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Abstract. The occurrence of large-scale travelling iono-
spheric disturbances (LS-TIDs) has been examined. Initially
some literature on their generation is considered. Travel dur-
ing daylight hours and also paths which involve propagation
paths towards the poles are illustrated by a few examples
from the literature. A daytime ionogram recording of an LS-
TID is presented and discussed as are nighttime ionogram
recordings for a poleward path of propagation. The tabula-
tions of Moscowh′F recordings around midnight are exam-
ined for significant height increases which along with geo-
magnetic bays some hours earlier confirm the existence of
LS-TIDs. A sunspot-maximum interval is involved. Some of
the Moscow events were related to bays which occurred 32 h
earlier thus indicating earth encirclements. Also additional
encirclements are recorded by using superposed-epoch anal-
yses for some other events.

Keywords. Ionosphere (Ionospheric disturbances; Iono-
spheric irregularities)

1 Introduction

Initially some early reports in the literature will be examined
briefly on the generation of LS-TIDs. This occurs at times
of intense auroral-zone absorption when substorms also oc-
cur. It was recently shown by Bowman and Mortimer (2010)
that a significant number of large-scale travelling ionospheric
disturbances (LS-TIDS) involve encirclements of the earth
in about 30 h. Some evidence for encirclements was earlier
presented by Bowman (1965), where the use of ionograms
suggests the occurrence of encirclements. Also a statistcal
analysis involving 47 stations around the world indicated the
existence of encirclements. The acronym EET was used for
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these earth encircling TIDs. The consequences of these en-
circlements will be considered in this paper. In the past most
investigations of LS-TIDs involved the propagation from au-
roral zones (northern or southern) towards the equator. The
acronym OHT will be used here for these one-hemisphere
TIDs.

The existence of EETs means that some, if not all, of
these LS-TIDs will cross the equator, and travel polewards.
However all of these will not necessarily complete an encir-
clement. The EETs will also be involved with some travel in
daylight hours. Figures 1 and 2 of Bowman (1978) and Fig. 1
of Bowman and Mortimer (2010) show that statistical anal-
yses, involving over 300 substorm onsets, have shown that,
for the equatorial movements, the average delay at the high-
latitude station, Washington (geom. lat. 50.0), is 2 h and at
the equator it is 4 h. Using an estimated 6500 km for the dis-
tance from the auroral zone to the equator gives an average
speed of 450 m s−1. This paper will also consider some as-
pects of the recent literature which concerns LS-TID events.

Tabulations ofh′F for the high-latitude station, Moscow
(geom. lat. 50.9), and for a sunspot-maximum interval, will
be examined in a manner similar to that used by Bowman
and Mortimer (2010) for Huancayo, (geom. lat.−0.6), The
LS-TIDs will be identified using listings of Bays, which in-
clude substorm onsets. These will be used for analyses which
concern the existence of EETs. Table 1 lists the geomagnetic
coordinates of stations which will be mentioned and Table 2
explains the acronyms to be used.
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Fig. 1. Reproductions of Figs. 1 and 2 of Hajkowicz (1990), involving the conjugacy of auroral riometer absorption. Panels(a)–(d) illustrate
examples of riometer absorption events at conjugate locations. Panel(e) illustrates the degree of conjugacy.

2 Some aspects of LS-TID occurrence as detected in the
literature, especially in the early reports

2.1 The generation of LS-TIDs and their initial equato-
rial movements

Early analyses by Hajkowicz (1983a) have shown that well-
defined absorption events, at times of substorm onsets, are
responsible for the generation of LS-TIDs at conjugate loca-

tions (see also Hajkowicz, 1983b). These sudden absorp-
tion increase events (SAI events) are shown by Fig. 1a–
d, which is a reproduction of Fig. 1 of Hajkowicz (1990).
This figure shows that the conjugate events occur at virtually
the same time (x-axis), although their energy levels (y-axis)
are slightly different. Hajkowicz (1983a) has summarized
these observations by p. 1409 “The disturbances were con-
sistent with the simultaneous occurrences of separate trains
of large-scale ionospheric disturbances (TIDs) propagating
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Fig. 2. (a) Reproduction of Fig. 8 of Bowman (1965), showing ionograms related to LS-TIDs recorded 30 h apart. It supports the other
evidence by Bowman (1965) for encirclements,(b) a reproduction of Fig. 10 of Khan (1970).

equatorwards from the southern and northern auroral zones.
It is suggested that TIDs were generated by an impulse-like
increase in the conjugate particle precipitations inferred from

the riometer records”. Figure 1e, a reproduction of Fig. 2 of
Hajkowicz (1990) for College and Macquarie Island, indi-
cates the extent of their conjugacy. Hajkowicz (1983a) also
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Table 1. Geomagnetic coordinates.

Station Latitude Longitude

Barrow 68.5 241.1
College 64.6 256.5
Welen 61.8 257.1
Macquarie Island −61.1 243.2
Moscow 50.9 120.5
Washington 50.0 360.2
Brisbane −35.7 226.9
Maui 20.9 268.1

Table 2. Acronyms.

Abbreviations Meanings

EET Earth encircling TID
OHTa One hemisphere TID by itself
OHTb One hemisphere TID and an EET
LS-TID Large-scale travelling ionospheric disturbance
AGW Atmospheric gravity wave
LSS Large-scale structure
SAI Sudden absorption increase
1h′Fa Height changes relative to medians
1h′Fb Height changes relative to 200 km levels
UA-NPD Upper-atmosphere neutral particle density

identifies an area near College as the site of generation of an
LS-TID. Recently Ding et al. (2007) have also identified an
isolated LS-TID source.

Of all the directions of travel LS-TIDS can take,
north/south propagation is often detected by ionograms. For
two particular LS-TID events the travel times, measured
from the two auroral zones to the equator, can be com-
pared. For each event somewhat different speeds have been
measured. Figure 3 of Hajkowicz (1983a) shows that for a
number of stations, at different latitudes in Japan and New
Zealand, LS-TID speeds of 560 m s−1 and 630 m s−1, re-
spectively, were found. Similarly for another event Bow-
man (1992a) has used stations in Japan and Australia to find
speeds of 443 m s−1 and 507 m s−1, respectively (see Fig. 2
of Bowman, 1992a). These measurements were made using
ionograms. If the distance between auroral zones and the
equator is estimated to be 6500 km for the speeds recorded
by Hajkowicz (1983a) the travel times for Japan and New
Zealand were 3.2 h and 2.9 h, respectively. For the event
analysed by Bowman (1992a) the travel times for Japan and
Australia were 4.1 h and 3.6 h, respectively. These figures
show that the travel times to the equator from the two auroral
zones can be, for most purposes, considered as virtually the
same, at least for these two events. Disturbance conditions at
the equator can be expected to be enhanced.

Table 3. Geomagnetic indices, K and Kp (26 October 1968).

Whalen 0033 1132
College 0034 0021
Barrow 1255 2243
World (Kp) 1012 1132

2.2 Some recordings of daytime LS-TIDs, and the pole-
ward propagation of both daytime and nighttime
events

Table 3 of Bowman and Mortimer (2010) shows statistically
the F2 layer changes during the passage of atmospheric grav-
ity waves (AGWs) and the generation of LS-TIDs. The layer
is first depressed and then enhanced. These enhancements
which have periodicities of 30 min or more, have been used
to track LS-TIDs. Figure 2a is a reproduction of Fig. 8
of Bowman (1965) and illustrates the nature of ionograms
which record daytime LS-TIDs. Distorted traces similar to
those recorded for medium-scale travelling ionospheric dis-
turbances (see e.g. Heisler, 1963, and references therein) are
present on the daytime ionograms. ThefoF2 fluctuations,
which also occur over periods of 30min or more, constitute
large-scale structures (LSSs) and can be positive or negative
as is shown by Fig. 7 of Karpachev et al. (2007). ThesefoF2
changes have been used by investigators to detect LS-TIDs
by using TEC perturbations, recorded by satellites, particu-
larly during daylight hours.

A recent paper by Ding et al. (2008) mainly on daytime
LS-TIDs during magnetic storms, will be considered in some
detail here. Ding et al. (2008) state [1] “Of the 135 LS-TID
events, 35 cases (26 %) occurred in the nighttime with their
possible source within the region of North America, accord-
ing to the variation of magnetic H component observed in
this region. In addition, the occurrence of LS-TIDs peaks
at 12:00 LT and at 19:00 LT.” The positive and negative per-
turbations of TEC recordings over North America were used
between 2003 and 2005. The mean velocity was 300 m s−1

and the directions of travel varied from approximately south
to south west, as their Fig. 1 shows. Figure 5a is the other
figure of particular interest recorded by Ding et al. (2008). It
shows, for the 100 daytime events, occurrence peaks around
midday and the pre-sunset interval. During relatively quiet
times, 14 daytime events were recorded with an average ve-
locity of 233 m s−1. All of these were recorded around mid-
day.

Since it is now known that LS-TIDs encircle the earth,
they will at times propagate during daylight hours. Ding
et al. (2007) have used satellite recorded TEC perturbations
for daytime events. It is of interest to know how iono-
grams record these events. Figure 2a shows, for Brisbane,
the recording of possibly an LS-TID event which encircles
the earth in 30 h (see arrows on Fig. 2a). This occurs from
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Fig. 3. From Khan (1970) reproductions of(a) Fig. 8 showing
height changes and(b) Fig. 12 involving foF2 changes, both(a)
and(b) associated with the LS-TID, shown by Fig. 2b.

01:40 LT on 9 July 1958 to 07:40 LT on 10 July 1958. The
daytime event shows distorted ionogram traces, off-vertical
traces at 07:30, 07:40 and 07:50 LT. Sporadic E is recorded
at 07:50 and 08:00 LT. There are no height rises of the main
trace, as occurs during night hours.

An early paper by Chan and Villard (1962) reports the re-
sults obtained using ground-based radio-wave transmissions
of about 20 MHz, over a period of 1 year. Nine LS-TIDs
were detected over North America during daylight hours and
travelling equatorwards. Recently Lei et al. (2008) reported
on an investigation into LS-TIDs which were detected over
Japan during the geomagnetic storm of 15 December 2006.
The analyses used GPS TEC fluctuations and other data. Lei
et al. (2008) state [1] “A prominent northward propagating
large-scale traveling ionospheric disturbance (LS-TID) dur-
ing daytime, seen by the GEONET total electron content

Table 4. LS-TID event at MAUI (26 October 1968).

h′F levels – UT
05 06 07 08 09 10 11 12 13

219 226 217 204 235 230 219 245 223

(TEC) data, was captured by the CMIT model”. Besides this
poleward propagating LS-TID, two other events were found
which were travelling towards the equator.

Khan (1970) used results recorded by seven Southern-
Hemisphere ionosondes to investigate a nighttime distur-
bance which propagates towards the pole. Khan (1970) iden-
tifies this disturbance as a large-scale travelling ionospheric
disturbance (LS-TID) in the F2 layer moving in a south-west
direction with a velocity of 350 m s−1. It was noted that ge-
omagnetic activity was low. Figure 2b is a reproduction of
Fig. 10 of Khan (1970) and shows the changes to1foF2
data at the various stations for the travelling disturbance.
At Brisbane, one of the stations, there are also associated
1foF2 fluctuations and a ground-based mircrobarograph dis-
turbance, as Fig. 5c of Khan (1970) shows. Bowman and
Shrestha (1966) reported the existence of an association be-
tween the occurrence of LS-TIDs and ground-level fluctua-
tions recorded by microbarographs. Also at Brisbane, the F2
layer height changes, which are mainly decreases, are shown
by Fig. 3a which is a reproduction of Fig. 8 of Khan (1970).
The positive1foF2 for six of the stations were averaged rel-
ative to Brisbane time, and the results are shown by Fig. 3b,
a reproduction of Fig. 12 of Khan (1970). It seems likely that
the observed1foF2 increases are a consequence of theh′F

decreases.
The disturbance shown by Fig. 2b can, by further exper-

imental evidence, be identified as an LS-TID. Although at
the time of recording, world wide the geomagnetic activity
is low, nevertheless, over a restricted region of the earth, it
is enhanced for a certain period. In particular three stations
on the Alaskan peninsula, College (geom. lat. 65), Whalen
(geom. lat. 61) and Barrow (geom. lat. 69), record increased
activity at this time. Table 3 lists the K indices for these sta-
tions on 26 October 1968, and indicates the sudden increases
in geomagnetic activity commencing at 06:00 UT. An LS-
TID generated at this time might be expected to arrive at the
low-latitude station, Maui, a few hours later. Theh′F tab-
ulations for Maui show that on 26 October 1968 the height
increases at 09:00 UT, as is shown by Table 4. Figure 2b in-
dicated that at the mid-latitude station, Brisbane, the distur-
bance arrives around 23:00 LT, which converts to 13:00 UT.
This time suggests that the LS-TID has crossed the equa-
tor propagating towards the south pole, with a velocity of
350 m s−1.
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Table 5. Bays, associated or not, with1h′Fa events (number of
occurrences, 1958–1960).

(a) No associated bays 65
(b) OHTa 52
(c) OHTb + EET 20
(d) EET only 35

Table 6. Encirclement times.

Times (hours) 26 27 28 29 30 31 32 33 34
Occurrences 0 3 1 14 11 17 7 2 0

3 Encirclements of one-hemisphere TIDs

Similar to the analyses used for pre-sunriseh′F increases at
Huancayo by Bowman and Mortimer (2010), hereh′F tab-
ulations for Moscow have been used for theRz max period
1958–1960. Over a three-hour interval (INTA), centered on
local midnight,h′F levels ≥40 km of the median of each
of the three hours are considered, and the highest value for
the three is designated for the interval. The local time (LT)
at Moscow is 2 h ahead of universal time (UT) and, as Ta-
ble 1 shows, its latitude is similar to that of Washington. The
INTA interval involves 21:00, 22:00 and 23:00 UT. Most of
theh′F highs can be shown to relate to geomagnetic bays at
appropriate earlier times thus indicating that these Moscow
events are associated with the propagation of LS-TIDs. Bays
listed for aRz max interval have been used (see Bartels et al.,
1962–1964). Theseh′F events were matched against bays
which occurred either 2±1 h earlier or 32±2 h earlier. These
longer intervals were used to detect LS-TIDs which encircle
the earth. There were 172 height-increase events (the abbre-
viation 1h′F will be used). For this association with bays,
these events were divided into four groups which are shown
by Table 5, with an abbreviation appropriate for each group.
These groups were (a) no associated bays, (b) bays identi-
fied a few hours earlier, (c) bays for both approximately 2 h
and 32 h earlier and (d) bays for approximately 32 h earlier
only. Each1h′Fa event was identified for one of the hours of
INTA, and the hour of the related bay was also noted. Thus
the times for the encirclements can be determined for the
55 EET events. The number of occurrences for these encir-
clement times are listed by Table 6. Most of the encirclement
times are recorded as 29, 30 or 31 h, as is expected.

The encirclement times shown by Table 6 involve bays
which occurred many hours before the1h′Fa events. Anal-
yses here have considered whether or not some of the LS-
TIDs, generated a few hours earlier and identified as OHTa
events, (see Table 5), also encircle at later times. Superposed-
epoch analyses have examined the statistical significance of
any results. However, as Tables 7 and 8 show, 4 encir-
clements of this kind have been found. For the analyses an-

Fig. 4. Superposed-epoch analyses have been used for the Moscow
OHTa events. The centre times indicates1h′F increases 30 h after
the Moscow events. Average1h′F displacements for times 6 h be-
fore and after the 30 h events are also shown.(a) 1958 and(b) 1959
and 1960.

other interval of the three hours (INTB) is used with a cen-
tre hour (04:00 UT) 30 h later than the centre hour of INTA
(22:00 UT). Thus INTB involves 03:00, 04:00 and 05:00
(UT). Each1h′Fa event associated with an OHTa event was
used to select the highest1h′Fb value from one of the three
INTB hours. Finally an average value for the 51 events is
determined along with the average1h′Fb values for 6 days
before and 6 days after for the one particular hour chosen for
the highest1h′Fb value. The results are shown by Fig. 4a for
1958 and Fig. 4b for 1959 and 1960. The centre date for 1958
is statistically significant, while for Fig. 4b the statistical sig-
nificance is not as large. The average sunspot number for
1958 was 158 whereas for 1959 and 1960 it was 135. This
suggests that for 1958 the LS-TID energies will be greater,
leading possibly to more encirclements.

4 Discussion and conclusions

Some of the literature, which reports on daytime LS-TIDs or
those which cross the poles, has been examined. It seems
likely that LS-TIDs regularly cross the equator. A paper
by Bowman and Mortimer (2010) has considered LS-TIDs
which sometimes encircle the earth. The tabulations ofh′F

for the high-latitude station, Moscow, are used here for anal-
yses involving not only their detection using bays but also the
possibility of encirclements. Of revelance to encirclements,
Francis (1975) reports that LS-TIDs p. 1011 “. . . ..propagate
freely to large horizontal distances with no loss of ampli-
tude”. Further he also states, again p. 1011 “. . . . . . even
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Table 7. LS-TID encirclements (MOSCOW – 1958 – UT).

h′F levels
Bay events EET events 00 01 02 03 04 05 06 07 08

(a) 2000 JAN 13 0500 JAN 15 325 280 240 215 235260 245 230 245
(b) 2100 FEB 12 0300 FEB 14 340 290 270310 250 265 250 245 230
(c) 2000 FEB 20 0300 FEB 22 350 310 320350 320 250 250 250 240
(d) 2100 MHR 3 0300 MAR 5 330 320 305 380 260 250 245 230 230

Table 8. Around the world travel times at Moscow (1958).

Bays from Bays from Moscow

(a) 13 Jan 2000 33 h 31 h
(b) 12 Feb 2100 30 h 28 h
(c) 20 Feb 2000 31 h 29 h
(d) 3 Mar 2100 30 h 28 h

spherically spreading gravity waves observed at fixed height
can appear to grow as they travel away from their source.
The Earth’s curvature presents no barrier to long distance
propagation of such waves because they are refracted around
the Earth by the gravitational field”. Some daytime iono-
grams which record an LS-TID are shown as part of Fig. 2a.
Also Fig. 2b illustrates nighttime ionograms for an LS-TID
which is propagating polewards. The range spread seen on
nighttime ionograms is not seen on daytime ionograms due
to small AGW amplitudes. This can be explained by UA-
NPD levels which maximize during the day (see Fig. 4b of
Bowman, 1991, 1992b). As Fig. 2a shows, daytime LS-TID
ionograms do not record height increases. It seems likely
that LS-TID height increases are also influenced by UA-NPD
levels, as do the wave amplitudes which are responsible for
spread-F traces on ionograms.

As their Fig. 5 shows, Ding et al. (2008) record that North-
American daytime LS-TIDs occur, for 100 events, around
two particular time intervals. One interval is centred on mid-
day in addition to 2 h before and after. The other interval
is most prominent at 19:00 LT with high occurrence 1 h be-
fore and 2 h after. The second peak around 19:00 LT oc-
curs about 8 h after the midday peak. It is suggested that
these two groups of maxima result from LS-TIDs generated
at both northern and southern auroral zones on the night-
side after they travel via the north pole. As an example
consider the generation of an LS-TID on the nightside by a
substorm-onset in the early evening hours or somewhat ear-
lier. If propagation occurs via the north pole, from the north-
ern auroral zone, the LS-TID can be expected at a Northern-
American station several hours later. On the nightside the
time of arrival could be around midnight. For the station on
the dayside this time will be around midday, as the two sides
will be separated by about 180◦ of longitude. The maxima

around 19:00 LT can be explained by considering propaga-
tion to North America from the southern auroral zone via
the north pole, As Fig. 1b of Bowman and Mortimer (2010)
shows the travel time from a zone to the equator is 4h, so that
between zones it is 8 h. Furthermore Ding et al. (2008) find
that twice as many events are recorded around midday than
around 19:00 LT. Also they find for 14 events during quiet
geomagnetic activity the average speed was 233 m s−1 com-
pared with the 300 m s−1 for the others. If these 14 events
are weaker they are less likely to travel until 19:00 LT.

Finally a few general comments can be made for this in-
vestigation. For the events LS-TID energies at both auro-
ral zones are expected to be similar. The existence of some
encirclements means that propagation modes over the poles
exist. For each event involving a riometer absorption and a
substorm onset, LS-TIDs travel towards the equator and later
over the poles. For each LS-TID travelling in one direction,
a complementary LS-TID of comparable magnitude can be
expected to exist travelling in the opposite direction.

Acknowledgements.Topical Editor P.-L. Blelly thanks two anony-
mous referees for their help in evaluating this paper.

References

Bartels, J., Romana, A., and Veldkamp, J.: Geomagnetic data
1958, 1959, 1960, rapid variations, Association of geomagnetism
and aeronomy, International union of Geodesy and Geophysics,
1962–1964.

Bowman, G. G.: Travelling disturbances associated with iono-
spheric storms, J. Atmos. Terr. Phys., 27, 1247–261, 1965.

Bowman, G. G.: A relationship between polar magnetic substorms,
ionospheric height rises and the occurrence of spread-F, J. At-
mos.Terr. Phys., 40, 713–722, 1978.

Bowman, G. G.: Ionospheric frequency spread and its relationship
with range spread in mid-latitude regions, J. Geophys. Res. 96,
9745–9753, 1991.

Bowman, G. G.: Some aspects of large-scale travelling ionospheric
disturbances, Planet. Space Sci., 40, 829–845, 1992a.

Bowman, G. G.: Some aspects of mid-latitude daytime ionospheric
disturbances, J. Atmos. Terr. Phys., 54, 1513–1521, 1992b.

Bowman, G. G. and Mortimer, I. K.: Some characteristics of
large-scale travelling ionospheric disturbances and a relation-
ship between the F2 layer height rises of these disturbances and
equatorial pre-sunrise events, Ann. Geophys., 28, 1419–1430,
doi:10.5194/angeo-28-1419-2010, 2010.

www.ann-geophys.net/29/2203/2011/ Ann. Geophys., 29, 2203–2210, 2011

http://dx.doi.org/10.5194/angeo-28-1419-2010


2210 G. G. Bowman and I. K. Mortimer: Some aspects of large-scale travelling ionospheric disturbances

Bowman, G. G. and Shrestha, K. L.: Ionospheric storms and small
pressure fluctuations at ground level, Nature, 210, 1032–1034,
1966.

Chan, K. L. and Villard, O. G. J.: Observations of large-scale trav-
eling Ionospheric Disturbances by Spaced-Path High-Frequency
Measurements, J. Geophys. Res., 67, 978–988, 1962.

Ding, F., Wam, W., Ning, B., and Wang, M.: Large-scale travelling
ionospheric disturbances observed by GPS total electron content
during the magnetic storm of 29–30 October, 2003, J. Geophys.
Res., 112, A06309,doi:10.1029/2006JA012013, 2007.

Ding, F., Wam, W., Liu, L., Afraimovich, E. L., Voeykov, S. V.,
and Perevalova, N. P.: A statistical study of large-scale travel-
ing ionosperic disturbances observed by GPS TEC during major
magnetic storms over the years 2003–2005, J. Geophys. Res.,
113, A00A01, doi:101029/2008JA013037, 2008.

Francis, S. H.: Global propagation of atmospheric gravity waves: A
review, J. Atmos. Terr. Phys., 37, 1011–1054, 1975.

Hajkowicz, L. A.: Conjugate effects in the generation of travelling
ionospheric disturbances (TIDs) in the F region, Planet. Space
Sci., 31, 1409–1413, 1983a.

Hajkowicz, L. A.: Auroal riometer absorptions and the F-region
disturbances observed over a wide range of latitudes, J. Atmos.
Terr. Phys., 73, 175–179, 1983b.

Hajkowicz, L. A.: The dynamics of a steep onset in the conjugate
auroral riometer absorption, Planet. Space Sci., 38, 127–134,
1990.

Heisler, L. H.: Observation of movement of perturbations in the F
region, J. Atmos. Terr. Phys., 25, 71–86, 1963.

Karpachev, A. T., Deminova, G. F., Beloff, N., Carozzi, T. D.,
Demisenko, P. F., Karhumen, T. J. T., and Lester, M.: Global
pattern of the ionospheric response to large-scale gravity waves,
J. Atmos. Sol.-Terr. Phys., 69, 906–924, 2007.

Khan, M. S. H.: Sporadic E structures and pressure oscillations at
ground level, Aust. J. Phys., 23, 719–730, 1970.

Lei, J., Burns, A. G., Tsugawa, T., Wang, W., Solomon, S. C., and
Wiltberger, M.: Observations and simulations of quasiperiodic
ionospheric oscillations and large-scale traveling ionospheric
disturbances during the December 2006 geomagnetic storm,
J. Geophys. Res., 113, AO6310,doi:10.1029/2008JA013090,
2008.

Ann. Geophys., 29, 2203–2210, 2011 www.ann-geophys.net/29/2203/2011/

http://dx.doi.org/10.1029/2006JA012013
http://dx.doi.org/10.1029/2008JA013090

