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Abstract. The problem of incomplete finite ion Larmor ra-
dius (FLR) stabilization of the magnetic curvature driven
Rayleigh-Taylor instability (RTI) in low beta plasma with ho-
mogeneous ion temperature is investigated. For this purpose
a model hydrodynamic description of nonlinear flute waves
with arbitrary spatial scales compared to the ion Larmor ra-
dius is developed. It is shown that the RTI is not stabilized
by FLR effects in a plasma with cold electrons when the ra-
tio of characteristic spatial scale of the plasma inhomogene-
ity to local effective radius of curvature of the magnetic field
lines is larger than 1/4. The crucial role in the absence of
the complete FLR stabilization plays the contribution of the
compressibility of the polarization part of the ion velocity.

Keywords. Space plasma physics (Kinetic and MHD the-
ory)

1 Introduction

Microturbulence of drift and particularly magnetic curva-
ture driven flute waves is believed to be plausibly respon-
sible for the anomalous transport in magnetic confinement
and astrophysical plasmas. Instability of magnetic curvature
driven flute waves is a counterpart of the classic Rayleigh-
Taylor instability of inhomogeneous fluid where the effective
gravitational field is modeled by the centrifugal acceleration
of particles moving in curved magnetic field configurations
those intrinsic to laboratory experiments. Nonlinear dynam-
ics of the flute waves has been investigated in some recent
papers (Das et al., 2001; Dastgeer et al., 2002; Kodama and
Pavlenko, 1988; Sandberg and Shukla, 2004; Sandberg et al.,
2005; Sharma et al., 2007). Analytical investigations and nu-
merical simulations show that in small-scale flute turbulence
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the nonlinear large-scale streamer-like (radially elongated)
structures and zonal-like flows are self-organized. Since pre-
vious investigations of the flute waves were restricted to con-
sideration of the long wavelength limit when the wave spa-
tial scalek−1

⊥
is sufficiently larger than the ion Larmor radius

ρi the question how much the results will qualitatively and
quantitatively change atk⊥ρi of the order one remains open.
Therefore, the investigation of flute waves with spatial scales
compared to the ion Larmor radius are of great importance
for the interpretation of laboratory experiments as well as in
astrophysical observations.

In this paper we neglect the finite electron temperature ef-
fects consideringTe/Ti ' 0, whereTe andTi are the electron
and ion temperatures, respectively.

In what follows, we shall use a local Cartesian coordinate
system where the z-axis is along the external magnetic field
B0, the x-axis is along the direction of the plasma inhomo-
geneity and the y-axis completes the triad. The dispersion
relation of the flute waves is

ω2
−ωωN +

ωNωc

z

(
1−

ωc

ωN

)
= 0. (1)

Hereω is the wave frequency,ωN = k ·vN andωc = k ·vc,
vN = −vT iρiκN ŷ is the equilibrium ion diamagnetic drift ve-
locity andvc = −(vT iρi/R)ŷ is the ion curvature driven ve-
locity, R is the local effective radius of the magnetic field
line curvature,k is the wave vector,κN = −d lnn0i/dx, n0i

is the equilibrium ion number density,ρi = vT i/ωci is the ion
Larmor radius,ωci = eB0/mi is the ion cyclotron frequency,
vT i = (Ti/mi)

1/2, mi ande are the ion mass and charge,ŷ is
the unit vector along the y-axis,z = k2

⊥
ρ2

i , k2
⊥

= k2
x +k2

y , kx

andky are the components of the wave vector in the x- and
y-directions. The normalized RTI growth rate is

γ

0
=

(
1−

z

4σ

)1/2
. (2)
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Here 0 = (ωNωc/z)
1/2 is the maximum value of the RTI

growth rate andσ = ωc/ωN = L/R whereL = 1/κN is the
local scale of the plasma inhomogeneity.

From Eq. (2) one can see that the RTI is stabilized due to
finite Larmor radius (FLR) effects at all plasma parameters
(at all values ofσ ). The cutoff value ofz at whichγ = 0
whenz ≥ zc equals

zc = 4σ. (3)

Dispersion relation (1) and normalized growth rate (2) in
the approximationσ � 1 coincide with respective classical
relations for the flute waves in a gravity fieldg (Roberts
and Taylor, 1962; Mikhailovskii, 1967) with the substitution
v2
T i/R = g, so thatvc → vg = −g/ωci , wherevg is the ion

gravitation drift velocity.
The main aim of this article is to reconsider the classi-

cal results on the magnetic curvature driven RTI. We will
show that the hydrodynamic theories of flute waves in a low-
β plasma at finiteσ should be modified. The manuscript is
organized as follows: a closed set of equations describing
nonlinear flute waves with arbitrary spatial scales is derived
in Sect. 2. Section 3 describes the results of the linear ap-
proximation. Our discussion and conclusions are found in
Sect. 4.

2 Hydrodynamic description

We consider weakly inhomogeneous low-β plasma of slab
geometry immersed in an external magnetic fieldB = B0b̂,
whereb̂ = [(1−x/R)ẑ− (z/R)x̂], x̂ andẑ are the unit vec-
tors along the z- and x-axes. In the low-frequency approx-
imation, ω−1

ci d/dt � 1, whered/dt is the Lagrangian time
derivative, we consider that the electron velocityve = vE ,
wherevE = B−2E⊥ ×B is the E ×B drift velocity. The
equation for the electron continuity is

∂

∂t
δne−(vN −vc)

∂8

∂y
= ρ2

i ωci{δne,8}. (4)

Here δne = ñe/n0e, ñe = ne − n0e and n0e are the per-
turbed and unperturbed electron number densities, respec-
tively, 8 = eϕ/Ti is the normalized electrostatic potential,
E⊥ = −∇⊥ϕ, the subscript⊥ denotes the vector compo-
nent perpendicular to the ambient magnetic field,{δne,8} =

(∂δne/∂x)∂8/∂y−(∂δne/∂y)∂8/∂x is the Poisson bracket.
In dimensionless form Eq. (4) takes the form

∂δne

∂τ
+

(
κ̂N −1/R̂

) ∂8

∂Y
= {δn,8}. (5)

Here κ̂N = κNρi , R̂ = R/ρi and {f,g} = (∂f/∂X)∂g/∂Y −

(∂f/∂Y )∂g/∂X. We use the normalization with space-time
scalesρi andω−1

ci , i.e.,τ = tωci and(X,Y ) = (x,y)ρ−1
i .

To describe the ions in the flute waves with arbitrary spa-
tial scales compared to the ion Larmor radius we make use

of model hydrodynamic description developed by Kuvshi-
nov and Mikhailovskii (1996) and Onishchenko et al. (2008,
2011). In the framework of such MHD the ion response is in
a good agreement with the fully kinetic approach.

We decompose the ion velocity as

vi ' vE +viD +vP
E +vP

iD . (6)

Here viD = (1/eB2)(B ×∇pi) is the ion diamagnetic drift
velocity,pi is the ion pressure,vP

E andvP
iD stand for the po-

larization parts of the ion velocity related to the drift veloci-
tiesvE andviD through the relations

vP
E =

1

ωci

(
ẑ×dtvE

)
and vP

iD =
1

ωci

(ẑ×dtviD), (7)

wheredt ≡ ∂/∂t +vE ·∇.
After substitution of the ion velocity (6) into the ion con-

tinuity equation in the dimensionless form one finds that

dτ (1−∇
2
⊥
)δn+

(
κ̂N −1/R̂

) ∂8

∂Y
−dτ∇

2
⊥
8

−{∇⊥8,∇⊥δn} =−µ̂∇
4
⊥
8. (8)

Here dτ = ∂/∂τ +{8,...}− (1/R̂)∂/∂Y , δn = ñi/n0i , ñi =

ni −n0i andn0i are the perturbed and unperturbed ion num-
ber densities, respectively,µ̂ = (3/10)ν/ωci is dimensionless
dynamic collision viscosity andν is the ion-ion collision fre-
quency. In the large scale approximation∇

2
⊥

� 1 the set of
Eqs. (5) and (8) corresponds to similar equations of Das et
al. (2001), Dastgeer et al. (2002) and Sandberg et al. (2005).

3 Linear dispersion relation

In the linear approximation from Eq. (5) one can obtain the
response of normalized electron density perturbation to the
perturbation of the electrostatic field

δne= −
ω∗

N

ω
8, (9)

whereω∗

N = ωN −ωc. From Eq. (8) one can find the response
of normalized ion density perturbation to the electrostatic
field potential

δn = −
ω∗

N

ω∗
8−

z

1+z

(
1−

ω∗

N

ω∗

)
8, (10)

whereω∗
= ω−ωc.

In the charge electroneutrality approximation,δne = δn,
with the use of Eqs. (9) and (10) one can obtain the following
dispersion relation

ω2
−ωωN +

ωNωc

z
(1+z)

(
1−

ωc

ωN

)
= 0, (11)

and normalized growth rate

γ

0
= (1−σ)1/2

(
1−z

1−4σ

4σ

)1/2

. (12)
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Dispersion relation (11) differs from Eq. (1) by the additional
coefficient 1+z after the term proportional toωNωc/z. This
correction is associated with the effect of compressibility of
the polarization part of the ion velocityvP

iD (the termdτ∇
2
⊥
δn

in Eq. 8). From Eq. (12) it follows that the compressibility
of the ion motion with velocityvP

iD plays an important role
in the stabilization of the RTI in a plasma with finiteσ . The
expression for the critical valuezc is (cf. Eq.3)

zc =
4σ

1−4σ
. (13)

From Eq. (13) it follows the absence of FLR stabilization of
the curvature driven RTI whenL/R ≥ 1/4. WhenL/R =

1/4 the critical valuezc → ∞.

4 Discussion and conclusions

The main purpose of present work is devoted to the problem
of incomplete FLR stabilization of the magnetic curvature
driven RTI in low-beta plasmas. Our analysis is an exten-
sion of the previous study of the RTI that has been limited
to consideration of waves with spatial scales larger than the
ion Larmor radiusρi . For this purpose in the framework of a
model two-fluid hydrodynamic description we have derived
a new closed set of Eqs. (5) and (8) describing the nonlinear
flute waves with arbitrary spatial scales. The development of
such a theory allows us more correctly describe FLR stabi-
lization of the Rayleigh-Taylor instability. It was shown that
the magnetic curvature driven RTI is not stabilized by FLR
effects whenσ = L/R ≥ 1/4. In a plasma withL/R = 1/4
the critical wave number of complete FLR stabilization tends
towards infinity. It was shown that the absence of the com-
plete FLR stabilization in a plasma withL/R ≥ 1/4 is con-
nected with compressibility of the polarization part of the ion
velocity which plays a crucial role in the absence of the sta-
bilization. We consider that newly derived set of Eqs. (5) and
(8) can be used for numerical simulation and analytical stud-
ies of the nonlinear stage of the magnetic curvature driven
RTI. The effects related to finite electron temperature and in-
homogeneity of the ion temperature will be investigated in
our forthcoming paper.
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