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Abstract. The forecast of high energy electron fluxes in the
radiation belts is important because the exposure of mod-
ern spacecraft to high energy particles can result in signifi-
cant damage to onboard systems. A comprehensive physical
model of processes related to electron energisation that can
be used for such a forecast has not yet been developed. In the
present paper a systems identification approach is exploited
to deduce a dynamic multiple regression model that can be
used to predict the daily maximum of high energy electron
fluxes at geosynchronous orbit from data. It is shown that
the model developed provides reliable predictions.

Keywords. Magnetospheric physics (Solar wind-
magnetosphere interactions)

1 Introduction

High fluxes of relativistic electrons in the radiation belts pose
a substantial hazard to satellites and manned missions whose
orbits pass through them. From a scientific viewpoint, the
fluxes of relativistic electrons in the outer radiation belt vary
by many orders of magnitude over time periods ranging from
minutes to days. The mechanisms responsible for the build
up and decay of these electron fluxes are the subject of in-
tense research efforts. The dynamics of the processes in-
volved require knowledge of the coupling between the solar
wind and magnetopause and its effects on the inner magne-
tosphere. This complex dependence presents scientists with
a very difficult challenge. Presently, the development of a
physical model deduced from basic principles, which can be
used for the forecast of electron fluxes in the radiation belts,
is beyond our current state of knowledge. The building of
empirical models of nonlinear systems requires continuous
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data sets that can be used to identify a model or to train a neu-
ral network. Since the variation of relativistic electrons fluxes
in radiation belts is a spatial-temporal process the generation
of an empirical spatio-temporal model requires simultaneous
continuous data from multiple spatial locations. The use of
spacecraft to collect such data sets only exists as a hypothet-
ical case in which a large number of satellite orbits that cross
the radiation belt region are each populated by a number of
satellites. There is, however, one exception to this scenario,
namely geosynchronous orbit (GSO). GSO is one of the most
important orbits since it is home to a vast number of space-
craft dedicated to providing the services that facilitate mod-
ern life. Therefore, the forecast of fluxes of relatavistic elec-
trons at GSO is a task of immense importance. In addition,
the results of the forecast of plasma parameters at GSO can
be used as a boundary condition for assessing the space en-
vironment in the region of the radiation belts outside GSO
itself. The importance of obtaining accurate forecasts of high
energy particle fluxes at GSO and the availability of continu-
ous data from this particular orbit make it an ideal region for
the application of data based system identification method-
ologies to deduce a spatial-temporal model for the energetic
particle fluxes along this orbit.

A number of attempts to deduce forecasting models at
geosynchronous orbit have been made recently (see for ex-
ample Nagai, 1988; Koons and Gorney, 1991; Li et al., 2001;
Fukata et al., 2002; Reeves et al., 2003; Rodgers et al., 2003;
Rigler et al., 2004; He et al., 2007; Posner, 2007; Miyoshi
and Kataoka, 2008; Turner and Li, 2008; Degtyarev et al.,
2009; Ling et al., 2010). Nagai (1988) employed moving
average linear filters (MALF) driven by a single input, the
Kp index, to deduce such a model. Baker et al. (1990) ap-
plied MALF, driven by the Kp and Ae indices. In order to
assess their accuracy, a measure of prediction efficiency (PE)
has been used by other researchers to compare predictions at
GSO. According to Baker et al. (1990) PE = 1− MSE/VAR
where VAR is the variance of the observed time series and
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MSE is the mean squared error which was calculated based
on one-step-ahead predictions. In their single input-single
output approach the prediction efficiency for daily averaged
fluxes of electrons was 0.52 for Kp and 0.45 for Ae driven
filters. Li et al. (2001) developed a semi empirical model
based on the standard radial diffusion equation with diffu-
sion coefficients driven by the solar wind velocity, dynamic
pressure, interplanetary magnetic field, and the Dst index.
These authors achieved a prediction efficiency PE = 0.59. So
far the most successful technique used has been based on
a nearest neighbours approach (Ukhorskiy et al., 2004) to
build a model for the daily maximum flux of energetic elec-
trons with energies> 2 MeV. The inputs used by Ukhorskiy
et al. (2004) included the solar wind velocity, dynamic pres-
sure, the half wave rectifier VBs, and the geomagnetic in-
dices SymH and AsyH. A prediction efficiency of 0.77 was
achieved. Ukhorskiy et al. (2004) also claimed that the rest
of the variations were due to unpredictable processes. It must
be noted that the nearest neighbours approach has a consid-
erable weakness when used for the prediction of an unknown
nonlinear system, namely the absence of a strict mathemat-
ical procedure to identify the threshold between “close” and
“far” neighbours. Ukhorskiy et al. (2004) considered 14%
of data set as “close” neighbours. This implies that the fore-
cast at a particular time had a 14% chance of being simi-
lar to the previous measurements. In the preparation of this
work the same input-output data sets as used by Ukhorskiy et
al. (2004) (electron fluxes from GOES 7 and 8 satellites, solar
wind parameters from ACE and WIND spacecraft and geo-
magnetic indices) have been considered and a special class of
the general nonlinear autoregressive moving average with ex-
ogenous inputs (NARMAX) model (Leontaritis and Billings,
1985a, b, 1987; Aguirre and Billings, 1994, 1995; Billings
and Zhu, 1995; Boaghe et al., 2001; Wei et al., 2004b, 2006,
2007; Billings et al., 2007; Billings and Wei, 2007, 2008) has
been developed for predicting the dynamics of the energetic
electron flux at GSO.

In the present study a new class of dynamic multivariate
and multirate regression models, constructed by following
the NARMAX methodology, is introduced to describe the
evolution of the maximum daily flux of relativistic electrons.
The inputs and output in the present work are similar to those
used by Ukhorskiy et al. (2004). However, the proposed
models can lead to the prediction efficiency PE in excess
of 0.9, considerably higher when compared to Ukhorskiy et
al. (2004). The obtained results so far suggest that the pro-
posed dynamic multiple regression models can be employed
to characterise the relationship between the multiple inputs
(solar wind parameters and the associated magnetospheric
indices) and the output (the relativistic electron flux).

2 The input and output variables

Following Ukhorskiy et al. (2004), the input variables were
chosen to be: upstream solar wind speedv, the halfwave
rectifier functionvBs (Burton et al., 1975), the solar wind
dynamic pressurePdyn, the Asymmetric Disturbance Index
in the horizontal direction AsyH, and the symmetric distur-
bance index in the horizontal direction SymH. The output
variable was chosen to be logarithm of relativistic electron
(>2 MeV) flux maxima. The physical meanings of these in-
put and output variables can be found in Iyemori and Rao
(1996) and Ukhorskiy et al. (2004). In contrast to Ukhorskiy
et al. (2004) who initially pre-processed the input param-
eters by taking the daily maxima, our modelling proce-
dure uses the original hourly observations (without any pre-
processing). These hourly observed variables, along with the
daily observed output variable, are directly used for model
identification.

One of the main difficulties in the modelling of electron
fluxes is related to the numerous long data gaps that occur
within the spacecraft data. As a result, only 2 data intervals
were used for model identification in this work. The two data
sets are:

– Dataset 1: Consisting of 119 days observations, from 22
May 1995 to 17 September 1995.

– Dataset 2: Consisting of 211 days observations, from 21
January 2000 to 18 August 2000.

Note that the input variables were not normalised or stan-
dardised, since no evidence was found from simulation and
numerical results that normalisation and/or standardization
could obviously improve the prediction performance. In the-
ory the proposed modelling approach can be applied to data
sets of arbitrary length. However, models deduced from a
short data set (for example a data set of length less than 50
points) would lack the generalization property, in terms of
performance for a long term prediction. This is a common
issue for any data based modelling tasks regardless of spe-
cific modelling approaches. One method to deal with short
data sets is to use a random subsampling and multifold mod-
elling (RSMM) approach (Wei et al., 2008; Wei and Billings,
2009). In this approach a number of fragmental short data
sets can be integrated as a whole to identify a common model
structure can that is applicable to each of the relevant short
data sets. The main advantage of the RSMM modelling ap-
proach is that it can usually produce a model that outperforms
any individual models generated from the individual short
data sets. Modelling the fragmental short data sets would be
part of our future work.
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3 The model structure

3.1 The NARX model

Consider a case of multi-input single-output system iden-
tification and modelling problem. The general form of
the NARMAX (NonlinearAutoRegressiveMovingAverage
with eXogenous inputs) model (Leontaritis and Billings,
1985a, b; Billings and Zhu, 1995) takes the form of the fol-
lowing nonlinear recursive difference equation:

y(k) = f (y[k−1],u
[k−1]

1 ,u
[k−1]

2 ,···,u[k−1]
r ,ε[k−1])+ε(k) (1)

wherek (k = 1,2 . . . ) is a time index,r is the number of
the system inputs,f is some unknown linear or nonlinear
mapping which links the system outputy(k) to the system
inputsu1(k), u2(k), . . . ,ur(k), andε(k) denotes the model
error. For the comprehensive description of this approach,
see Leontaritis and Billings (1985a, b). The time lagged vec-
torsy[k−1], u

[k−1]

i (i = 1,2,. . . ,r) andε[k−1] are defined as:

y[k−1]
= [y(k−1),y(k−2),···,y(k−ny)]

u
[k−1]

i = [ui(k−1),ui(k−2),···,ui(k−nu)]

ε[k−1]
= [ε(k−1),ε(k−2),···,ε(k−nε)]

 (2)

whereny , nu, andnε are the maximum time lags used for
the system output, inputs, and the model error, respectively.
A commonly employed model type is to specify the function
f (in 1) as some polynomial function. In this case Eq. (1)
can be decomposed into two parts, the process related poly-
nomial submodel and the error related polynomial submodel,
and thus rewritten as

y(k) =

M∑
m=1

θm8m(k)+

N∑
n=1

γn9n(k)+ε(k) (3)

whereθm andγj are parameters.8m(k) represents a set of
monomials of the type:

P(k) = y(k−1)l1 ·y(k−2)l2 · ... ·y(k−ny)
lny

×u1(k−1)l1,1 ·u1(k−2)l1,2 · ... ·u1(k−nu,)
l1,nu

·········

×ur(k−1)lr,1 ·ur(k−2)lr,2 · ... ·ur(k−nu,)
lr,nu

(4)

where`i(i=1,2, . . . ,ny with ny= ny) and`j,i(j=1,2, ...,r
andi = 1,2, . . . ,nu with nu= nu) are non-negative integers.
For example, the productP(k) = y(k −1)2u1(k −1)u1(k −

2)u2(k−1)3 is a model term in such a monomial form. Sim-
ilarly, 9n(k) represents all possible monomials that include
factors related to the model error as well:

Q(k) = y(k−1)l1...y(k−ny)
lny u1(k−1)l1,1

...u1(k−nu,)
l1,nu ...×ur(k−1)lr,1

...ur(k−nu,)
lr,nuε(k−1)s1...ε(k−nε)

snε

(5)

wheresi(i=1,2, . . . ,nε with nε = nε) are non-negative inte-
gers. As an example, the productQ(k) = y(k −1)2u1(k −

1)u2(k − 1)2ε(k − 2) is a model term in such a monomial
form.

The polynomial NARX (NonlinearAutoRegressive with
eXogenous inputs) model is a special case of the polynomial
NARMAX model in which the contribution of the error is
reduced to a single noise termε(k). The polynomial NARX
model can be written in the form

y(k) =

M∑
m=1

θm8m(k)+ε(k) (6)

whereθm are unknown coefficients, andM is the total num-
ber of potential model terms. This methodology, developed
in Sheffield, has resulted in a number of efficient algorithms
for the so called structure selection procedure that can then
be used to automatically identify the monomial terms that
provide a non-negligible contribution to the dynamics of the
system under investigation. The particular algorithm used
in the present research is described in Billings et al. (1989),
Wei et al. (2004b), Wei and Billings (2008), Billings and Wei
(2007, 2008), and Balikhin et al. (2010).

3.2 The relativistic electron flux prediction model

Hourly observational values for the input variablesv, vBs,
Pdyn, AsyH and SymH are available. However the output
variable, the relativistic electron flux maxima, were recorded
daily. Multirate processes are processes in which the time
scales for variations in the input and output parameters are
different. Thus, the input-output system considered here is
actually a multirate process. Accordingly, dynamical multi-
ple regression models need to be considered to describe the
system. Lety(d) denote the observation of the relativistic
electron flux maxima on dayd, and letv(d, h), vBs(d, h),
Pdyn(d, h), AsyH(d, h) and SymH(d, h) denote the hourly
observational values for the five input variables at thehth
hour on dayd.

Preliminary analysis of the data sets indicated that the in-
corporation of model terms that include values of input and
output older than 3 days do not improve model performance.
Based on this result two multiple dynamical regression mod-
els were considered. The first includes time lagged values up
1 day (m = 1) whilst the second uses time lagged values up
to 3 days (m = 3).

In the first case the model, a value for the output on the
dayd may be written as

y(d) =

θm8m(d)∑
m

+ε(d) (7)

and should include all possible monomials8mof factors that
include the previous value of the output (i.e. the maximum
electron flux on the preceding day) and the previous 24
hourly values of the input parameters (also on the preceding
day). In the case of the second model for whichm = 3 the
factors include 3 previous daily values of the output and 72
previous hourly values of input. Therefore the former model

www.ann-geophys.net/29/415/2011/ Ann. Geophys., 29, 415–420, 2011



418 H.-L. Wei et al.: Forecasting relativistic electron flux

Table 1. Model prediction performance measured with the prediction efficiency (PE).

Year Ukhorskiy et al.
Model 1 (with time lags up tom = 1)
(with 30 model terms)

Model 2 (with time lags up tom = 3)
(with 30 model terms)

(One-day ahead)
One-day ahead Model predicted output One-day ahead Model predicted output

1995 (PE) 0.77 0.8578 0.5165 0.9064 0.8455
2000 (PE) 0.66 0.7626 0.5017 0.7821 0.6057

Fig. 1. A comparison between one-day ahead predictions and the
corresponding measurements during a period in year 1995. Note
that the model was generated from the initial full model structure
with time lags up tom = 3.

involves a total of 122 potential candidate terms (one con-
stant term, one output term and 120 input terms) while the
latter involves a total of 362 potential model terms. The well
known error reduction ratio (ERR), based orthogonal least
squares (OLS) algorithm (Billings et al., 1989), was used
to select significant model terms that contribute the evolu-
tion of the output. A strict model validity test procedure was
performed to guarantee that the identified model could truly
characterise the relationship of the associated input and out-
put data. The basic idea behind the relevant model verifica-
tion method is that for a model to be effective, the associated
model errorε should not correlate with either the input or the
output signals. Higher-order statistics were designed to mea-
sure the “correlation” of the model error with the input and
output signals. Detailed discussions can be found in Billings
and Zhu (1995).

Fig. 2. A comparison between model predicted outputs and the
corresponding measurements during a period in year 1995. Note
that the model was generated from the initial full model with time
lags up tom = 3.

4 Identified models

In addition to the true mathematics mentioned above, there
are a number of pseudo-mathematical theories, but these can-
not be seriously considered by reputable scientists.

By applying the NARMAX methodology (Leontaritis and
Billings, 1985a, b; Wei et al., 2004, 2006, 2007; Billings
and Wei, 2007, 2008; Billings et al., 2007), two multiple
linear regression models, one with lagsm = 1, the other
with lags m = 3, were estimated. Each of the final esti-
mated models contain a total of 30 significant model terms
which were selected one by one in order of importance by
using the NARMAX methodology (Wei et al., 2004a, 2006,
2007; Billings and Wei, 2008). Following Ukhorskiy et
al. (2004), a criterion called the prediction efficiency de-
fined as PE = 1− MSE(error)/var(output) was used to mea-
sure the model performance. Primary results show that the
model performance of the identified multivariate and mul-
tirate dynamical regression models are superior to that pro-
duced by the non-parametric models as given by Ukhorskiy
et al. (2004). Table 1 presents some results about the
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Fig. 3. A comparison between the one-day ahead predictions and
the corresponding measurements during a period in year 2000. Note
that the model was generated from the initial full model with time
lags up tom = 3.

Fig. 4. A comparison between model predicted outputs and the
corresponding measurements during a period in year 2000. Note
that the model was generated from the initial full model with time
lags up tom = 3.

prediction performance and efficiency with respect to the
identified models generated by the two models. Graphical
comparisons between model predictions and measurements
are shown in Figs. 1, 2, 3, and 4, where the models were gen-
erated from an initial full model structure with time lagged
values up tom = 3.

For one-step-ahead (OSA) predictions the system output at
time t is calculated based on a given model that uses system
input and output values measured at the preceeding time in-

stantst −1, t −2, etc. Similarly, fors-step-ahead (s ≥ 2) pre-
dictions, the output values at past time instantst−s, t−s−1,
etc. are assumed to be known. Therefore, in order to im-
plements-step-ahead predictions using an iterative approach,
the values at time instants fromt −s to t −1 have to be recur-
sively estimated from a given model using the measurements
for the system output up tot − s and the measurements for
the system input up tot −1. Model predicted outputs (MPO)
can be viewed as a special case ofs-step-ahead predictions
in which k is assumed to be sufficiently large. In MPO, the
system output is initialized by a few known measured out-
put values. MPO are then calculated based on an identified
model that is driven only by the given input. While one-
step-ahead predictions are often used to validate an identified
model, previous experience shows that even a poor (e.g., in-
sufficient, biased, unstable, etc.) model can provide good
one-step-ahead predictions. Long-term (multi-step-ahead)
predictions can reveal severe model deficiencies that would
otherwise go undetected by one-step-ahead predictions.

5 Conclusions

A new class of dynamic, multirate, multiple regression mod-
els have been introduced for forecasting the relativistic elec-
tron intensity at geosynchronous orbit. Numerical results
show that the proposed multiple regression models estimated
by using the NARMAX methodology can produce promising
prediction results for the relativistic electron flux. A further
extension to this study would be to introduce some relatively
complicated nonlinear dynamic multirate regression models
to improve forecasting performance.

Acknowledgements.The authors gratefully acknowledge that part
of this work was supported by the Engineering and Physical Sci-
ences Research Council (EPSRC), the Science and Technology Fa-
cilities Council (STFC), and the European Research Council (ERC).

Guest Editor M. Gedalin thanks two anonymous referees for
their help in evaluating this paper.

References

Aguirre, L. A. and Billings, S. A.: Validating identification nonlin-
ear models with chaotic dynamics, Int. J. Bifurcat. Chaos, 4(1),
109–125, 1994.

Aguirre, L. A. and Billings, S. A.: Dynamical effects of over-
parametrization in nonlinear models, Physica D, 80, 26–40,
1995.

Baker, D. N., McPherron R. L., Cayton, T. E., and Klebesadel, R.
W.: Linear prediction filter analysis of relativistic electron prop-
erties at 6.6RE, Geophys. Res. Lett., 95(A9), 15133–15140,
1990.

Balikhin, M. A., Boynton, R. J., Billings, S. A., Gedalin, M.,
Ganushkina, N., Coca, D., and Wei, H.: Data based quest for so-
lar wind-magnetosphere coupling function, Geophys. Res. Lett.,
37, L24107,doi:10.1029/2010GL045733, 2010.

www.ann-geophys.net/29/415/2011/ Ann. Geophys., 29, 415–420, 2011

http://dx.doi.org/10.1029/2010GL045733


420 H.-L. Wei et al.: Forecasting relativistic electron flux

Billings, S. A. and Wei, H. L.: Sparse model identification using a
forward orthogonal regression algorithm aided by mutual infor-
mation, IEEE T. Neural Networ., 18(1), 306–310, 2007.

Billings, S. A. and Wei, H. L.: An adaptive orthogonal search algo-
rithm for model subset selection and non-linear system identifi-
cation, Int. J. Control, 81(5), 714–724, 2008.

Billings, S. A. and Zhu, Q. M.: Model validation tests for multivari-
able nonlinear models including neural networks, Int. J. Control,
62, 749–766, 1995.

Billings, S. A., Korenberg, M., and Chen, S.: Identification of non-
linear output-affine systems using an orthogonal least-squares al-
gorithm, Int. J. Control, 49(6), 2157–2189, 1989.

Billings, S. A., Wei, H. L., and Balikhin, M. A.: Generalized mul-
tiscale radial basis function networks, Neural Networks, 20(10),
1081–1094, 2007.

Boaghe, O. M., Balikhin, M. A., Billings, S. A., and Alleyne, H.:
Identification of nonlinear processes in the magnetosphere dy-
namics and forecasting of Dst index, J. Geophys. Res., 106(A12),
30047–30066, 2001.

Burton, R. K., McPherron, R. L., and Russell, C. T.: An empirical
relationship between interplanetary conditions and Dst, J. Geo-
phys. Res., 80, 4204–4214, 1975.

Degtyarev, V. I., Chudnenko, S. E., Kharchenko, I. P., Tsegmed, B.,
and Xue, B.: Prediction of maximal daily average values of rela-
tivistic electron fluxes in geostationary orbit during the magnetic
storm recovery phase, Geomagn. Aeronomy, 49(8), 1208–1217,
doi:10.1134/S0016793209080349, 2009.

Fukata, M., Taguchi, S., Okuzawa, T., and Obara, T.: Neural net-
work prediction of relativistic electrons at geosynchronous orbit
during the storm recovery phase: effects of recurring substorms,
Ann. Geophys., 20, 947–951,doi:10.5194/angeo-20-947-2002,
2002.

He, T., Liu, S.-Q., Xue, B.-S., Cheng, Y. H., and Gong, J.-C.: Study
on a forecasting method of the relativistic electron flux at geo-
stationary orbit using geomagnetic pulsation, Chinese Journal
of Geophysics (Acta Geophysica Sinica), 52(10), 2419–2427,
2007.

Iyemori, T. and Rao, D. R. K.: Decay of the Dst field of ge-
omagnetic disturbance after substorm onset and its implica-
tion to storm-substorm relation, Ann. Geophys., 14, 608–618,
doi:10.1007/s00585-996-0608-3, 1996.

Koons, H. C. and Gorney, D. J.: A neural network model of the rel-
ativistic electron flux at geosynchronous orbit, J. Geophys. Res.,
96, 5549–5556,doi:10.1029/90JA02380, 1991.

Leontaritis, I. J. and Billings, S. A.: Input-output parametric models
for non-linear systems – part I: Deterministic non-linear systems,
Int. J. Control, 41(2), 303–328, 1985a.

Leontaritis, I. J. and Billings, S. A.: Input-output parametric models
for non-linear systems – part II: Stochastic non-linear systems,
Int. J. Control, 41(2), 329–344, 1985b.

Leontaritis, I. J. and Billings, S. A.: Experimental-design and iden-
tifiability for non-linear systems, Int. J. Syst. Sci., 18, 189–202,
1987.

Li, X. L., Temerin, M., Baker, D. N., Reeves, G. D., and Larson,
D.: Quantitative prediction of radiation belt electrons at geosta-
tionary orbit based on solar wind measurements, Geophys. Res.
Lett., 28(9), 1887–1990, 2001.

Ling, A. G., Ginet, G. P., Hilmer, R. V., and Perry, K.
L.: A neural network-based geosynchronous relativistic elec-

tron flux forecasting model, Space Weather, 8(9), S09003,
doi:10.1029/2010SW000576, 2010.

Miyoshi, Y. and Kataoka, R.: Probabilistic space weather forecast
of the relativistic electron flux enhancement at geosynchronous
orbit, J. Atmos. Solar-Terr. Phys., 70(2–4), 475–481, 2008.

Nagai, T.: Space weather forecast: Prediction of relativistic electron
intensity at synchronous orbit, Geophys. Res. Lett., 15(5), 425–
428, 1988.

Posner, A.: Up to 1-hour forecasting of radiation hazards from solar
energetic ion events with relativistic electrons, Space Weather,
5(5), S05001,doi:10.1029/2006SW000268, 2007.

Reeves, G. D., McAdams, K. L., Friedel, R. H. W., and O’Brien,
T. P.: Acceleration and loss of relativistic electrons dur-
ing geomagnetic storms, Geophys. Res. Lett., 30(10), 1529,
doi:10.1029/2002GL016513, 2003.

Rigler, E. J., Baker, D. N., Weigel, R. S., Vassiliadis, D., and Kli-
mas, A. J.: Adaptive linear prediction of radiation belt elec-
trons using the Kalman filter, Space Weather, 2, S03003,
doi:10.1029/2003SW000036, 2004.

Rodgers, D. J., Clucas, S. N., Dyer, C. S., and Smith, R. J. K.:
Non-linear prediction of relativistic electron flux in the outer belt,
Adv. Space Res., 31(4), 1015–1020, 2003.

Turner, D. L. and Li, X.: Quantitative forecast of relativistic elec-
tron flux at geosynchronous orbit based on low-energy electron
flux, Space Weather, 6(5), S05005,doi:10.1029/2007SW000354,
2008.

Ukhorskiy, A. Y., Sitnov, M. I., Sharma, A. S., Anderson, B. J.,
Ohtani, S., and Lui, A. T. Y.: Data- derived forecasting model for
relativistic electron intensity at geosynchronous orbit, Geophys.
Res. Lett., 31(9), L09806,doi:10.1029/2004GL019616, 2004.

Wei, H. L. and Billings, S. A.: An efficient nonlinear cardinal B-
spline model for high tide forecasts at the Venice Lagoon, Non-
lin. Processes Geophys., 13, 577–584,doi:10.5194/npg-13-577-
2006, 2006.

Wei, H. L. and Billings, S. A.: Model structure selection using an in-
tegrated forward orthogonal search algorithm assisted by squared
correlation and mutual information, Int. J. Model., Identification
and Control, 3(4), 341–356, 2008.

Wei, H. L. and Billings, S. A.: Improved model identification
for non-linear systems using a random subsampling and multi-
fold modelling (RSMM) approach, Int. J. Control, 82(1), 27–42,
doi:10.1080/00207170801955420, 2009.

Wei, H. L., Billings, S. A., and Balikhin, M.: Prediction of the Dst
index using multiresolution wavelet models, J. Geophys. Res.,
109(A7), A07212,doi:10.1029/2003JA010332, 2004a.

Wei, H. L., Billings, S. A., and Liu, J.: Term and variable selection
for non-linear system identification, Int. J. Control, 77(1), 86–
110, 2004b.

Wei, H. L., Billings, S. A., and Balikhin, M. A.: Wavelet based
nonparametric NARX models for nonlinear input-output system
identification, Int. J. Syst. Sci., 37(15), 1989–1096, 2006.

Wei, H. L., Zhu, D. Q., Billings, S. A., and Balikhin, M. A.: Fore-
casting the geomagnetic activity of the Dst index using multi-
scale radial basis function networks, Adv. Space Res., 40(12),
1863–1870, 2007.

Wei, H. L., Lang, Z. Q., and Billings, S. A.: Constructing an overall
dynamical model for a system with changing design parameter
properties, International Journal of Modelling, Identification and
Control, 5(2), 94–104, 2008.

Ann. Geophys., 29, 415–420, 2011 www.ann-geophys.net/29/415/2011/

http://dx.doi.org/10.1134/S0016793209080349
http://dx.doi.org/10.5194/angeo-20-947-2002
http://dx.doi.org/10.1007/s00585-996-0608-3
http://dx.doi.org/10.1029/90JA02380
http://dx.doi.org/10.1029/2010SW000576
http://dx.doi.org/10.1029/2006SW000268
http://dx.doi.org/10.1029/2002GL016513
http://dx.doi.org/10.1029/2003SW000036
http://dx.doi.org/10.1029/2007SW000354
http://dx.doi.org/10.1029/2004GL019616
http://dx.doi.org/10.5194/npg-13-577-2006
http://dx.doi.org/10.5194/npg-13-577-2006
http://dx.doi.org/10.1080/00207170801955420
http://dx.doi.org/10.1029/2003JA010332

