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Abstract. A new type of oscilliton (soliton with superim-
posed spatial oscillations) is described which arises in plas-
mas if the electron cyclotron frequency�e is larger than the
electron plasma frequencyωe, which is a typical situation
for auroral regions in planetary magnetospheres. Both high-
frequency modes of concern, the Langmuir and the whistler
wave, are completely decoupled if they propagate parallel to
the magnetic field. However, for oblique propagation two
mixed modes are created with longitudinal and transverse
electric field components. The lower mode (in the literature
commonly called the whistler mode, e.g. Gurnett et al., 1983)
has whistler wave characteristics at small wave numbers and
asymptotically transforms into the Langmuir mode. As a
consequence of the coupling between these two modes, with
different phase velocity dependence, a maximum in phase
velocity appears at finite wave number. The occurrence of
such a particular point where phase and group velocity coin-
cide creates the condition for the existence of a new type of
oscillating nonlinear stationary structure, which we call the
whistler-Langmuir (WL) oscilliton. After determining, by
means of stationary dispersion theory, the parameter regime
in which WL oscillitons exist, their spatial profiles are cal-
culated within the framework of cold (non-relativistic) fluid
theory. Particle-in-cell (PIC) simulations are used to demon-
strate the formation of WL oscillitons which seem to play
an important role in understanding electron beam-excited
plasma radiation that is observed as auroral hiss in planetary
magnetospheres far away from the source region.
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1 Introduction

Oscillitons are soliton-like nonlinear structures superim-
posed by spatial oscillations. Since their first description
in multi-ion plasmas (Sauer et al., 2001, 2003; Dubinin et
al., 2002) and for the whistler wave branch (Sauer et al.,
2002; Dubinin et al., 2003), there is a continuous effort to
find out whether they are of similar physical relevance as
the classical solitons in nonlinear media. Of particular in-
terest is the question regarding their role in explaining the
origin of waves measured in space. One obvious indica-
tion that oscillitons may be directly related to the generation
process of plasma waves is the observation of wave pack-
ets in different frequency regimes. Up to now, the most
compelling measurements have been done using the whistler
wave branch. In the paper by Dubinin et al. (2007) the
appearance of wave packets in the Earth’s magnetosphere
has been explained in terms of whistler oscillitons driven by
temperature anisotropy. Subsequent kinetic simulations by
Sydora et al. (2007) have shown that during the nonlinear
saturation of the temperature anisotropy instability a signif-
icant wave number shift (from largek values) to the Gen-
drin point (where phase and group velocity coincide) takes
place accompanied by the formation of whistler oscillitons.
As discussed in a recent paper by Sauer and Sydora (2010), a
similar process happens during beam excitation of obliquely
propagating whistler modes. The importance of whistler
Gendrin modes has also been pointed out recently by Verkho-
glyadova and Tsurutani (2009) showing that the measured
propagation direction of a chorus event in the Earth’s mag-
netosphere agrees well with the calculated Gendrin angle. In
this respect it is remarkable that Gendrin mode radiation in
the same whistler wave branch has been verified experimen-
tally by Stenzel et al. (2008) in a large laboratory plasma.
Oscilliton-like whistler wave packets below the electron cy-
clotron frequency occurred in an electron magnetohydrody-
namics (EMHD) spheromak as a consequence of localized
instabilities triggered by anisotropies of the electron distri-
bution function.
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In very recent papers the existence of oscillitons in wave
modes other than whistlers has been studied. Ma and Hirose
(2010) have shown that lower-hybrid (LH) oscillitons may
evolve from ion-acoustic/ion-cyclotron solitary waves if in
the underlying set of self-similar equations the effect of elec-
tron inertia is taken into account. Furthermore, the relevance
of the LH solitary structures in explaining small-scale den-
sity depletions observed by rocket and satellite experiments
has been discussed. Finally, Ma et al. (2011) have investi-
gated the charge non-neutrality effects on the excitation of
electrostatic ion-acoustic oscillitons.

With respect to Gendrin modes and their physical rele-
vance, plasmas in the regime where the electron plasma fre-
quency (ωe) is larger than the electron cyclotron frequency
(�e), i.e. G = �e/ωe < 1 have thus far been considered.
However, for the auroral region of planetary magnetospheres
the parameter regime is mainly such that�e ≥ ωe or G ≥ 1.
In order to include the large amount of satellite measure-
ments made in this regime we have extended the analysis of
stationary waves, in search of oscillitons, to high-frequency
waves in plasmas withG ≥ 1. With respect to wave phe-
nomena known as auroral hiss (e.g. Gurnett, 1966; Gurnett
et al., 1983), our main focus will be directed towards the
frequency range around the electron plasma frequency. For
parallel propagation three wave modes exist and they are the
Langmuir, whistler and L-mode.

At oblique propagation the intersection of the whistler and
Langmuir mode leads to mode splitting and associated for-
mation of two mixed modes (commonly called the whistler
and the Z-mode in the literature). Due to the merging of both
modes with different phase velocity versus wave number de-
pendence, the lower mode (henceforward called the whistler-
Langmuir mode) gets a phase velocity maximum at finite
wave number. This is a necessary condition for the exis-
tence of oscillating spatially growing structures, whose non-
linear identity is called the whistler-Langmuir oscilliton. Us-
ing linear dispersion theory we establish the parameter range
in which they exist. The Maxwell-fluid approach is used to
calculate the oscilliton profiles. In order to verify the exis-
tence of whistler-Langmuir (WL) oscillitons, particle-in-cell
(PIC) simulations have been carried out using electron beams
as a driver of the mainly electrostatic Langmuir waves. The
results show that the onset of nonlinear saturation is accom-
panied by the excitation of waves whose wave number shifts
more and more to the point of maximum phase velocity (gen-
eralized Gendrin point) where an accumulation of wave en-
ergy takes place. This behaviour illustrates the formation of
WL oscillitons in the quasi-stationary state and represents the
final nonlinear configuration of the beam-plasma interaction
process.

The paper is organized as follows: in Sect. 2, the disper-
sion of high-frequency waves in plasmas with�e > ωe is
considered, concentrating mainly on whistler and Langmuir
waves and their coupling at oblique propagation. In the view
of later nonlinear theory, stationary waves are of special in-

terest with emphasis on finding parameter regions that favour
the existence of growing, spatially oscillating solutions. In
Sect. 3 whistler-Langmuir (WL) oscillitons are described.
These are nonlinear, stationary structures which arise due to
the coupling between both underlying wave modes. Since
whistler-Langmuir waves can be driven by electron beams,
fluid dispersion theory is applied in Sect. 4 to study this
mechanism of instability. As suggested by other whistler
wave studies (Sydora et al., 2007; Sauer and Sydora, 2010),
results of particle-in cell (PIC) simulations are presented in
Sect. 5 which show that WL oscillitons are formed in the
quasi-stationary saturated state of the beam-plasma interac-
tion. Finally, we propose that WL oscillitons are a possible
source of auroral hiss and is an alternative explanation to the
commonly held view that auroral hiss originates from reso-
nance cone conditions. This crucial point is discussed in the
final Sect. 6.

2 High-frequency waves in plasmas with�e>ωe

2.1 Dispersion relation

The dispersion relation for high-frequency waves in a cold
plasma in which the electron cyclotron frequency is larger
than the electron plasma frequency (�e > ωe) is derived us-
ing the same tensor formalism as described in the recent pa-
per by Sauer and Sydora (2010). The only difference is that
the displacement current has to be taken into account and
therefore, the ratio between electron cyclotron frequency and
electron plasma frequency (G = �e/ωe) appears as an addi-
tional parameter.

Starting from the equation of motion of cold electrons
(protons are considered as immobile background) and the
Maxwell equations (see e.g. Baumjohann and Treumann,
1996), after linearization, one obtains

∂ve

∂ t
= −

e

m
(E+vexB0)

∂B

∂t
+∇xE = 0

−
1

c2

∂E

∂t
+∇xB = −µ0eneove

Using the ansatz of periodic solutionsE =

E∗(ω,k)exp(−iωt + ik ·x) one gets the following two
vector equations for the electron velocityV e and the electric
field E which are functions ofω (frequency) andk (wave
number)

Le·V e= ceE (1)

F ·E = cj (−NeV e) (2)
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Fig. 1. Dispersion branches for parallel propagating waves,G = 2.
(a) Cold plasma theory, the four modes are the Langmuir mode
(Lm), the whistler mode (W), the L-mode (L) and the R-mode up-
per branch (R);(b) real and(c) imaginary part of frequency versus
wave number from Vlasov approach usingβe = 0.002. The real
frequencies of both approaches agree very well. The onset of ki-
netic damping of the whistler mode (solid line) forkc/ωe > 1 and
the Langmuir mode (dashed line) in regionskλD ≥ 0.2 (λD is the
Debye length) is clearly seen.

−NeVe is the electron current in normalized units,Ne = 1.
The other quantities, such as the matricesL e, F and the co-
efficientsce, cj , are defined as follows:

Le= {{y2,−iy,0},{iy,y2,0},{0,0,y2
}}, (3)

F = {{x2cos2θ,0,−x2sinθ cosθ},{0,x2,0},

{−x2sinθ cosθ,0,x2sin2θ}}−G2y2I , (4)

where ce = cj = iy and I is the unit tensor:
I={{1,0,0},{0,1,0},{0,0,1}}.

The undisturbed magnetic fieldB0 is in the z-direction and
the propagation vectork = (ksinθ , 0,kcosθ) is inclined to it

Fig. 2. Frequencyω/ωe and phase velocityVph/c versus wave num-
ber kc/ωe for two propagation angles;(a) θ = 0◦, (b) θ = 15◦,
G = 5. Mode splitting which occurs at oblique propagation is
clearly seen. Coupling between the whistler mode (W) and the
Langmuir mode (Lm) leads to the whistler-Langmuir mode (WL).
The original whistler mode at large wave numbers is named the Z-
mode. The GSS point in Fig. 2b indicates maximum phase velocity.
The gap above this point, drawn as a shaded grey strip, marks the
region in which WL oscillitons are expected.

by the angleθ . All quantities are written in normalized units;
the frequency is in units of the electron cyclotron frequency,
y = ω/�e, the wave number is normalized to the reciprocal
electron skin length,x = kc/ωe, the electron velocity is in
units of the electron Alfv́en velocityVAe = B0/(µ0neme)

1/2

and the electric field in units ofE0 = VAeB0. By matrix mul-
tiplication of Eq. (2) withLe the electron velocity can be
eliminated which results in the equation forE asM ·E = 0
where the dispersion matrixM is given byM = L e ·F−y2I .
The condition for a non-trivial solution of the electric field
equation leads to the dispersion relationD(y,x) = Det[M ] =

0. Finally, one gets a polynomial iny (frequency) of fourth
order inz = y2 which can be written as

D(y,x) = C0+C1z+C2z
2
+C3z

3
+C4z

4 (5)

with the coefficients

C0 = −cos2θx4,

C1 = 1+(2+G2(1+cos2θ))x2
+(G2

+1)x4,

C2 = −3G2
−G4

−(4G2
+2G4)x2

−G2x4,

C3 = 3G4
+G6

+2G4x2

C4 = −G6

The procedure is equivalent to the magnetoionic theory in
which the dispersion relation is normally written in the form
(e.g. Stix, 1992; Baumjohann and Treumann, 1996; Willes
and Cairns, 2000)

AN4
+BN2

+C = 0 (6)
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Fig. 3. Frequency, wave number and (maximum) phase velocity at
the Gendrin point versus the propagation angleθ for three values
of G; G = 10 (solid line),G = 2.5 (short-dashed line) andG = 1.3
(long-dashed line). The dotted curve in the upper panel represents
the frequency dependence according to the resonance cone formula.

(N = kc/ω) with A = Ssin2θ + P cos2θ , B = (S2
−

D2)sin2θ +PS(1+ cos2θ) and C = P(S2
−D2) whereS,

D and P are given byS = (1/2)(R +L), D = (1/2)(R −

L),R = 1−ω2
e /(ω(+�e)), L = 1−ω2

e /(ω(−�e)) andP =

1−ω2
e/ω2. Our tensor formalism as described above, how-

ever, has the advantage that it is easier to handle with the
advanced symbolic tools ofMathematica.

Solutions of the dispersion relation (5) are shown in the
Figs. 1–3. For parallel propagation (θ = 0) the dispersion
of the high-frequency modes is illustrated in Fig. 1a) using
G = 2. There exist four modes which are the Langmuir mode
(Lm) at ω = ωe, the whistler mode (W) which resonates at

�e, the L-mode (L) and the R-mode upper branch (R). With
increasing wave number the last two modes become the free-
space light wave branch. In order to get an impression of
the modifications that may arise in the case of a kinetic treat-
ment, an example of Vlasov dispersion analysis is presented
in the lower two panels of Fig. 1 for the same parameters
(θ = 0, G = 2), but using a finite electron plasma beta of
βe = 0.002. From Fig. 1b it is visible that for all four modes
the real part of the frequency is only slightly modified in
comparison to the cold fluid results of Fig. 1a in regions of
large wave numbers in which kinetic damping appears, as
shown in Fig. 1c. The Langmuir wave (short dashed line)
is weakly damped as long askλD ≤ 0.1 (λD is the Debye
length). The cyclotron damping of the whistler wave (solid
line) becomes significant atkc/ωe> 1.

Whereas for parallel propagation (θ = 0) both modes of
concern, the Langmuir and the whistler wave, are completely
decoupled, mixed modes with longitudinal and transverse
electric field components are created at oblique propagation.
Such a kind of mode connection has been discussed in previ-
ous papers on “generalized Langmuir waves” (see e.g. Willes
and Cairns, 2000, and references therein) in order to explain
the appearance of transverse waves for beam-excited Lang-
muir waves. How the dispersion characteristics change in the
transition from parallel to oblique propagation, is shown in
Fig. 2, where the dispersion of the (lower) three wave modes
(Langmuir, whistler and L-mode) is shown for (a)θ = 0◦

and (b)θ = 15◦ takingG = 5. The mode splitting is clearly
seen and as a consequence of the merging of the whistler
and Langmuir mode, the resulting mixed mode (at oblique
propagation mostly called the whistler mode, Gurnett et al.,
1983) has whistler wave characteristics at small wave num-
bers and asymptotically transitions into the Langmuir mode.
A significant feature of this mode is the appearance of a
phase velocity maximum at finite wave numbers (kc/ωe< 1),
which results from the different (phase velocity-wave num-
ber) dependence of both merging modes, and the associated
gap above it. As known from previous studies of nonlin-
ear stationary structures on other wave branches (multi-ion
waves, whistler waves in plasmas withG < 1 and lower-
hybrid waves; see Sauer et al., 2001; Dubinin et al., 2003;
Ma and Hirose, 2010), such mode characteristics are favor-
able for the existence of oscillitons. For obvious reasons,
we use the term whistler-Langmuir oscilliton to describe the
mixed mode nonlinear stationary wave structure considered
in this work.

An interesting feature with respect to later discussions
about main wave characteristics related to oscillitons, con-
cerns their parameter dependence on the propagation angle
θ . Because of its general relevance for plasma wave emis-
sion, which has been pointed out in earlier studies by Gen-
drin (1961), Sauer et al. (2002) and Sydora et al. (2007),
the point of maximum phase velocity is marked in this
context by “GSS” to indicate the generalization of Gen-
drin’s concept originally developed for usual whistlers in
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overdense plasmas (G < 1). Using the basic dispersion
relation D(ω,k) = 0 according to Eq. (5), the frequency,
wave number and (maximum) phase velocity of the mixed
whistler-Langmuir mode at the GSS (generalized Gendrin)
point are plotted in Fig. 3 as a function ofθ for three values
of the parameterG = �e/ωe (G = 10, 2.5, 1.3). As seen in
the upper panel, forG > 1 and small propagation anglesθ ,
the “oscilliton frequency” is close to the electron plasma fre-
quency and decreases with increasingθ down to about the
lower-hybrid frequency, whereas the related wave number
varies betweenkc/ωe∼ 1 andkc/ωe≥ 0.2.

The angle dependence is an important signature which will
be used in later discussions of plasma radiation measured
by satellites in space. However, it should already be men-
tioned here, that the “oscilliton frequency” versusθ exhibits
a clear difference compared with the prediction of the reso-
nance cone formula (plotted in the upper panel of Fig. 3 as
a dotted line; see e.g. Eq. (1) of Gurnett et al., 1983) which
is normally used to explain the funnel-like wave spectra of
point sources in auroral magnetospheres.

2.2 Stationary waves

The first step in describing oscillitons is to analyse the cor-
responding linear stationary waves. From the dispersion re-
lation for high-frequency waves in a cold plasma, a phase
velocity gap exists in the region between the Langmuir mode
and the whistler mode, as illustrated in Fig. 2. It is in this re-
gion where complex wave numbers (k = kr + iki), represent-
ing oscillating growing solutions, should occur. To calculate
k = k(U), whereU is the velocity of the moving stationary
structure, the linear dispersion relation of the cold fluid ap-
proximationD(ω,k) = 0 in the form of Eq. (5) is used and
one replacesω with kU , that means,y → xU . The result is
a polynomial inz = x2 of third order

D(x,U) = C0+C1z+C2z
2
+C3z

3 (7)

with the coefficientsC0 to C3 given by

C0 = −U2

C1 = cos2θ +(2−G2
−G2cos2θ)U2

+(G4
−3G2)U4

C2 = (G2
−1)U2

+(4G2
−2G4)U4

+(G6
−3G4)U6

C3 = −G2U4
+2G4U6

−G6U8

Equation (7) represents the dispersion relation of stationary
high-frequency waves which can easily be solved by stan-
dard routines. An example is shown in Fig. 4 forG = 5 and
θ = 5◦ where “W” marks the whistler mode and “Lm” stands
for the Langmuir mode. The complex solutionk exists just in
the phase velocity gap marked in Fig. 2 by the shaded strip. It
is caused by the coupling between the whistler and the Lang-
muir mode at finite propagation angle. Correspondingly, the
imaginary part ofk disappears ifθ goes to zero. The dot-
ted curve in theki plot (lower panel of Fig. 4) belongs to the
phase velocity maximum of the whistler mode atkc/ωe> 1,

Fig. 4. Wave number (real and imaginary part) versus “oscilliton ve-
locity” U resulting from the coupling between Langmuir (Lm) and
whistler mode (W) at oblique propagation;G = 5, θ = 5◦. Around
U/c ∼ 0.9 growing oscillating waves (oscillitons) may exist.

like in a plasma with G<1 (see Fig. 7 in Sauer and Sydora,
2010), and will not further be considered here.

3 Whistler-Langmuir oscillitons

The procedure to calculate the spatial profiles of whistler-
Langmuir oscillitons as a particular type of stationary non-
linear structure in a magnetized electron-proton plasma with
G = �e/ωe > 1 is the same as previously described in other
papers on oscillitons, especially on whistler oscillitons in
overdense plasmas (G < 1); e.g. Sauer et al., 2002; Dubinin
et al., 2003; Cattaert and Verheest, 2005). Since whistler-
Langmuir oscillitons arise from the coupling between two
different wave modes whereby one of them, the Langmuir
mode, is mainly electrostatic because of charge separation,
the Poisson equation and the displacement current are essen-
tial terms that have to be taken into account.

As is common in soliton theory, the analysis of WL os-
cillitons is carried out in a slab model where all parameters
only depend on the x-coordinate. Here, the plasma forms
the rest frame in which the structures move with the veloc-
ity U in the x-direction. The undisturbed magnetic field
lies in the x-z plane, inclined by the angleθ relative to the
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Fig. 5. Spatial profiles of a whistler-Langmuir oscilliton takingG =

5 andθ = 5◦; from top to bottom: electron density normalized to
neo, x- and y-component of the electric field in units ofE0 = cB0
and the y-component of the magnetic field normalized toB0. The
oscilliton velocity was selected asM = U/c = 0.9085.

x-axis, B = B0(cosθ , 0, sinθ). No thermal effects are in-
cluded. Vlasov dispersion theory verifies the cold plasma
assumption since kinetic damping in the wave number range
of interest (kc/ωe≤ 1) of both the Langmuir and the whistler
wave mode is weak as long as for moderate values of G the
electron plasma beta remains small enough (βe≤ 0.02/G2).

Analysis of stationary solutions to the magnetized fluid-
Maxwell equations in which the time dependence appears
only in the formf (x −Ut) leads us to the following set of
equations, written in normalized form as:

dve,px

dx
=

qe,p

µe,p

(
Ex +ve,pyBz−ve,pzBy

)
/
(
M −ve,px

)
(8)

dve,py

dx
=

qe,p

µe,p

(
Ey −ve,pxBz+ve,pzBx

)
/
(
M −ve,px

)
(9)

Equations of motion for electrons and protons:

dve,pz

dx
=

qe,p

µe,p

(
Ez+ve,pxBy −ve,pyBx

)
/
(
M −ve,p x

)
(10)

Fig. 6. Spatial profiles of a WL oscilliton, as in Fig. 5. Here, the
parameters areG = 1.5 andθ = 30◦. The oscilliton velocity was
selected asM = 0.48965.

Continuity equations:

np =
np0M

(M −vpx)
; ne=

ne0M

(M −vex)
(11)

Ampere’s law:

dBy

dx
= +

npvpz−nevez

(1−M2) G
;

dBy

dx
= −

npvpy −nevey

(1−M2) G
(12)

Poisson equation:

dEx

dx
= (np−ne)/G (13)

Faraday equation:

Ey = M (Bz−Bz0) ; Ez = −M By (14)

The spatial coordinatex is normalized to the collisionless
electron skin depth (x → xωe/c). M is the oscilliton velocity
normalized toc, the speed of light,M = U/c and correspond-
ingly, all velocities are normalized toc. The electric field is
in units of E0 = cB0 whereB0 is the undisturbed magnetic
field value.µe,p is the relative mass (in units of the electron
massme), µe = 1, µp = mp/me; qe,p is the electric charge
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with qe = −1, qp = +1. Relativistic corrections in the equa-
tions of motion (see e.g. McKenzie et al., 2005) are not con-
sidered here since all velocities remain small compared with
c (v/c ≤ 0.1). The system of Eqs. (8)–(14) admits the fol-
lowing constants of motion (momentum flux conservation),
(e.g. McKenzie et al., 2004, 2005).

M (µevex+µpvpx)+0.5((B2
−1)+E2

x G2) = 0 (15)

M (µevey+µpvpy)+Bx By +Ex Ey G = 0 (16)

M (µevez+µpvpz)+Bx Bz+Ex EzG = 0 (17)

Therefore, the magnetic field components, for example, can
be expressed as a function of the velocity and electric field
components.

To find oscilliton-type solutions of the system of equations
given above, for a chosen set of parametersG andθ , one has
to select an “oscilliton speed”M for which, from linear sta-
tionary theory, growing solutions are predicted. As an initial
disturbance, only for the transverse electron velocity, a finite
valuevez� 1 in the range 10−5–10−4 was taken. All other
disturbances were set to zero. For such initial conditions the
resulting spatial profiles have almost the same amplitude and
width, which is a characteristic signature of solitary struc-
tures. Using the parameters of Fig. 4 (G = 5, θ = 5◦), spatial
profiles of a whistler-Langmuir oscilliton are shown in Fig. 5.
It has the typical wave packet structure with spatial oscilla-
tion wavelength approximatelyλ ∼ 6c/ωe, in agreement with
the predictions of Fig. 4 where the maximum ofki appears
at krc/ωe ∼ 1. Since the wave packet has a characteristic ex-
tension of about 100c/ωe, for a phase velocity close toc, the
wave packet repetition time is about 100ω−1

e .
Figure 6 shows another example of a more extended

whistler-Langmuir oscilliton usingG = 1.5 andθ = 30◦. Us-
ing Fig. 3, it is easy to determine that the corresponding oscil-
liton velocity decreases toM ∼ 0.5. Its chosen, exact value
is M = 0.48965. For these parameters, the WL wave packet
has an extension of about 500c/ωe, five times more than in
the previous case. The wave length of the spatial oscillitons
is similar as before determined bykc/ωe∼ 1.

4 Beam-excited whistler-Langmuir waves

Before presenting particle simulations of beam-excited
whistler-Langmuir waves, their regime of linear instabil-
ity is studied by means of fluid dispersion analysis. For
our situation of interest, with wave numbers in the range
kc/ωe∼ 1, cold theory is a sufficient approximation as a first
step. This is because of the corresponding small values of
kλD = (kc/ωe)(ve/c); as long as the electron thermal veloc-
ity ve is small compared to c this allows us to neglect Lan-
dau damping. The procedure to derive the dispersion rela-
tion D(ω,k) = 0 follows the same steps as described above,
but adding a second equation of motion for the beam elec-
trons and a corresponding contribution to the current into the

Fig. 7. Excitation of whistler-Langmuir waves by an electron beam
and related dispersion of the three wave modes in the vicinity of
the electron plasma frequencyωe for an (underdense) plasma with
G = �e/ωe = 5 at oblique propagation,θ = 30◦, see also Fig. 2.
The beam density isnb/no = 0.001 and beam velocityVb/c = 0.3.
The WL mode becomes unstable and has its maximum growth rate
at kc/ωe∼ 3.3, which follows from the resonance conditionkVb ∼

ωe. The notation “b/WL” should indicate that the instability arises
from the interaction of the beam (b) with the whistler-Langmuir
(WL) mode.

Maxwell equation; see also Sauer and Sydora (2010). The
electron beam is assumed to move parallel to the magnetic
field with a velocityVb. The resulting dispersion relation can
now be written as a polynomial of 12-th order inω or y, re-
spectively.

A representative example for the dispersion of beam-
excited WL waves, usingG = 5 andθ = 30◦, is shown in
Fig. 7 for a beam with a density ofnb/no = 0.001 and a
velocity of Vb/c = 0.3. The instability is of Cerenkov-type
and arises from resonant interaction of the beam modeω =

kVbcosθ with the mostly electrostatic part of the whistler-
Langmuir mode, very similar to beam-plasma interaction in
isotropic plasmas. The maximum growth rate appears at
kc/ωe∼ (Vb/c)

−1.

www.ann-geophys.net/29/1739/2011/ Ann. Geophys., 29, 1739–1753, 2011



1746 K. Sauer and R. D. Sydora: Whistler-Langmuir oscillitons and their relation to auroral hiss

Fig. 8. Excitation of both modes, the whistler-Langmuir mode and
the Z-mode (G = 1.5, θ = 30◦), by an electron beam with param-
etersnb/no = 0.01, Vb/c = 0.15. The notations “b/WL” and “b/Z”
should indicate the different origins of both instabilities.

For the case that both modes, the whistler-Langmuir mode
and the Z-mode, are not so largely separated, this means
G ∼ 1, and simultaneous excitation by one and the same elec-
tron beam is possible. Such a situation is shown in Fig. 8 us-
ing G = 1.5. The beam parameters arenb/no = 0.01,Vb/c =

0.15. The second maximum of instability atkc/ωe > 10 is
due to Cerenkov interaction with the Z-mode atω ∼ �e. Be-
cause of the large wave number, however, it may happen that
the growth rate is strongly reduced and, possibly, the sec-
ond instability is completely annihilated if Landau damping
effects are taken into account.

Next, modifications of the whistler-Langmuir wave disper-
sion in thermal plasmas are discussed, which occur if reso-
nant wave-particle interaction begin to play a role. From the
relationve/c = G (βe/2)−1 andG > 1, this may happen in
plasmas with relatively low electron beta. One example of
how the beam instability is affected by finite electron tem-
perature effects (βe= 0.001) is shown in Fig. 9 using Vlasov
dispersion theory. As shown in the figure, the most pro-
nounced effect is the kinetic damping of the beam mode itself
which leads to a reduced growth rate of the instability com-
pared with cold plasma conditions. With increasing electron
plasma beta an increasing beam density is necessary to com-
pensate the enhanced damping.

Fig. 9. Dispersion of beam-excited Langmuir waves, Vlasov ap-
proach: Real (top panel) and imaginary part of frequency (bottom
panel) versus wave numberk (all in normalized units) as result of
Vlasov dispersion theory. The parameters are:θ = 0◦ (parallel
propagation),G = 5, βe = 0.001, nb/no = 0.005, Vb/c = 0.5 and
Tb/Te = 0.5. The dotted line marks the whistler mode which is
nearly undamped within the considered wave number range. The
scale on top gives the wave number in units of the reciprocal Debye
lengthλD according tokλD = G (kc/ωe) (βe/2)1/2.

5 Kinetic simulations of beam-excited waves

Fully electromagnetic particle-in-cell (PIC) simulations (1-
D real space and 3-D velocity space) have been carried out
using the model described in our previous study of paral-
lel propagating whistler instability driven by electron tem-
perature anisotropy (Sydora et al., 2007). The background
magnetic field lies in the x-z plane, inclined by the angleθ

relative to the x-axis such thatB = B0(cosθ , 0, sinθ). Rel-
ativistic effects are included in the equations of motion for
the charged particles. Three species of plasma charged par-
ticles are included in the simulations: electron beam (nb),
background electrons (no) and ions. The plasma is as-
sumed to be cold and a realistic proton to electron mass ratio
(mi /me = 1837) used. The boundary condition on the parti-
cles and fields in the x-direction were taken to be periodic.
Particles are loaded uniformly in the x-direction and approx-
imately 100 particles per cell were used for each species.
The number of cells was taken asLx = 10241 with cell size
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Fig. 10. Temporal evolution of the electrostatic (upper blue curve)
and magnetic energy (red curve). The parameters used in the simu-
lation are:G = 5, θ = 5◦, nb/no = 0.002,Vb/c = 0.5. Saturation of
both components occurs at aboutωet = 180.

1 = 0.1c/ωe. The time stepωe1t = 0.05 was selected to en-
sure the Courant condition (c1t /1x < 1) for light waves is
satisfied.

The parameters chosen are similar to that of Fig. 7, but
with θ = 5◦ and a larger beam velocity:G = 5, nb/no =

0.002,Vb/c = 0.5. A higher beam velocity was chosen in or-
der to reduce the resonant wave number which follows from
the relationkc/ωe ∼ c/Vb. As a result, Fig. 10 shows the
temporal evolution of both the electrostatic and magnetic en-
ergy. After the end of the linear growth phase owing to res-
onant beam-plasma interaction, at aboutωet = 180, the sys-
tem begins to saturate and remains at nearly the same energy
level. Because of the small propagation angle and the asso-
ciated dominance of electrostatic (Langmuir) waves, it is not
surprising that the electrostatic energy exceeds its magnetic
counterpart by more than two orders of magnitude.

Interesting characteristics of the beam-plasma instability
and the subsequent nonlinear saturation become visible in
Fig. 11 where the temporal evolution of the magnetic field
componentBy is plotted versus the wave numberkc/ωe to-
gether with the linear dispersion of the relevant wave modes
in the frequency range close to the electron plasma fre-
quency. As predicted, maximum growth rate appears at
kc/ωe ∼ 2.2. As further observed in the figure, the instabil-
ity saturates at aboutωet = 180. In this context, a remarkable
signature is certainly the occurrence of a second maximum of
By in the vicinity ofkc/ωe= 1 at nearly the same time. Con-
sistent with our preceding studies on the physical meaning of
generalized Gendrin modes, we suggest that these waves rep-
resent whistler-Langmuir oscillitons. Obviously, they arise
from the accumulation of waves at the point where phase-
and group velocity coincide.

Altogether, we physically describe the following process
of beam-plasma interaction: (1) large-amplitude electro-
static waves are generated by resonant Cerenkov interaction.

Fig. 11. Temporal evolution of the magnitude of the magnetic field
componentBy (logarithmic scale) versus wave number (on top) and
related linear dispersion (on bottom). Solid curves represent the
real part of frequency; the dotted curve indicates the growth rate.
The maximum intensity ofBy at kc/ωe ∼ 2.2 in the upper color
plot results from resonant beam-plasma interaction. Atωet ≥ 200,
a second maximum appears nearkc/ωe= 1 and begins the accumu-
lation of wave energy at the Gendrin point which is related to the
formation of whistler-Langmuir oscillitons.

(2) The subsequent saturation process is accompanied by the
nonlinear excitation of waves whose spectrum shifts during
their temporal evolution more and more to shorter wave num-
bers. (3) If a generalized Gendrin point exists in that range
of wave numbers, the waves may accumulate around this
point, finally forming stationary nonlinear structures there.
In our particular case, that means the occurrence of whistler-
Langmuir oscillitons. The described process of nonlinear
wave generation in the whistler-Langmuir frequency range
is also evident from Fig. 12 in which the (ω, k) spectrum
of both the electric and magnetic field, calculated over the
whole time interval, is shown. Whereas the spectrum of the
electric field reflects predominately the source region around
kc/ωe ∼ 2.2, the shift of the magnetic field spectrum to the
Gendrin point (kc/ωe∼ 1), where the wave has mainly elec-
tromagnetic character, is clearly visible. The ratiocB/E is
close to unity there. Since waves withkc/ωe ∼ 1 are gener-
ally weakly damped, Gendrin mode waves, once generated
somewhere, may propagate over large distances without any
great dissipation.

Therefore, the PIC simulations have demonstrated that
one has to distinguish between two types of waves which
may be essential for the interpretation of hiss phenomena in
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Fig. 12. (ω, k) spectrogram of the electric (on top) and magnetic
field components (on bottom). Color scale indicates logarithmic
magnitude. The dashed white lines represent the dispersion curves
from fluid theory including the beam. The dotted black line marks
the light curve,ω/k = c, which forω > ωe is nearly identical with
the L mode. Maximum electric and magnetic field intensity appear
at the intersection of the whistler-Langmuir mode WL (ω ∼ ωe)

with the Cerenkov beam mode b (ω ∼ kVb). A second maximum
of magnetic energy appears at the Gendrin point nearkc/ωe = 1,
ω ∼ ωe.

magnetospheric plasmas. One occurs in the source region
and is directly related to the beam-plasma instability, which
generates mostly electrostatic waves with relative large wave
number,kc/ωe ≥ 5, depending on the beam velocity. The
other is associated with whistler-Langmuir oscillitons as a
class of stationary nonlinear waves withkc/ωe ∼ 1 which
may form away from the source as consequence of (nonlin-
ear) wave number shift from the range of unstable waves to
the Gendrin point where phase- and group velocity coincide.

6 Discussion and summary

The main focus of this paper was directed towards the de-
scription of whistler-Langmuir oscillitons as a new type of
solitary structure existing in plasmas in which the electron
cyclotron frequency (�e) is larger than or comparable to the
electron plasma frequency, i.e.G = �e/ωe ≥ 1. Another as-
pect was to show how they arise and to reveal their physi-
cal relevance in interpreting plasma radiation in space, espe-
cially auroral hiss in planetary magnetospheres. The prop-
erty G ≥ 1 has the consequence that both the whistler and
Langmuir wave, which intersect at parallel propagation as

independent modes, become coupled and develop into mixed
modes for propagation oblique to the background magnetic
field. On the other hand, this mode coupling, leads to a par-
ticular dispersion of the lower mode (here called the whistler-
Langmuir mode) which is characterized by the occurrence
of a Gendrin point where the phase- and group velocity co-
incide. Finally, this provides the requirement for the ex-
istence of stationary waves with growing oscillating struc-
ture which, in our particular case, means the existence of
whistler-Langmuir oscillitons.

Evidence of nonlinear stationary structures represents an
important first step in plasma theory. But, it remains incom-
plete if the problem concerning their driving mechanism is
not addressed. Since Langmuir waves can easily be excited
by beam-plasma instability, it is apparent that this process
is also the dominant source of whistler-Langmuir radiation.
In contrast to the purely electrostatic Langmuir waves well
studied in past, analogous investigations in magnetized plas-
mas at oblique propagation, however, require the full appa-
ratus of electromagnetic plasma dispersion theory and less
work on this has appeared in the literature (see e.g. Kennel,
1966; Maggs, 1976; Lin et al., 1984; Morgan et al., 1994;
Willes and Cairns, 2000; Kopf et al., 2010).

Our investigation consisted of two parts. In the first part,
we consistently applied the magnetized fluid-Maxwell the-
ory to both the: (i) full electromagnetic dispersion analysis
of beam-excited whistler-Langmuir waves and (ii) studies on
whistler-Langmuir oscillitons as a particular type of station-
ary nonlinear wave. In the second part, particle-in-cell (PIC)
simulations have been performed to understand how the two
aspects of the fluid approach (beam-plasma instability and
oscillitons) remain in relation to the evolution of the beam-
plasma instability and its nonlinear saturation.

There is clear evidence that the beam-instability in plas-
mas with G > 1 proceeds in the following steps: in the
linear stage, mostly electrostatic (Langmuir) waves are ex-
cited in the wave number range ofkc/ωe ∼ c/Vb where
Vb is the beam speed. Since the frequency at large wave
numbers and propagation angle are related by the resonance
cone condition, this explains why a funnel-like spectrum
is a typical feature of plasma radiation originating in the
source region where electron beams are present (Gurnett et
al., 1983). The subsequent process of nonlinear saturation of
the beam-plasma instability is characterized by the excitation
of waves whose spectral maximum shifts in time to smaller
and smaller wave numbers up to the Gendrin point where the
phase velocity reaches its maximum. Here, an accumulation
of wave energy in the form of whistler-Langmuir oscillitons
takes place. Because the oscilliton-related wave numbers are
kc/ωe∼ 1, the corresponding waves are only weakly damped
and so may propagate over large distances without great loss.

The observed wave number shift from large to small val-
ues seems to be a more general feature of nonlinear plasma
dynamics, completely different from linear processes owing
to density gradients as considered, for example, by Morgan
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Fig. 13.Temporal evolution of the magnitude of the magnetic com-
ponentBy versus wave numberkc/ωe (upper panel) and (ω, k)
spectrum ofBy (middle panel) from PIC simulations. The param-
eters are:�e/ωe= 2, θ = 30◦, nb/n0 = 0.005,Vb/c = 0.15. Lower
panel: Fluid dispersion of beam-excited whistler-Langmuir waves:
real (ωr) and imaginary part of frequency (ωi) versus wave num-
ber. The dotted curve represents the growth rate. Dashed lines on
bottom panel indicate strong damping appearing in case of kinetic
treatment.

et al. (1994). It has also been found in simulations in-
cluding other wave modes, e.g. whistler waves in plasmas
with G < 1 driven by temperature anisotropy (Sydora et
al., 2007; Schriver et al., 2010) and electromagnetic ion-
cyclotron (EMIC) waves in single- and multi-ion plasmas
(Silin et al., 2011; Usanova, 2010). In a recent study by
Schriver et al. (2010), which is directly relevant for whistler
emission in the inner magnetosphere, 2-D particle-in-cell
simulations have been carried out showing that the linearly
stable wave modes below 0.5�e are nonlinearly excited by
wave-wave coupling between two different wave modes of
the unstable spectrum.

It seems that the concept of nonlinear wave number shift
has important implications for radiation problems. For ex-
ample, following the paper by Morgan et al. (1994), stan-

Fig. 14. Spatial profile of the magnetic field componentBy at
ωet = 400 for the same run as in Fig. 13. The lower plot shows
a wave packet with an extension of about 12c/ωe which con-
sists of the short-scale beam-excited wave with a wave length of
λ ∼ 0.9c/ωe, in good agreement with the value following from the
resonance conditionkc/ωe∼ c/Vb (Vb/c = 0.15). The average ex-
tension of the wave packet itself is well related to the wave number
of the corresponding Gendrin mode,kc/ωe< 1; see Fig. 3.

dard models of auroral hiss generation and propagation suf-
fer from the obvious discrepancy between strong Landau
damping of whistler-Langmuir waves at large wave numbers
within the source region and the observational fact that au-
roral hiss may propagate over large distances. Keeping in
mind, however, the PIC simulation results shown in Figs. 11
and 13, after which spectral shift to smaller wave numbers
is an accompanying fundamental element of nonlinear wave
saturation, the above discrepancy finds a natural solution.

Another point that should be mentioned concerns the occa-
sional observation of plasma radiation above the local plasma
frequency as discussed in the paper by Kopf et al. (2010) for
auroral hiss at Saturn. They argue that such emission is not
allowed and try to explain the observed effect by Doppler
shift owing to spacecraft and plasma motions combined with
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Fig. 15. From beam-plasma instability to oscillitons, different
steps in the generation of plasma radiation under auroral condi-
tions,�e> ωe (schematic view). The beam-plasma instability gen-
erates predominately electrostatic waves in the wave number range
of kc/ωe ∼ c/Vb � 1, whereVb is the beam speed. After its sat-
uration a nonlinear wave number shift to small values takes place.
Finally, the wave energy accumulates around the point of maximum
phase velocity (Gendrin point) which ends with the formation of
whistler-Langmuir oscillitons atkc/ωe≤ 1.

the large wave numbers at the plasma resonance (ω ∼ ωe).
Our PIC simulations, however, give hints that the appear-
ance of electromagnetic waves above the electron plasma
frequency is possibly related to mode coupling which hap-
pens near the (cross-over) point where the Langmuir mode
merges with the other two modes (whistler mode, L mode).
This effect of mode coupling has already been discussed with
respect to Fig. 11 and is shown once again in Fig. 13 in a
more pronounced manner. As seen there, wave energy is
transported from the source region aroundkc/ωe ∼ c/Vb to
the cross-over region near to the Gendrin pointkc/ωe ∼ 1,

Fig. 16. Whistler-Langmuir waves in plasmas withG > 1:
(a) schematic view of the two types of wave generation. Accord-
ing to experimental conditions in the bottom panel,G = 1.5 was
taken. In the source region predominantly electrostatic waves with
kc/ωe� 1 are generated by temperature anisotropy and/or electron
beams. The frequency of these unstable waves is approximately
given by the resonance cone condition (dotted red line). Nonlin-
ear wave number shift into the regionkc/ωe ∼ 1 drives whistler-
Langmuir oscillitons which are probably the main contribution to
electromagnetic wave emission. The solid red curve represents their
frequency-angle dependence.(b) Spectrogram of the electric (up-
per panel) and magnetic components measured by the plasma wave
instrument (PWI) onboard the Polar spacecraft (adapted from San-
tolik and Gurnett, 2002).

which is marked by the dashed red circle in the bottom panel.
In the second panel of Fig. 13, which shows the magnitude
of the magnetic field componentBy for ω versusk, there
is a clear signature that indicates the wave modes above the
plasma frequencyωe, in particular the Z-mode, becomes ex-
cited. Our suggestion, supported by additional PIC simula-
tions, is that the excitation is related to mode coupling that
happens nearby the cross-over point. However, one has to
take into consideration the weak damping of the involved
wave modes in the wave number range ofkc/ωe ∼ 1. Al-
though such mode coupling is not directly evident from the
dispersion curves in the lower panel of Fig. 13, where both
wave modes, the whistler-Langmuir mode and the Z-mode
appear as independent entities, their connection becomes ap-
parent if the dispersion of the corresponding stationary waves
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Fig. 17. Whistler wave bands and gaps in plasmas withG = �e/ωe< 1. Left: the schematic view illustrates that the source region and the
region of whistler-Langmuir oscillitons are well separated and that frequency bands and gaps exist below and above�e/2. The red dotted
curve corresponds to the resonance cone formulaω/�e∼ cosθ of the source region. The red solid curve represents the (Gendrin) oscilliton
frequency versus the propagation angleθ according toω/�e = 0.5cosθ (see e.g. Sauer and Sydora, 2010). Right: frequency spectrogram,
color coded in electric field intensity (adapted from Schriver et al., 2010). The WBD wave data show multiple bands and gaps of whistler
wave emission, in reasonable agreement with the predictions in the left panel.

in Fig. 4 is considered. There is a region of spatially growing
solutions which connects both of them and may explain why
wave activity aboveωe can also exist.

The fact that in the final stage of the beam-plasma inter-
action, as described in Fig. 13, at least two modes with dif-
ferent wave numbers but comparable amplitudes are simul-
taneously present is also well seen at the spatial profiles of
the electric and magnetic field components. As an example,
in Fig. 14 the magnetic fieldBy(x) is shown atωet = 400
for the same numerical run as in Fig. 13. As expected, it
reveals a pronounced wave packet structure. Besides the
short-scale mode due to the beam excitation (kVb ∼ ωe) with
a wave length ofλ ∼ 0.9c/ωe, clearly visible in the high-
resolution plot of one selected packet, the individual wave
packets possess an average extension between about 8c/ωe
and 12c/ωe. This corresponds to a wave number range of
0.4≤ kc/ωe≤ 0.8 which is in good agreement with that of a
Gendrin mode that one gets from Fig. 3 ifθ = 30◦ andG = 2
are taken. Furthermore, it should be noted that the related
frequency of the Gendrin mode wave is close toω = 0.5ωe
and thus well separated from the Langmuir mode atω ∼ ωe.

Next, results of our theoretical work which is relevant
to the generation of plasma radiation by electron beams
under auroral conditions, i.e. for plasmas in which the
electron cyclotron frequency is larger than the electron
plasma frequency, should be summarized. Joint investiga-
tions in which dispersion analysis of beam-excited whistler-
Langmuir waves and magnetized fluid-Maxwell approach
of related oscillitons have been combined with PIC sim-
ulations, brought about an improved understanding of ba-
sic plasma phenomena arising during the temporal evolu-

tion of the wave generation process. In Fig. 15 a schematic
view is given: (A) the first step consists of the excitation of
quasi-longitudinal waves by beam-plasma instability; maxi-
mum instability appears at wave numbers ofkc/ωe ∼ c/Vb.
(B) The subsequent saturation process is accompanied by
a wave number shift in the direction of smaller values.
(C) If the (Gendrin) point of maximum phase velocity near
kc/ωe = 1 is reached, the wave energy accumulates there
and is associated with the formation of nonlinear stationary
waves in the form of whistler-Langmuir oscillitons. These
waves are weakly damped and may propagate over large dis-
tances. How the frequency of the two different wave types
varies with the propagation angleθ is illustrated in Fig. 16 for
G = 1.5 (upper panel) together with spectral measurements
(bottom two panels) of the electric and magnetic field com-
ponents by the plasma wave instrument (PWI) onboard of the
Polar spacecraft (Santolik and Gurnett, 2002). Whereas the
dominant electric field has funnel-like shape and can be ex-
plained by resonance cone generation, it seems that the mag-
netic components originate from both contributions, from
whistler-Langmuir oscillitons in the rangekc/ωe ≤ 1, (see
Fig. 3) and whistler mode waves propagating slightly off the
resonance cone,kc/ωe> 1.

In this respect, it is interesting to show a similar repre-
sentation as in Fig. 16, but for common whistlers in plasmas
with G < 1 (�e < ωe). Again, in the left panel of Fig. 17,
the frequency versus propagation angle for the two wave
types is plotted. The upper dotted red curve is the reso-
nance cone condition (ω ∼cosθ), the solid red curve repre-
sents the (Gendrin) frequency,ω ∼ 0.5cosθ , of whistler oscil-
litons (Sauer and Sydora, 2010). If one additionally assumes

www.ann-geophys.net/29/1739/2011/ Ann. Geophys., 29, 1739–1753, 2011



1752 K. Sauer and R. D. Sydora: Whistler-Langmuir oscillitons and their relation to auroral hiss

that in the interval of propagation angles 55◦
≤ θ ≤80◦ no

wave excitation is possible due to the absence of conditions
for wave-particle interaction, frequency bands of admissible
emission and gaps in which no waves may occur can be de-
duced. The upper band (above�e/2) belongs to the source
region of mainly electrostatic waves (kc/ωe� 1) and the ad-
jacent (upper) gap is a consequence of missing excitation of
waves propagating with anglesθ ≥55◦, see also Schriver et
al. (2010) and Liu et al. (2011). The lower frequency band
(below�e/2), on the other hand, results from whistler oscil-
litons which are driven by (unstable) upper band waves via
nonlinear spectral shift to the Gendrin point,kc/ωe= 1. The
subsequent (lower) gap, however, is directly related to the
upper gap assuming that the nonlinear wave number shift is
primarily accomplished in one direction. Finally, two low-
frequency bands may appear due to weakly damped waves
for nearly transverse propagation which are generated in both
regions, the source region and the region of lower-hybrid os-
cillitons, respectively. If we compare the predicted frequency
bands and gaps shown in the left panel of Fig. 17 with the
wave data from Cluster measurements (right panel), there is
a surprising accordance with our preceding predictions. Of
course, more detailed studies are required to find out what is
really behind this congruence.

Finally, we want to express our conviction that the
knowledge gained from this specific wave generation pro-
cess where whistler-Langmuir waves participate, can be gen-
eralized to wave phenomena in other frequency regimes. An
important lesson we have learned is that the predictions of
linear instability theory say very little about the wave charac-
teristics under the conditions of nonlinear saturation and may
even be misleading. Our main finding is that Gendrin modes
and related oscillitons seem to play an essential role in char-
acterizing the final nonlinear state of the system (Sydora et
al., 2007; Dubinin et al., 2007; Stenzel et al., 2008; Verkho-
glyadova and Tsurutani, 2009; Sauer and Sydora, 2010). In
this respect many further applications (such as electron and
ion cyclotron harmonic waves, multi-ion waves etc.) are
seen. Considerably improved observational techniques on
space satellites (e.g. by wave telescopes) which allow for bet-
ter determination of the wave characteristics than in previous
years, combined with the growing capabilities of kinetic sim-
ulations (PIC and Vlasov) make it possible to support our
view.
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