ing monsoon, are generally found in both the simulations
and the measurements. These variations in AOT are associ-
ated with long-range transport of aerosols from dust storms,
biomass burning besides local sources (Kaskaoutis et al.,
2009; Badarinath et al., 2007a, 2010) The model simulated
AOT values with the standard AC emission are in between
ground-based retrieved AOT and satellite-retrieved AOT, al-
though the simulated ones are underestimated only in Octo-
ber and November. On the other hand, the simulated AOT
values by using the modified BC emission inventory are
higher than those with the standard AC emission as we can
expect. However, they tend to be higher than the ground-
based observed AOT values especially in January and Febru-
ary as observed in BC variations. In winter, the differences
in AOT between the simulations and the measurements are
associated with those in BC mass concentration at the sur-
face as shown in Fig. 2. During the monsoon season, the
simulated AOT values with the modified AC emission are
higher than the measured ones with the difference of more
than 0.1, even though the simulated BC mass concentra-
tions at the surface are within the measured variations. The
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Fig. 5. Mean annual AOT distribution around India for the year 2008.(a) Model simulation with AC emission inventory.(b) Model
simulation with modified AC emission inventory.(c) MODIS/Terra.

annual-mean AOT is calculated to be 0.59 in the simulation
with the AC emission, 1.18 in the simulation with the mod-
ified emission, 0.85 in the ground-based observation, and
0.37 in the MODIS/Terra retrieval. To investigate aerosol
composition, we show simulated AOTs in terms of chem-
ical species (Fig. 4). Figure 4 indicates that an increase
in AOT around Hyderabad during April to August corre-
sponds to an increase in dust component. The summertime
high AOTs correspond to dust composition in our simulation
with a maximum of 0.81. This increased dust is due to long
range transport of aerosols from dust storm events located far
away at∼2000 km over region covering Iran and Pakistan as
shown in satellite observation of Fig. 5 and previous studies
(e.g., Badarinath et al., 2007a). In annual-averages, the AOT
around western India is affected by such dust storms from the
Middle East Asia. These higher AOTs over the Middle East
Asia are also obtained both by model and MODIS/Terra, de-
spite the large spatial difference. Comparison in AOT due
to carbonaceous aerosol between two different simulations
shows that the annual average AOTs of the carbonaceous
aerosol range from 0.12 (AC) to 0.71 (modified AC). The

difference in monthly-average AOT values between two sim-
ulations is calculated to be 0.30 for the wet season corre-
sponding to June and 0.94 for February.

Model-predicted AEs in both the emission inventories are
very similar to observed AE in term of the magnitudes and
seasonality (Fig. 6). The differences in AE between simu-
lations with two emission inventories exist during the wet
season, because of an increase in OC of high scattering ef-
ficiency as associated with an increase in the BC emission.
Model-simulated SSAs in the standard AC emission tend to
be higher than the simulated ones in the modified AC emis-
sion and observed SSAs, whereas the seasonality of the sim-
ulated SSAs in the AC emission is comparable to the ob-
served ones except for January, February, and March. The
skyradiometer-retrieved SSA may have errors due to the re-
trieval algorithm as suggested in literature (Che et al., 2008).
The magnitudes of the simulated SSA with the modified AC
emission are better than those with the standard AC emis-
sion, whereas the seasonality is not good especially during
summer. This is because the increase in SSA during summer
is primarily caused by an increase in scattering components
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Fig. 6. Monthly variations in AE from two model simulations with
the AC emissions (solid line with white circles), modified AC emis-
sions (solid line with black circles) and skyradiometer observations
(dashed line with crosses) for the year 2008.

Fig. 7. As in Fig. 6, but for SSA.

associated with aerosol’s hygroscopic growth, which can
give larger AOT as indicated in Fig. 4. The differences in
SSA between model simulations and observations may be
caused by treatment of the mixing process between BC and
other scattering components, which can have a large impact
on SSA values in the range of±0.05 (Shiraiwa et al., 2008).

Finally, the correlation between AE-SSA and BC-SSA are
investigated to know how columnar SSA is determined by
BC or dust components and how BC aerosols at the surface
do affect the columnar SSA values. Figures 8 and 9 show
scatter plots of AE-SSA and BC-SSA with the measurements
and the simulations using two emission inventories over Hy-
derbad in 2008 except for January to March due to unreli-

Fig. 8. Scatter plot of AE vs SSA over Hyderabad in 2008. Black
circles indicate simulations both with the AC and the modified emis-
sions and crosses indicate observations. The lines are best fits to the
data points (thick line: black circles, dashed line: crosses).

Fig. 9. As in Fig. 8, but for a scatter plot of BC vs. SSA.

able values of measured SSA in these month. In Fig. 8,
the positive trend indicates that columnar absorption is de-
termined primarily by large-size absorbing particles, that is
dust, whereas the negative trend shows that columnar absorp-
tion is determined primarily by small-size absorbing parti-
cles, that is BC. The correlation between AE and SSA in the
measurements is positive with a regression slope of+0.10
and a correlation coefficient (R2) of 0.73, whereas that in
the simulations is slightly negative with a regression slope
of −0.01 and aR2 of 0.01. The reverse trend of AE-SSA
between the simulations and the measurements indicates dif-
ferences in contributions of columnar BC in the small parti-
cle to columnar absorption over Hyderabad. Other finding is
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that model results do not have a correlation between AE and
SSA, which is so different from the measurement results. In
Fig. 9, the positive correlation between BC and SSA sug-
gests that increases in BC at the surface do not correspond to
decreases in SSA in the column burden, that means that sur-
face BC concentration is not the major factor to determine
the columnar variations in absorption. The negative correla-
tion suggests that changes in BC at the surface could strongly
modulate the columnar absorption. The correlation between
BC and SSA in the measurements is positive with a regres-
sion slope of+0.00 and aR2 of 0.58, whereas that in the sim-
ulations is slightly negative with a regression slope of−0.00
and aR2 of 0.59. The reverse trend of BC-SSA between
the simulations and the measurements indicates differences
in response of BC at the surface to column absorption over
Hyderabad.

These results lead us to the conclusion that in the simu-
lations the increase in BC at the surface causes the increase
in columnar absorption and the decrease in columnar SSA
values over Hyderabad, whereas in the measurements the in-
crease in BC at the surface does not cause the increase in
columnar absorption and the columnar absorption can be de-
termined not by small-size absorbing particle, BC, but by
large-size absorbing particle, dust. This gap can be partly
because vertical distributions of the simulated BC are not
matched with those of the measured BC, that is, the simu-
lated BC at the surface is underestimated due to large verti-
cal convection in the boundary layer. Other possible reason
is that the assumed mixing state in the BC and other parti-
cles does not represent that in the real atmosphere, that is
the model BC particles may have stronger absorptions. In
addition, this is possibly because the global model with the
coarse size of the grid (∼300 km in this study) cannot exactly
compare with point observations on the surface. These prob-
lems are expected to exist over India in other global models,
because detailed validations over India were not performed
mainly because the continuous measurements are limited
for validating performances of global models, as suggested
by Koch et al. (2009), who compared BC simulations from
about 20 global models. Furthermore, the aerosol burdens in-
cluding BC are very high and complex over India compared
to other areas (Ramanathan et al., 2008) and thus making it
difficult to compare simulation results with measurements.

In order to estimate an impact of the differences in AOT
and SSA between the simulations and the measurements on
the aerosol direct radiative forcing (ADRF), we estimated the
ADRF with an offline radiative transfer model, Rstar, which
was developed by Nakajima and Tanaka (1986, 1988) and is
very similar to the radiation code MSTRN used in this study.
Using the averaged values of AOT and SSA from Figs. 3
and 7, the differences in ADRF between the simulations and
the measurements at the surface under the clear sky is es-
timated to be about+12 W m−2 (July–August) and about
+15 W m−2 (October–December), respectively. In conclu-
sion, the differences in AOT and SSA between the simula-

tions and the measurements can strongly affect the ADRF
and the impact of the ADRF is not so small. Therefore, we
have to reduce the differences between the simulations and
the measurements in order to estimate the proper model cal-
culation of the ADRF.

4 Conclusions

In this study, we compared global model simulation of
aerosol optical thickness (AOT),̊Angstr̈om Exponent (AE),
and single scattering albedo (SSA) with ground measure-
ments over Hyderabad, a tropical urban site in India. The
results of study suggested that:

1. AOT and AE in the model simulations are comparable
to ground-based measurements.

2. SSA in the simulations tends to be higher than that in
the ground based measurements and has been attributed
to a treatment of BC-containing particles in the global
model.

One of the largest uncertainties in the simulations is emission
inventory, which was changed with different magnitudes in
this study to match simulated BC mass concentrations at the
surface to measured ones. A comparison between the simula-
tions with the two emission inventories showed that the sim-
ulated AOT and SSA in the column were sometimes different
from the measured ones. This could be due to vertical trans-
port pattern, assumed optical properties of BC-containing
particles, and spatial resolution in model as well as possible
measurement errors for SSA values.

Acknowledgements.The authors express their sincere thanks to
Dr. Diehl and AeroCom project for providing emission data sets.
The Collection 5 MODIS aerosol products from NASA MODIS
team, the reanalysis data from NCEP/OAR/ESRL PSD, Boul-
der, Colorado, USA, and the HadISST data from Hadley Cen-
tre, Met Office, UK are gratefully acknowledged. The model
simulations were performed using the National Institute for En-
vironmental Studies, Japan, supercomputer system (NEC SX-
8R/128M16). Part of the authors was supported by projects
(RECCA, JAXA/EarthCARE, MEXT/VL for Climate System
Diagnostics, MOE/Global Environment Research Fund B-083,
NIES/GOSAT, and JST/CREST).

Topical Editor P. M. Ruti thanks two anonymous referees for
their help in evaluating this paper.

References

Adhikary, B., Carmichael, G. R., Tang, Y. H., Leung, L. R., Qian,
Y., Schauer, J. J., Stone, E. A., Ramanathan, V., and Ramana,
M. V.: Characterization of the seasonal cycle of south Asian
aerosols: A regional-scale modeling analysis, J. Geophys. Res.,
112, D22S22,doi:10.1029/2006JD008143, 2007.

Andreae, M. O., Jones, C. J., and Cox, P. M.: Strong present-day
aerosol cooling implies a hot future, Nature, 435, 1187–1190,
2005.

www.ann-geophys.net/29/955/2011/ Ann. Geophys., 29, 955–963, 2011

http://dx.doi.org/10.1029/2006JD008143


962 D. Goto et al.: Simulation of aerosol optical properties over a tropical urban site

Arnott, W. P., Hamasha, K., Moosmuller, H., Sheridan, P. J., and
Orgen, J. A.: Towards aerosol light-absorption measurements
with a 7-wavelength aethalometer evaluation with a photoacoutis
instrument and 3-wavelength Nephelometer, Aerosol Sci. Tech-
nol., 39, 17–25, 2005.

Badarinath, K. V. S., Kharol, S. K., Kaskaoutis, D. G., and Kam-
bezidis, H. D.: Case study of a dust storm over Hyderabad area,
India: its impact on solar radiation using satellite data and ground
measurements, Sci. Total Environ., 384(1–3), 316–332, 2007a.

Badarinath, K. V. S., Kharol, S. K., Kaskaoutis, D. G., and Kam-
bezidis, H. D.: Influence of atmospheric aerosols on solar spec-
tral irradiance in an urban area, J. Atmos. Solar-Terr. Phys., 69,
589–599, 2007b.

Badarinath, K. V. S., Kharol, S. K., Kaskaoutis, D. G., Sharma, A.
R., Ramaswamy, V., and Kambezidis, H. D.: Long-range trans-
port of dust aerosols over the Arabian Sea and Indian region – A
case study using satellite data and ground-based measurements,
Global Planet. Change, 72, 164–181, 2010.

Beegum, S. N., Moorthy, K. K., Babu, S. S., Satheesh, S. K., Vinoj,
V., Badarinath, K. V. S., Safai, P. D., Devara, P. C. S., Singh, S.,
Vinod, U. C., and Pant, D. P.: Spatial distribution of aerosol black
carbon over India during pre-monsoon season, Atmos. Environ.,
43, 1071–1078, 2009.

Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H.,
and Klimont, Z.: A technology-based global inventory of black
and organic carbon emissions from combstion, J. Geophys. Res.,
109, D14203,doi:10.1029/2003JD003697, 2004.

Che, H., Shi, G., Uchiyama, A., Yamazaki, A., Chen, H., Goloub,
P., and Zhang, X.: Intercomparison between aerosol optical
properties by a PREDE skyradiometer and CIMEL sunphotome-
ter over Beijing, China, Atmos. Chem. Phys., 8, 3199–3214,
doi:10.5194/acp-8-3199-2008, 2008.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fa-
hey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G.,
Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland,
R.: Changes in Atmospheric Constituents and in Radiative Forc-
ing, in: Climate Change 2007: The Physical Science Basis. Con-
tribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Av-
eryt, K. B., Tignor, M., and Miller, H. L., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA,
2007.

Gadhavi, H. and Jayaraman, A.: Absorbing aerosols: contribution
of biomass burning and implications for radiative forcing, Ann.
Geophys., 28, 103–111,doi:10.5194/angeo-28-103-2010, 2010.

Ganguly, D., Jayaraman, A., and Gadhavi, H.: Physical and op-
tical properties of aerosols over an urban location in western
India: Seasonal variablities, J. Geophys. Res., 111, D24206,
doi:10.1029/2006JD007392, 2006

Gustafsson, O., Krusa, M., Zencak, Z., Sheesley, R. J., Granat,
L., Engstrom, E., Praveen, P. S., Rao, P. S. P., Leck, C., and
Rodhe, H.: Brown Clouds over South Asia: Biomass or Fossil
Fuel Combustion?, Science, 323, 495–498, 2009.

Hansen, A. D. A., Rosen, H., and Novakov, T.: The aethalometer:
an instrument for the real-time measurements of optical absorp-
tion by aerosol particles, Sci. Total Environ., 36, 191–196, 1984.

K-1 Model Developers: K-1 coupled GCM (MIROC) description,
K-1 Tech. Rep. 1, edited by: Hasumi, H. and Emori, S., Univ. of

Tokyo, Tokyo, 2004.
Kaskaoutis, D. G., Badarinath, K. V. S., Kharol, S. K., Sharma, A.

R., and Kambezidis, H. D.: Variations in the aerosol optical prop-
erties and types over the tropical urban site of Hyderabad, India,
J. Geophys. Res., 114, D22204,doi:10.1029/2009JD012423,
2009.

Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J.
R., Balkanski, Y., Bauer, S., Berntsen, T., Bond, T. C., Boucher,
O., Chin, M., Clarke, A., De Luca, N., Dentener, F., Diehl, T.,
Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore, D.,
Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L., Iversen,
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