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Abstract. A new analysis method is presented that provides
a high-resolution power spectrum in a broad wave number
domain based on multi-point measurements. The analy-
sis technique is referred to as the Multi-point Signal Res-
onator (MSR) and it benefits from Capon’s minimum vari-
ance method for obtaining the proper power spectral density
of the signal as well as the MUSIC algorithm (Multiple Sig-
nal Classification) for considerably reducing the noise part in
the spectrum. The mathematical foundation of the analysis
method is presented and it is applied to synthetic data as well
as Cluster observations of the interplanetary magnetic field.
Using the MSR technique for Cluster data we find a wave
in the solar wind propagating parallel to the mean magnetic
field with relatively small amplitude, which is not identified
by the Capon spectrum. The Cluster data analysis shows the
potential of the MSR technique for studying waves and tur-
bulence using multi-point measurements.

Keywords. Space plasma physics (Experimental and math-
ematical techniques; Turbulence; Waves and instabilities)

1 Introduction

Recent developments of multi-spacecraft measurements have
considerably advanced our understanding of space plasma
dynamics, as they provide the three-dimensional spatial res-
olution in the measurements. The wave telescope technique
(also named k-filtering) developed byNeubauer and Glass-
meier (1990); Pinçon and Lefeuvre(1991); Motschmann
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et al. (1996), and Glassmeier et al.(2001) is one of the
most important applications of multi-spacecraft measure-
ments: it enables us to analyze the data directly in the three-
dimensional wave vector domain. Based on this technique,
various analysis methods have been developed and used for
Cluster data, e.g., dispersion relations (Narita et al., 2003;
Sahraoui et al., 2003; Vogt et al., 2008; Sahraoui et al.,
2010b), phase speed diagrams (Scḧafer et al., 2005), energy
spectra (Narita et al., 2006; Sahraoui et al., 2006, 2010b;
Narita et al., 2010), magnetic helicity density (Narita et al.,
2009), and higher order moments such as bispectra (Narita
et al., 2008). In short, various wave properties can be deter-
mined directly in the wave vector domain.

The wave telescope technique is based on the minimum
variance projection proposed byCapon(1969). While this
technique is now widely used for multi-point measurements
in space, it also has several limitations about which one
should keep in mind. In particular, the wave telescope tech-
nique cannot resolve waves properly when their wavelengths
are very close to each other; and it gives a moderately high
background noise level in the spectrum. Here we present a
new analysis method which is a generalization of the wave
telescope technique and provides a high-resolution energy
spectrum in the wave vector domain. It has the ability to re-
duce the background level considerably to enhance the qual-
ity of the spectrum (signal-to-noise ratio) while maintain-
ing the energy of the signal. Therefore, it has the ability to
resolve waves even though they have similar wavelengths.
We provide a mathematical description of the new analysis
method in Sect. 2; it is applied to synthetic data and to real
spacecraft data in Sects. 3 and 4, respectively. Section 5 con-
cludes the manuscript.
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2 Array signal processing

The new analysis method is called the MSR technique
(Multi-point Signal Resonator) and is essentially a combina-
tion of Capon’s minimum variance estimator (Capon, 1969)
and the MUSIC algorithm (Multiple Signal Classification)
developed bySchmidt (1986). These two estimators are
briefly reviewed, and then the MSR technique is presented.

2.1 Capon’s minimum variance method

Suppose we have an array ofL sensors and each sensor ob-
tains a time series of signal such as a set of waves. While
transforming the data from the temporal domain to the fre-
quency domain is performed by Fourier transform such as
FFT (Fast Fourier Transform), it is not an easy task to trans-
form the data from the spatial coordinates into a broad wave
number domain if the number of sampling points is too small
in the spatial domain. Capon’s method provides an estima-
tor of the power spectrum in the frequency and wave vector
domain using a limited number of measurement points. In
Capon’s method we first establish the measurement vector or
the state vectorS defined as

S(ω) =


S1(ω)

S2(ω)
...

SL(ω)

, (1)

whereSi(ω) (i = 1,2,··· ,L) denotes the Fourier transformed
data into the frequency domainω at thei-th sensor. For sim-
plicity we consider a measurement of a scalar field such as
density, temperature, or magnitude or any components of a
vector. The cross spectral density (CSD) matrixR is con-
structed from the measurement vector as

R(ω) = 〈S(ω)S(ω)†
〉. (2)

Here the angular bracket denotes the statistical average and
the dagger is the operation of Hermitian conjugate. This is
an L×L matrix and the task is to reduce the matrix into a
scalar power using a suitable projection or weight vectorw

such that the projected quantity provides an estimator of the
wave power in the frequency and wave vector domain,

P(ω,k) = w†R(ω)w. (3)

The essence of Capon’s method is to use the Lagrangian mul-
tiplier method to minimize the wave power (that is to mini-
mize the background level in the spectrum) while maintain-
ing the gain along the scanning direction or the wave vector
(unit gain constraint):

minimizeP(ω,k) subject to|w†
·h| = 1.

Hereh denotes the steering vector which has the information
on the wave vector,

h(k) =


eik·r1

eik·r2

...

eik·rL

. (4)

The constraint optimization problem can be solved analyti-
cally (Capon, 1969; Haykin, 1991), and the weight vector is
obtained as

w(ω,k) =
R−1(ω)h(k)

h†(k)R−1(ω)h(k)
. (5)

It is worthwhile to note that the weight vector is a function of
the frequencyω and the wave vectork and it is determined by
the measurement itself through the state vectorS(ω). The es-
timator of the wave power in Capon’s method is hence given
as

PC(ω,k) =
1

h†(k)R−1(ω)h(k)
. (6)

As an example, Fig.1 displays synthetic magnetic field data
(represented as time series plots) at four distinct points in an
irregular, one-dimensional array (located at 100, 180, 290,
and 375 km on the array axis). The data exhibits a plane
wave with period 30 s and wavelength 300 km with small-
amplitude, random, isotropic fluctuations (as noise) added to
the wave. The Capon’s method is applied to the four-point
synthetic data set and the wave number spectrum is obtained
(Fig. 2, dotted curve). The Capon’s spectrum displays a peak
at the signal wave number (0.021 rad km−1). The noise field
is barely visible in the time series as ripples on top of the
plane wave, but this causes a higher background level in the
Capon spectrum. All the synthetic data used in the test of the
analysis method consist of plane waves as signal and small-
amplitude, random and isotropic fluctuating field as noise.

In Capon’s method the wave power is optimized to give
the squared amplitude of the signal and it does not require
a priori the knowledge of the number of signals. There-
fore the method is of wide use. On the other hand, the es-
timated power still exhibits a higher background level com-
pared to that of the MSR technique (solid curve, discussed
later). The reason for the relatively higher background level
in the Capon’s spectrum stems from the fact that smallest
eigenvalues (which may be referred to as the noise floor) in
the CSD matrix contribute to the projection, i.e., due to the fi-
nite signal-to-noise ratio in the data.Tjulin et al. (2005) also
pointed out that the analytic solutions of the Capon method
still show that even if the signal consists of a single plane
wave, the resulting wave number spectrum is broadened. The
eigenvector-based projection such as the MUSIC algorithm
makes use of the orthogonality of eigenvectors in order to
enhance the signal-to-noise ratio in the spectrum. Relation-
ship between the Capon’s method and the eigenvector-based
spectra are discussed in great detail byHaykin (1991).
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Fig. 1. Synthetic scalar magnetic field data at four points. The data
set is used for Capon’s method and the MSR technique displayed in
Fig. 2.

2.2 Eigenvector analyses and the MUSIC algorithm

It was discussed bySamson(1983a,b, 1995) and Schmidt
(1986) that eigenvalues and eigenvectors of the CSD ma-
trix can be used in analyzing multi-channel data. The MU-
SIC algorithm (Schmidt, 1986) suppresses the noise contri-
bution considerably, providing a sharp contrast between the
signal power and the noise level in the spectrum by investi-
gating the eigenvector structure of the CSD matrix.Samson
et al. (1990) applied the MUSIC method to obtain the two-
dimensional wave number spectra for ground-based radar ob-
servations of gravity waves. The MUSIC algorithm assumes
that the data contains signal and noise such that the CSD ma-
trix can be decomposed into these two parts. The state vector
is therefore interpreted as a combination of the signal term
and the noise term:

S1(ω)

S2(ω)
...

SL(ω)

 =

 eik1·r1 ··· eikM ·r1

...
. . .

...

eik1·rL ··· eikM ·rL




Q1(ω,k1)

Q2(ω,k2)
...

QM(ω,kM)



+


N1(ω)

N2(ω)
...

NL(ω)

, (7)

which we write symbolically as

S = AQ+N . (8)

Fig. 2. Top: Capon-spectrum in the wave number domain deter-
mined by four-point measurement of synthetic scalar magnetic field
data shown in Fig.1 (dotted curve); the MSR spectrum for the same
data set (solid curve). Bottom: Spectrum determined by the normal-
ized, extended-MUSIC algorithm for the same data set. The vertical
bar represents the confidence interval.

In the MUSIC algorithm the noise is assumed to be isotropic,
random fluctuating field. The symbolQ represents theM
true signals in the data and it is transmitted to the measure-
ment ofS through the matrixA; N represents the noise at
each sensor. It can be shown that the CSD matrix becomes
decomposed into the signal term and the noise term, too, as

R = A〈QQ†
〉A†

+σ 2I . (9)

The eigenvalues and eigenvectors ofR are denoted byλ1 ≥

λ2 ≥ ··· ≥ λL ande1, e2, ···, eL, respectively. For the noise
part the eigenvalues are given asλM+1 = λM+2 = ··· = λL =

σ 2. We split the eigenvectors of the CSD matrixR into the
signal subspaceEs = [e1,e2,··· ,eM ] and the noise subspace
En = [eM+1,eM+2,··· ,eL].

The power estimation in the MUSIC method is given as

PM(ω,k) =
1

|h†(k)En(ω)|2
(10)

=
1

h†(k)En(ω)E†
n(ω)h(k)

, (11)
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which makes use of the orthogonality between the steering
vectorh(ki) (i = 1,··· ,M) and the eigenvector for the noise
partej (j = M +1,··· ,L):

h†(ki) ·ej (ω) = 0. (12)

Equation (12) represents the noise reduction or filtering pro-
cedure performed in the both frequency and wave vector do-
main.

The MUSIC spectrum is also expressed as

PM(ω,k) =
1

h†(k)F(ω)LF†(ω)h(k)
, (13)

whereF is the eigenvector matrix ofR sorted after the mag-
nitude of eigenvalues in the descending order:

F = [Es En] =
[
e1 ··· eM eM+1 ··· eL

]
. (14)

The matrixF is an arrangement of the eigenvectors of the
CSD matrix, sorting the signal-associated eigenvectors on
the left side in the matrix and the noise-associated eigenvec-
tors on the right side. The matrixL is a diagonal matrix and
is defined as

L = diag(0,··· ,0︸ ︷︷ ︸
M

,1,··· ,1︸ ︷︷ ︸
L−M

). (15)

The MUSIC algorithm is based on finding the eigenvectors
associated with noise that are orthogonal to the steering vec-
tor with the signal wave vector. The spectrum estimated by
the MUSIC algorithm uses the product of the noise eigen-
vectors and the steering vectors and therefore the method
gives the spectrum in the dimensionless unit. It should also
be noted that the MUSIC algorithm requires that the number
of signals must be known in the analysis to extract the set of
the eigenvectors associated with noise. One method to deter-
mine the number of signals is to investigate the noise floor of
eigenvalues of the CSD matrix (Haykin, 1991). We mean the
number of signals by the number of wave vectors associated
with signal. This has to be known at each frequency in the
analysis. In the context of multi-spacecraft data analysis, the
number of wave vectors or the wave modes must be known at
each frequency. The problem of the number of signal sources
to be known in the MUSIC algorithm has been addressed by
Choi et al.(1993), who replaced the diagonal matrixL by
3−n with

3−n
= diag

((
λ1

λL

)−n

,

(
λ2

λL

)−n

,··· ,

(
λL

λL

)−n
)

. (16)

Here the power−n is an adjustable parameter in the analysis
that controls the asymptotic behavior of the matrix3−n that
becomesL in the limit n → ∞. In other words, replacing the
L matrix by the3−n matrix automatically selects the noise
subspace of the CSD matrixR. It should be noted that the
procedure of the matrix replacement by3−n does not stem

from a mathematical theory guaranteeing the better function-
ality of the technique, but it represents an intuitive picture of
generalization of theL matrix to soften its sharp transition
in the diagonal elements from zero to unity. Therefore, other
extensions or generalizations are possible for the MUSIC al-
gorithm.

Choi et al.(1993) found that even a small number ofn such
as n = 2 can successfully reproduce the MUSIC spectrum
without knowing the number of signal sources. We usen = 2
in the applications presented in Sects. 3 and 4. The spectrum
using the extended MUSIC algorithm is given as

PEM(ω,k) =
1

h†(k)F(ω)3−nF†(ω)h(k)
. (17)

2.3 Multi-point Signal Resonator technique

The MSR technique makes use of the Capon estimator as
well as the extended MUSIC estimator. The notion of the
MSR technique is as follows. We use Capon’s estimator and
obtain the power spectrum that provides the proper value of
the spectrum at the signal wave number, and we use addition-
ally the extended MUSIC spectrum with normalization as a
dimensionless filter to make the signal-to-noise contrast of
the Capon spectrum sharper while keeping the spectral peak
values of the Capon spectrum. The power spectrum in the
MSR technique is therefore given as

PMSR(ω,k) =
1

PEM0
PEM(ω,k)PC(ω,k) (18)

=
1

PEM0

1

h†F3−nF†h

1

h†R−1h
. (19)

Here the factorPEM0 denotes the normalization factor. It is
determined by the maximum value of the spectrumPEM.

PEM0 = max(PEM) (20)

In the MSR techniquePEM(ω,k)/PEM0 serves as a filter that
returns the value of unity at the signal wave number and al-
most zero otherwise (Fig. 2 bottom). An example of the
MSR spectrum with comparison to the Capon spectrum is
displayed in Fig. 2 top panel. It is worthwhile to note that the
eigenvalues are based on estimates in real data, and we have
therefore bias and variance: These parameters can be depen-
dent on the number of degrees of freedom in the estimators.
The spectral matrix should be statistically significant based
on a larger number of degrees of freedom so that the eigen-
values are well determined. In practice (shown below), we
split the time interval by 100 sub-intervals and average the
spectral matrix over them. Assuming that the eigenvalues de-
termined at each sub-interval follow the normal distribution,
the confidence interval is determined by the degree of free-
dom (Jenkins and Watts, 1968). The MSR technique assumes
that the measured fluctuations represent a set of propagating
waves. Therefore, a careful analysis is needed when analyz-
ing wave properties almost at frequency zero. Otherwise the
spectrum yields a spurious peak.
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Fig. 3. Capon and MSR spectra for the synthetic data.

The MSR technique can also be used for a measurement of
vectors such as magnetic field. Furthermore, it is also possi-
ble to set the divergence-free condition as an additional con-
straint. The MSR technique for the vectorial magnetic field
measurement can be written in the following fashion:

PMSR(ω,k)=
1

PEM0

[
V†H†F3−nF†HV

]−1[
V†H†R−1HV

]−1

(21)

with

R =

〈
SS†

〉
(22)

S =

 δB(ω,r1)
...

δB(ω,rL)

 (23)

H =

 I eik·r1

...

I eik·rL

 (24)

V = I +
kk

k2
. (25)

The trace of the matrixPMSR(ω,k) gives the total fluctuation
power:

PMSR= trPMSR(ω,k). (26)

3 Numerical tests

To examine the quality of the MSR technique, three kinds
of tests are presented using synthetic data. First, we ex-
amine if two waves can be resolved even though they have
wavelengths close to each other and cannot be resolved in
the Capon spectrum. Second, effect of uncertainty of sensor
positions is investigated. Third, proportionality of energy of
two waves in the spectrum is studied.

Fig. 4. Another example of the Capon and MSR spectra for the
synthetic data.

3.1 Separation of two waves

The MSR technique is applied to synthetic data and com-
pared with Capon’s technique as follows. We generate syn-
thetic data of scalar magnetic field exhibiting two waves that
have almost the same frequency but different wave num-
bers (the frequencies are 0.0333 Hz and 0.0335 Hz, and the
wave numbers are 0.021 rad km−1 and 0.012 rad km−1 for
the wave 1 and the wave 2, respectively). The synthetic
waves are sampled at four spatial points with the same ar-
ray configuration as presented in the previous section. The
wave number spectra are evaluated from the four time se-
ries data sets using Capon’s method (Fig.3 dotted line) and
the MSR technique (solid line), respectively. Both methods
show peaks in the spectra at the signal wave numbers, but the
background level is much reduced in the MSR spectrum.

We then modify the values of the wave numbers in the
synthetic data. The wave 2 has now the wave number
0.020 rad km−1, which is close to that of the wave 1. Fig-
ure 4 displays the wave number spectra for this data set.
The MSR spectrum can resolve two peaks, whereas Capon’s
spectrum exhibits a peak with a larger broadening. In Fig.4,
the wave number resolution is1k = 1.0× 10−5 rad km−1,
while the difference between the two signal wave numbers is
1.0×10−3 rad km−1. There are enough data points between
the two peaks, and identifying the two signals is successful
using the MSR technique. It is also worthwhile to note that
the MSR technique gives the same spectral peak values as
that of the Capon technique.

3.2 Effect of uncertainty of sensor positions

Effect of uncertainty of sensor positions is investigated, as
well. We use the data set of the numerical test 2 and deter-
mine the spectra for shifted sensor positions (that represents
the uncertainty of sensor positions). Figure5 displays the
peak wave numbers identified in the spectra as a function of
the relative uncertainty of the sensor positions. When the
positions are known accurately enough (1r/r ≤ 1%), then

www.ann-geophys.net/29/351/2011/ Ann. Geophys., 29, 351–360, 2011
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Fig. 5. Identified peak wave numbers for the two wave components
for shifted sensor positions for the data set used in Fig.4. The x-
axis is the relative uncertainty of the sensor position in percentage.

Fig. 6. Wave number spectra for synthetic data with different ratios
of fluctuation amplitudes between two waves: 1/2 (upper curve);
1/5 (middle curve), and 1/10 (lower curve).

the spectra exhibit peaks at almost the right wave numbers.
For increasing uncertainty of the sensor position, the spec-
tra exhibit a shift of the peaks toward lower wave numbers
although the separation between the two wave numbers is
still possible. At the position uncertainty 10% or larger, the
peak shift becomes significant and the spectra do not exhibit
the right wave numbers any more. Therefore, it is ideal that
the sensor positions are accurately known and do not change
during the measurement.

3.3 Proportionality in the spectrum

We investigate the proportionality of the MSR spectrum.
Here, we mean the proportionality by the proper order of
peak values in the energy spectra, i.e., the spectrum should
exhibit larger peak values for larger fluctuation amplitudes,
otherwise a wrong order of the spectral peaks causes a dis-
torted shape of the spectrum. We change the amplitude of the
wave component 1 in the synthetic data for Fig.4: 1/2, 1/5,

Fig. 7. Time series of the magnetic field magnitude, the ion bulk
speed and the ion number density in the solar wind measured by
Cluster-1 spacecraft.

and 1/10 of that of the wave component 2. In the ideal case,
the spectra should exhibit peaks with the ratios 1/4, 1/25,
and 1/100, respectively. The MSR spectra are displayed in
Fig. 6. We find that the order of the spectral peaks is the
same as the inputs (i.e., larger peak values for larger fluc-
tuation amplitudes) but on the other hand the ratios of the
spectral peaks tend to be emphasized roughly by the square
of the ideal energy ratios (O(10−1), O(10−3), andO(10−5),
respectively). Therefore, our technique can qualitatively re-
construct the shape of the wave number spectrum, but a fur-
ther correction method is needed for quantitative analysis.

4 Application to spacecraft data

The MSR technique is applied to the observation of magnetic
field fluctuations in the solar wind performed by four Cluster
spacecraft (Escoubet et al., 2001; Balogh et al., 2001) in the
time interval from 14:15 to 14:45 UT on 12 February 2002
(Fig. 7). This time exhibits a good example in which two
waves are identified by the MSR technique while they cannot
be seen by the Capon method. We chose the interval for sev-
eral reasons: (1) a good quality of tetrahedron with spacecraft
separation about 100 km in order to minimize the distortion
of energy distribution caused by an irregular tetrahedral con-
figuration of Cluster (Sahraoui et al., 2010a), (2) stationary
fluctuation such that the mean fields are regarded as almost
constant, and (3) small variation of flow velocity to improve
the accuracy of the Doppler correction. The mean magnetic
field strength is about 6.3 nT and the mean flow speed and
density are 512 km s−1 and 3.3 cm−3, respectively.

Fluctuations in the solar wind are believed to be in a fully
developed turbulent state, as energy spectra of both mag-
netic field and flow velocity fluctuations typically exhibit an

Ann. Geophys., 29, 351–360, 2011 www.ann-geophys.net/29/351/2011/
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Fig. 8. Frequency spectrum of the magnetic field fluctuation for the
time interval shown in Fig.7.

power-law curve in the frequency domain (Coleman, 1968;
Matthaeus and Goldstein, 1982; Matthaeus et al., 1982;
Marsch and Tu, 1990; Podesta et al., 2007), which is rem-
iniscent of the inertial-range spectrum of turbulence in Kol-
mogorov theory with the power-law index close to−5/3. At
frequency near around 0.1 Hz to 1 Hz, measurements fur-
ther show a spectral breakpoint. The spectrum becomes a
steeper power-law above these frequencies (Leamon et al.,
1998; Smith et al., 2006; Alexandrova et al., 2008) and is
characterized by the index steeper than−2 (Behannon, 1978;
Denskat et al., 1983; Goldstein et al., 1994; Leamon et al.,
1998; Bale et al., 2005). Recent analyses of data from the
multi-spacecraft Cluster mission have shown that magnetic
spectra in the range between 0.5 Hz and 20 Hz scale with the
index −2 to −3 (Sahraoui et al., 2009; Kiyani et al., 2009;
Alexandrova et al., 2009), and suggest that there is a second
breakpoint with still more steeply decreasing spectra at fre-
quencies beyond 20 Hz.

The frequency spectrum of the magnetic field in the ana-
lyzed time interval (Fig.8) exhibits the inertial-range spec-
trum at lower frequencies and the steeper spectral curve
above the spectral break at about 0.3 Hz. We focus on the
wave field at 0.15 Hz, representing the high-frequency limit
of the inertial range, for the wave analysis using the Capon
and MSR techniques. It is shown that magnetic field fluc-
tuations at this frequency exhibit two distinct wave vectors
that can be resolved using the MSR technique while they
cannot be separated clearly by the Capon method. The to-
tal length of time interval used in the analysis is 30 min with
the time resolution 0.2 s. We split the total interval into 100
sub-intervals with the length 4096 data points for statistical
significance in the analysis. The sub-interval is 819.2 s long,
while we investigated the fluctuation at the period 6.7 s (at
0.15 Hz). The ratio of the wave period to the length of the
sub-interval is about 1/123.

Figure9 displays two energy distributions in the wave vec-
tor domain at this frequency. The spectra are determined by

the Capon method (left panel) and the MSR technique (right
panel), respectively. The 3-D wave-vector spectra are pro-
jected into three planes (kx-ky, andkx-kz, andky-kz) in the
MFA (mean field aligned) coordinate system (spanned by the
mean magnetic field in the z-direction and the flow velocity
direction in the x-z-plane). For projection we summed the
spectrum over the wave numbers perpendicular to the respec-
tive planes. The Capon spectrum exhibits a peak at the wave
vector about (0.0022, 0.0005, 0.0000) rad km−1 (wave 1) as
well as two extended structures, one along the y-axis and
the other nearly in the positive z-direction with slight in-
clination to the negative x-direction. The MSR spectrum
exhibits a peak around this wave vector, but it also shows
another peak at the wave vector about (−0.0010,−0.0010,
0.0058) rad km−1 (wave 2). The overall shape of the spec-
trum looks similar to each other, but the existence of the
secondary peak can be clearly identified by the MSR tech-
nique. It is difficult to identify the secondary peak in the
Capon spectrum. It can also be seen that the noise level is
much reduced and the spectral shape is sharper in the MSR
technique.

Using the two wave vectors obtained by the MSR tech-
nique, frequencies and phase speeds of the waves are esti-
mated in the plasma rest frame by correcting for the Doppler
shift. Table 1 summarized the wave numbers, propagation
angles from the mean magnetic field direction, the rest-frame
frequencies and phase speeds, respectively. We find that the
wave 1, characterized by quasi-perpendicular wave vector
to the mean magnetic field, has a very small frequency and
phase speed in the plasma rest frame. However, the uncer-
tainty of the wave vector determination and the large flow ve-
locity causes a large uncertainty in computing the rest-frame
properties and the accurate frequency and phase speed can-
not be obtained in the analysis. Therefore it is not clear if
the wave 1 really represents a convected spatial structure or a
propagating wave. The wave 2, on the other hand, exhibits a
parallel wave vector and the rest-frame frequency and phase
speed were determined as 0.45 rad s−1 and 76 km s−1 within
the accuracy about 40–50%. It is interesting that the phase
speed of the wave 2 is close to the Alfvén speed at about
75 km s−1. Considering the factor cosθkB for oblique prop-
agation, the Alfv́en wave phase speed is estimated as about
72 km s−1. Though the uncertainty of the phase speed deter-
mined in the analysis is still relatively large, the agreement
between the two speeds is suggestive of the the existence of
the Alfvén wave in the solar wind.

5 Conclusions

In this paper we have presented a new, high-resolution
wave vector analysis method particularly for multi-spacecraft
data. The concept of the analysis method is an extension of
Capon’s technique by using the eigenvector analysis of the
MUSIC algorithm as a filtering function. The problem of the
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Fig. 9. 3-D energy distributions in the wave vector domain in the mean-field-aligned coordinate system at frequency 0.15 Hz, determined
by Capon’s method (left) and the MSR technique (right). In this coordinate system thekz-axis (vertical axis) points to the direction of the
mean magnetic field, and thekx-kz plane is spanned by the mean field and the flow velocity direction. The 3-D spectrum is represented using
projection into 3 planes: it is summed over the wave vector component perpendicular to the respective planes. The vertical bar at color scale
represent the 95% confidence interval.

Table 1. Wave properties at spacecraft-frame frequency 1.5 Hz:
wave numberk, angle between the wave vector and the mean mag-
netic fieldθkB, frequency in the plasma rest frameωrest, and phase
speed in the rest framevph.

k θkB ωrest vph
rad km−1 degree rad s−1 km s−1

Wave 1 0.0023±0.0003 90±13 0.00±0.17 2±48
Wave 2 0.0060±0.0003 14±3 0.45±0.17 76±33

MUSIC algorithm that the number of signals must be known
can be solved by using the eigenvalue ratios as proposed
by Choi et al.(1993). While Capon’s technique is already
widely applied to Cluster data and is certainly a useful wave
analysis method, the MSR technique offers further improve-
ments in two points: significantly reduced background level
of the spectra, and the capability of identifying wave com-
ponents that have similar wavelengths. The MSR technique
was applied to the synthetic magnetic field data as well as
the Cluster observation of magnetic field fluctuations in the
solar wind. We have found a wave component in the solar
wind that is propagating parallel to the mean magnetic field
at about the Alfv́en speed. This wave was not found in the
Capon spectrum. The MSR technique offers further improve-
ments in performing dispersion relation analysis and spectral
analysis in a broad wave vector domain. Finally, this method
can be applied to characterizing fluctuations in various re-
gions of space plasma. Magnetosheath, for example, would
be a good place to use our mehod, where mirror mode fluc-
tuations are known to present and separion between signal of
interest and noise (unwanted fluctuations) is important.
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