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Abstract. We present a novel approach for modulating radar
transmissions in order to improve target range and Doppler
estimation accuracy. This is achieved by using non-uniform
baud lengths. With this method it is possible to increase sub-
baud range-resolution of phase coded radar measurements
while maintaining a narrow transmission bandwidth. We first
derive target backscatter amplitude estimation error covari-
ance matrix for arbitrary targets when estimating backscatter
in amplitude domain. We define target optimality and dis-
cuss different search strategies that can be used to find well
performing transmission envelopes. We give several simu-
lated examples of the method showing that fractional baud-
length coding results in smaller estimation errors than con-
ventional uniform baud length transmission codes when es-
timating the target backscatter amplitude at sub-baud range
resolution. We also demonstrate the method in practice by
analyzing the range resolved power of a low-altitude meteor
trail echo that was measured using a fractional baud-length
experiment with the EISCAT UHF system.

Keywords. Radio science (Ionospheric physics; Signal pro-
cessing; Instruments and techniques)

1 Introduction

We have previously described a method for estimating range
and Doppler spread radar targets in amplitude domain at sub
baud-length range-resolution using linear statistical inversion
(Vierinen et al., 2008b). However, we did not use codes opti-
mized for the targets that we analyzed. Also, we only briefly
discussed code optimality. In this paper we will focus on
optimal transmission codes for a target range resolution that
is smaller than the minimum allowed baud-length. We will
introduce a variant of phase coding called “fractional baud-
length codes” that are useful for amplitude domain inversion
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of range and possibly Doppler spread targets, when a bet-
ter resolution than the minimum allowed radar transmission
envelope baud-length is required.

The method introduced in this study differs from the
Frequency Domain Interferometry (FDI) (Kudeki and Stitt,
1987) method as it does not require the target scattering to
originate from a very narrow layer within the radar scattering
volume. Assuming that the target is indeed a narrow enough
layer, the FDI method will probably perform better in terms
of range resolution. However, it is feasible to combine frac-
tional baud-length coding with FDI to obtain a shorter de-
coded pulse before the interferometry step.

In radar systems there is a limit to the smallest baud length,
which arises from available bandwidth due to transmission
system or licensing constraints. However, the transmission
envelope can be timed with much higher precision than the
minimum baud length. For example, the EISCAT UHF and
VHF mainland systems in Tromsø are currently capable of
timing the transmission envelope at 0.1 µs resolution, but the
minimum allowed baud length is 1 µs. Thus, it is possible to
use transmission codes with non-uniform baud-lengths that
are timed with 0.1 µs accuracy, as long as the shortest baud
is not smaller than 1 µs. This principle can then be used to
achieve high resolution (<1 µs) backscatter estimates with
smaller variance than what would be obtained using a uni-
form baud-length radar transmission code with baud lengths
that are integer multiples of 1 µs.

In this paper, we first derive the target backscatter am-
plitude estimation covariance for range and Doppler spread
radar targets when estimating target parameters in amplitude
domain. Then we define transmission code optimality for
a given target. After this, we present two search strategies
which can be used to find optimal transmission codes: an ex-
haustive search algorithm, and an optimization search algo-
rithm. As an example, we study code optimality in the case
of a simulated range spread coherent target. We also show an
example of a real fractional baud-length coding measurement
of a range spread meteor echo.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


1190 J. Vierinen: Fractional baud-length coding

2 Fractional baud-length code

We will treat the problem in discrete time. The measurement
sample rate is assumed to be the same as the required target
range resolution.

A transmission envelope can be described as a baseband
sequence ofL samples. If the transmission envelope has
much less baudsNb � L than samples, it is economical
to represent the transmission code in terms of bauds. In
this case, the envelope can be described in terms of the
lengthslk ∈ 0 ⊂ N, phasesφk ∈ P⊂ [0,2π) and amplitudes
ak ∈ 3 ⊂ [0,1] ⊂ R of the bauds. We can define an arbitrary
transmission envelope as

εt =

Nb∑
j=1

[t ∈ Bj ]aj e
iφj , (1)

where[·] is the so called Iverson bracket, which evaluates
to 1 if the logical expression is true – in this case when the
index “t” is within the set of indicesBj = {1+

∑j−1
i=0 li,2+∑j−1

i=0 li,··· ,lj +
∑j−1

i=0 li} within baudj and zero otherwise
(additionally, we definel0 = 0). In this study, the code power
is always normalized to unity

∑
∞

t=−∞
|εt |

2
= 1, which means

that the variances are comparable between transmission en-
velopes that deliver a similar amount of radar power. The
codes can also be normalized otherwise, if comparison be-
tween two envelopes of different total power is needed.

The transmission waveform definition is intentionally as
general as possible. Radar specific constraints can be im-
posed by defining the sets0, P, and3. These will be dis-
cussed later on in Sect.5.

3 Target estimation variance

The presentation here slightly differs fromVierinen et al.
(2008b). Instead of a Fourier series, we will use B-splines
to model the target backscatter.

Using discrete time and range, and assuming that our re-
ceiver impulse response is sufficiently close to a boxcar func-
tion that is matched to the sample rate, the direct theory for a
signal measured from a radar receiver can be expressed as a
sum of the range lagged transmission envelope multiplied by
the target backscatter amplitude

mt =

∑
r∈R

εt−rζr,t +ξt . (2)

Heremt ∈ C is the measured baseband raw voltage signal,
R = {Rmin,...,Rmax} ⊂ N is the target range extent,εt ∈ C is
the transmission modulation envelope,ζr,t ∈ C is the range
and time dependent target scattering coefficient andξt ∈ C is
measurement noise consisting of thermal noise and sky-noise
from cosmic radio sources. The measurement noise is as-
sumed to be a zero mean complex Gausian white noise with
variance Eξtξt ′ = δt,t ′ σ

2. Rangesr are defined in round-trip
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Fig. 1. Simplified range-time diagram of backscatter from a strong
narrow region (notice that this is not in round-trip time). In this
example there are two transmit samples and three ranges that cause
backscatter. The gray area represents the area where the backscatter
of one sample originates from, assuming boxcar impulse response.
A longer impulse response will cause more range spreading.

in round-trip time at one sample intervals, t also denotes time
in samples. By convention, we apply a range dependent con-
stant r2 delay, so that the range dependent backscatter ampli-
tude is ζr,t instead of ζr,t− r

2
. Fig. 1 depicts backscatter from

three range gates probed with two transmission samples. To
simplify matters, we use overlapping triangular range gates.

3.1 Coherent target

Now if the target backscatter is constant ζr,t = ζr, the mea-
surement equation becomes a convolution equation

mt =
∑
r∈R

εt−rζr + ξt, (3)

which is the most common measurement equation for radar
targets. Assuming that the target is sufficiently extended, this
can be solved by filtering the measurements with a filter that
corresponds to the frequency domain inverse of the transmis-
sion envelope (Sulzer, 1989; Ruprecht, 1989). However, for
a finite range extent, the filtering approach is not always op-
timal as it does not properly take into account edge effects,
such measurements missing due to ground clutter or receiver
protection. A sufficiently narrow range extent also results in
smaller estimation errors. In these cases, one should use a
linear theory matrix that explicitely defines the finite range
extent. We will define this as a special case of the incoherent
backscatter theory presented next.

3.2 Incoherent target

If the target backscatter is not constant, the range dependent
backscatter ζr,t has to be modeled in some way in order to
make the estimation problem solvable. One natural choice
is to assume that the target backscatter is a band-limited sig-
nal, which can be modeled using a B-spline (de Boor, 1978).
Our model parameters will consist of Ns control points that
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narrow region (notice that this is not in round-trip time). In this
example there are two transmit samples and three ranges that cause
backscatter. The gray area represents the area where the backscatter
of one sample originates from, assuming boxcar impulse response.
A longer impulse response will cause more range spreading.

time at one sample intervals,t also denotes time in samples.
By convention, we apply a range dependent constantr

2 de-
lay, so that the range dependent backscatter amplitude isζr,t

instead ofζr,t− r
2
. Figure 1 depicts backscatter from three

range gates probed with two transmission samples. To sim-
plify matters, we use overlapping triangular range gates.

3.1 Coherent target

Now if the target backscatter is constantζr,t = ζr , the mea-
surement equation becomes a convolution equation

mt =

∑
r∈R

εt−rζr +ξt , (3)

which is the most common measurement equation for radar
targets. Assuming that the target is sufficiently extended, this
can be solved by filtering the measurements with a filter that
corresponds to the frequency domain inverse of the transmis-
sion envelope (Sulzer, 1989; Ruprecht, 1989). However, for
a finite range extent, the filtering approach is not always op-
timal as it does not properly take into account edge effects,
such measurements missing due to ground clutter or receiver
protection. A sufficiently narrow range extent also results in
smaller estimation errors. In these cases, one should use a
linear theory matrix that explicitely defines the finite range
extent. We will define this as a special case of the incoherent
backscatter theory presented next.

3.2 Incoherent target

If the target backscatter is not constant, the range dependent
backscatterζr,t has to be modeled in some way in order to
make the estimation problem solvable. One natural choice
is to assume that the target backscatter is a band-limited sig-
nal, which can be modeled using a B-spline (de Boor, 1978).
Our model parameters will consist ofNs control points that
model the backscatter at each range of interest. The fre-
quency domain characteristics are defined by the spacing of
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the knots and the order of the splinen. Using the definition
of B-splines, the target backscatterζr,t is modeled using the
parametersPr,k ∈ C as:

ζ̂r,t =

Ns−1∑
k=0

Pr,kbk,n

(
t −1

L−1

)
, (4)

wherebk,n(·) is the B-spline basis function and coefficients
Pr,k are the control points withk ∈ {1,...,Ns}. We assume
that the control points are evenly spaced and that the end-
points contain multiple knots in order to ensure that the sec-
ond order derivatives are zero at both ends ofζ̂r,t . We also
define a special case of one spline control point asζ̂r,t = Pr =

ζr . This corresponds to a completely coherent target.
When Eq. (4) is substituted into Eq. (2), we get

mt =

∑
r∈R

Ns−1∑
k=0

Pr,kεt−rbk,n

(
t −1

L−1

)
+ξt . (5)

This model is linear in respect to the parametersPr,k and one
can conveniently represent it in matrix form as

m = Ax +ξ , (6)

wherem = [m1,...,mN ]
T is the measurement vector,A is

the theory matrix containing theεt−rbk,n(·) terms, x =

[P1,1,P1,2,...,PNr ,Ns]
T is the parameter vector containing

the control points andξ = [ξ1,...,ξN ]
T is the error vector with

the second moment defined as

EξξH
= 6 = diag(σ 2,...,σ 2). (7)

The number of parameters is the number of rangesNr times
the number of B-spline control pointsNs per range. The
number of measurementsN = Nr +L−1 is a sum of target
ranges and transmission envelope lengthL. As long asN ≥

NrNs and the theory matrix has sufficient rank, the problem
can be solved using statistical linear inversion. In practice,
the number of model parameters that can be succesfully mod-
eled with sufficiently small error bars depends on the signal
to noise ratio. The estimation of strong range and Doppler
spread echos is shown inVierinen et al.(2008b). Figure2
shows an example theory matrix for a target range extent
Nr = 14 withNs= 8 spline guide points per range. The trans-
mission code is a uniform baud-length 13-bit Barker code
with baud lengthlj = 10.

The probability density for Eq. (6) can be written as:

p(m|x) ∝ exp

(
−

1

σ 2
‖m−Ax‖

2
)

(8)

and assuming constant valued priors, the maximum a poste-
riori (MAP) estimate, i.e., the peak ofp(m|x) is

xMAP = (AHA)−1AHm (9)

and the a posteriori covariance is:

6p = σ 2(AHA)−1. (10)
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Fig. 2. A theory matrix for a range and Doppler spread target with
Nr = 14 range gates and Ns = 8 B-spline guide points per range.
The code is a simple 13-bit Barker code with 10 samples per baud.

and the a posteriori covariance is:

Σp = σ2(AHA)−1. (10)

3.3 Infinitely extended coherent target

In the special case of an infinitely extended coherent tar-
get (Ns = 1), the matrix A becomes a convolution opera-
tor and the problem can be efficiently solved in frequency
domain and numerically evaluated using FFT (Cooley and
Tukey, 1965). This case has been extensively discussed by,
e.g., Lehtinen et al. (2008a); Vierinen et al. (2006); Lehtinen
et al. (2004) and Ruprecht (1989). The covariance matrix
will be an infinitely extended Toeplitz matrix with rows1:

Σt = lim
M→∞

1

M
F−1
M


(
FM

{ ∞∑
τ=−∞

ετ ετ−t

})−1
 .

This result is also a fairly good approximation for a suffi-
ciently long finite range extent, differing only near the edges.
However, this result is not valid for a sufficiently narrow fi-
nite range extent or when the target also has Doppler spread.
Also, it is not even possible to calculate the covariance matrix
in this way for uniform baud-length codes when the baud-
length is larger than the target resolution. The reason for this
is that for an infinitely extended target there will be zeros
in the frequency domain representation of the transmission
envelope and because of this, the covariance matrix is singu-
lar. Even in the case of a finite range extent, all codes with

1the index t refers to the column of the matrix row. Operators
FM and F−1

M are the forward and reverse discrete Fourier trans-
forms of length M . In practice the covariance can be approximated
numerically with sufficiently large values of M .

Fig. 2. A theory matrix for a range and Doppler spread target with
Nr = 14 range gates andNs = 8 B-spline guide points per range.
The code is a simple 13-bit Barker code with 10 samples per baud.

3.3 Infinitely extended coherent target

In the special case of an infinitely extended coherent target
(Ns = 1), the matrixA becomes a convolution operator and
the problem can be efficiently solved in frequency domain
and numerically evaluated using FFT (Cooley and Tukey,
1965). This case has been extensively discussed by, e.g.,
Lehtinen et al.(2008); Vierinen et al.(2006); Lehtinen et al.
(2004) andRuprecht(1989). The covariance matrix will be
an infinitely extended Toeplitz matrix with rows1:

6t = lim
M→∞

1

M
F−1

M


(
FM

{
∞∑

τ=−∞

ετ ετ−t

})−1
.

This result is also a fairly good approximation for a suffi-
ciently long finite range extent, differing only near the edges.
However, this result is not valid for a sufficiently narrow fi-
nite range extent or when the target also has Doppler spread.
Also, it is not even possible to calculate the covariance matrix
in this way for uniform baud-length codes when the baud-
length is larger than the target resolution. The reason for this
is that for an infinitely extended target there will be zeros
in the frequency domain representation of the transmission
envelope and because of this, the covariance matrix is singu-
lar. Even in the case of a finite range extent, all codes with
uniform baud-length result in a theory matrix with strong lin-
early dependent components. An example of this is shown in
Sect.6. When using non-uniform baud-lengths the problem
can be avoided, since in this way it is possible to form a code

1The indext refers to the column of the matrix row. Operators
FM andF−1

M
are the forward and reverse discrete Fourier trans-

forms of lengthM. In practice the covariance can be approximated
numerically with sufficiently large values ofM.
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without zeros in the frequency domain. This is somehwhat
similar to random alias-free sampling (Shapiro and Silver-
man, 1960). Another analogy can be found in the use of ape-
riodic radar interpulse periods to overcome range-Doppler
ambiguities, e.g., (Farley, 1972; Uppala and Sahr, 1994; Pirt-
til ä and Lehtinen, 1999).

4 Code optimality

The performance of a certain code is determined by the tar-
get parameter estimation errors. These on the other hand are
determined by the a posteriori covariance matrix in Eq. (10).
Because we assume uniform priors, the covariance matrix
is fully determined by the target model (i.e., assumed target
characteristics) in theory matrixA. The theory matrixA con-
tains the transmission envelope and therefore it affects the
covariance matrix. The task of code optimization is to find
a covariance matrix that produces the best possible estimates
of the target.

In terms of the theory of comparison of measurements (Pi-
iroinen, 2005), a codeε1 is in every situation better than some
other codeε2 only if the difference of their corresponding co-
variance matrices62−61 is positive definite. Even though
it might be feasible use this as a criterion in a code search,
we chose a more pragmatic approach where we construct a
function that maps the the covariance matrix to a real number
� : RNp×Np → R while still retaining some of the informa-
tion contained in the covariance matrix. One such map is the
trace of the covariance matrix�(6) = tr(6), which is called
A-optimality in terms of optimal statistical experiment de-
sign. This has the effect of minimizing the average variance
of the model parameters. We will use this criterion through-
out this paper. Refer to, e.g.,Pukelsheim(1993) for more
discussion on optimization criteria.

For infinitely extended fully coherent targets, the trace of
the covariance matrix is infinite, but one can use the diagonal
value of one row of the covariance matrix. Because it is of
Toeplitz form, all diagonal values are the same, and this will
correspond to A-optimality.

5 Code search

The transmission envelope consisting ofNb bauds is fully
described by the baud lengthslk ∈ 0 ⊂ N, phasesφk ∈ P⊂

[0,2π) and amplitudesak ∈ 3 ⊂ [0,1] ⊂ R. These form the
set of parameters to optimize

(lk,φk,ak) ⊂ 0Nb ×PNb ×3Nb. (11)

In addition to this, the number of baudsNb in a code of length
L need not be fixed, as this depends on the lengths of the
individual baudslk.

For reasonably short codes with sufficiently small num-
ber of phases it might be possible to perform an exhaustive
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Fig. 3. Simplified block diagram of the optimization algorithm.

3. Change the length of a baud. Increase the length of one
randomly selected baud and decrease the length of an-
other randomly selected baud to maintain code length.

4. Change random baud phase and amplitude. Select an
arbitrary baud and slightly change phase and amplitude.

These incremental changes are designed in a way that they
always conform to the criteria imposed on the transmission
code. If this is not possible (i.e., if it is not possible to
add a new baud), the code remains unchanged. The imple-
mentation of slight change depends on the constrains placed
on the code. E.g., in the case of binary phase codes with
constant amplitude, a 180◦ phase flip would correspond to
a slight phase change, while the amplitudes would remain
unchanged. For a polyphase code, the slight change in
phase could be a small random change in the original phase
φ′k = φk + εφ, where εφ would be a small random number.

In order to initially randomize a code, we start with
any phase code that conforms with the constraints of baud
lengths, phases and amplitudes. This can be hard coded.
We then perform a certain number of the same incremen-
tal changes that we use in the optimization procedure, except
that we accept all of the changes.

6 Example: Range spread coherent target

To demonstrate the performance of non-uniform baud-length
codes when estimating a target at sub-baud resolution, we
simulated an echo using a constant amplitude binary phase
non-uniform baud-length code and traditional uniform baud-
length constant amplitude binary phase code of the same

length. In this example, we analyze a 10 sample wide
target at the resolution of one sample. The non-uniform
baud-length code was an optimized 11-bit code with baud
lengths {12, 12, 12, 12, 10, 13, 10, 11, 11, 15, 12} and phases
{1,−1, 1,−1, 1,−1, 1,−1, 1,−1,−1}. The smallest al-
lowed baud-length was 10 samples. For comparison we used
the well known 13-bit Barker code with a baud-length of 10
samples. Both simulations had the same instance of mea-
surement noise SNR = 3 and the same target amplitudes,
which in this case was an instance of the complex Gaussian
random NC(0, 1) process.

The results are shown in figure 4. It is evident that the
non-uniform baud-length code performs better in terms of
estimation errors. It is also evident that the Barker code suf-
fers from the fact that every baud is the same length – if the
range extent would have been infinite, the covariance matrix
would have been singular. Now the covariance matrix is only
near-singular. This is seen as large off-diagonal stripes in the
13-bit Barker code covariance matrix and correlated errors.
In the case of the 11-bit fractional code the off-diagonal ele-
ments are more uniform and the variance is also smaller.

7 Example: meteor echo structure

During the 15-19.11.2009 Leonid meteor campaign, we used
a set of 53 optimized fractional baud-length codes with 0.5
µs fractional resolution and 5 µs minimum baud length. The
transmission pulse length was 371 µs. The data was sam-
pled at sampled at 2 MHz sample rate. The large number
of pulses, together with the fairly long baud-length allowed
simultaneous analysis of space debris and the ionosphere,
while not sacrificing too much in terms of meteor head echo
parameter estimation accuracy. We used the EISCAT UHF
radar located in Tromso, with the 32 m antenna beam pointed
approximately 99 km above Peera, Finland, giving a zenith
angle of about 42◦. The radar peak power was approximately
1.4 MW.

During this campaign, one of the observed “strange” me-
teor echos was an echo at approximately 60 km. The meteor
head (or the dense cloud of plasma) is first seen decelerat-
ing from about 1 km/s to 0 km/s. After this, several disjoint
trail-like structures persist for nearly 2 seconds.

The meteor head echo was detected by searching for the
maximum likelihood parameters for a single echo moving
point-target model

mt = σεt−R0 exp{iωt}+ ξt, (12)

where σ is the backscatter amplitude, ω is the Doppler shift
and R0 is range (ξt denotes receiver noise). The maxi-
mum likelihood parameters were obtained using a grid search
of the likelihood function resulting from the measurement
model. This is necessary as the Doppler shift is usually sig-
nificant for meteor head echos at 929 MHz with such a long
pulse.

Fig. 3. Simplified block diagram of the optimization algorithm.

search. This consists of first determining all the different
ways to divide a code of lengthL into bauds of lengthslk.
After this, all unique orderings of the baud-lengths and per-
mutations of phases and amplitudes need to be traversed. The
problem of determining the different combinations of baud
lengths amounts to the problem of generating all integer par-
titions for L (Kelleher and O’Sullivan, 2009). When addi-
tional constraints to baud lengths are applied, the problem
is called the multiply restricted integer partitioning problem
(Riha and James, 1976). An efficient algorithm for iterating
through restricted partitions has been described byRiha and
James(1976).

The exhaustive approach fails already for reasonably small
problems due to the catastrophic growth of the search space.
Therefore we have to resort to some optimization method
in order to find optimal codes. Optimization methods have
been previously used for code searches at least bySahr and
Grannan(1993), and Nikoukar (2010). Our approach for
finding optimal codes is based on the simulated annealing
method (Kirkpatrick et al., 1983).

The optimization procedure that we have developed can be
used to find well performing non-uniform baud-length codes,
given a set of constraints. The constraints are given as the set
of allowed baud lengths0, the set of allowed phases P and
the set of allowed amplitudes3. We have previously used
a similar algorithm to optimize codes for infinitely extented
coherent targets and lag-profile inversion of incoherent scat-
ter radar (Vierinen et al., 2006, 2008a).

The main principle of the algorithm is very simple. We
first randomize a codeE0 ≡ (lk,φk,ak,Nb) that meets the
given constraints. Next, for a certain number of iterations
we incrementally attempt to improve this code with small
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random changesE′
= δEi . Hereδ is an operator that slightly

modifiesE in some way, while conforming to the constraints
imposed on the code. If any of these changes results in a code
that is better, we then save these parametersEi+1 = E′ and
continue to the next iteration. In order to reduce the chance of
the algorithm from getting stuck in a local minima, we also
sometimes (by a small random chance) allow changes that
do not improve the code. In order to achieve convergence,
the magnitude of the random changesδE is decreased as the
iteration advances. The algorithm is depicted in Fig.3. The
small incremental changes that we use are:

1. Split random baud. Select a long enough baud in the
code and split it into two bauds. Retain the original am-
plitude and phase on one of these bauds and slightly
randomly modify them on the other baud.

2. Remove a random baud. Increase a randomly selected
baud length.

3. Change the length of a baud. Increase the length of one
randomly selected baud and decrease the length of an-
other randomly selected baud to maintain code length.

4. Change random baud phase and amplitude. Select an
arbitrary baud and slightly change phase and amplitude.

These incremental changes are designed in a way that they
always conform to the criteria imposed on the transmission
code. If this is not possible (i.e., if it is not possible to
add a new baud), the code remains unchanged. The im-
plementation of “slight change” depends on the constrains
placed on the code. E.g., in the case of binary phase codes
with constant amplitude, a 180◦ phase flip would correspond
to a slight phase change, while the amplitudes would re-
main unchanged. For a polyphase code, the slight change in
phase could be a small random change in the original phase
φ′

k = φk +εφ , whereεφ would be a small random number.
In order to initially randomize a code, we start with

any phase code that conforms with the constraints of baud
lengths, phases and amplitudes. This can be hard coded.
We then perform a certain number of the same incremen-
tal changes that we use in the optimization procedure, except
that we accept all of the changes.

6 Example: range spread coherent target

To demonstrate the performance of non-uniform baud-length
codes when estimating a target at sub-baud resolution, we
simulated an echo using a constant amplitude binary phase
non-uniform baud-length code and traditional uniform baud-
length constant amplitude binary phase code of the same
length. In this example, we analyze a 10 sample wide
target at the resolution of one sample. The non-uniform
baud-length code was an optimized 11-bit code with baud
lengths {12,12,12,12,10,13,10,11,11,15,12} and phases

{1,−1,1,−1,1,−1,1,−1,1,−1,−1}. The smallest allowed
baud-length was 10 samples. For comparison we used the
well known 13-bit Barker code with a baud-length of 10 sam-
ples. Both simulations had the same instance of measure-
ment noise SNR= 3 and the same target amplitudes, which
in this case was an instance of the complex Gaussian random
NC(0,1) process.

The results are shown in Fig.4. It is evident that the non-
uniform baud-length code performs better in terms of esti-
mation errors. It is also evident that the Barker code suf-
fers from the fact that every baud is the same length – if the
range extent would have been infinite, the covariance matrix
would have been singular. Now the covariance matrix is only
near-singular. This is seen as large off-diagonal stripes in the
13-bit Barker code covariance matrix and correlated errors.
In the case of the 11-bit fractional code the off-diagonal ele-
ments are more uniform and the variance is also smaller.

7 Example: meteor echo structure

During the 15–19 November 2009 Leonid meteor campaign,
we used a set of 53 optimized fractional baud-length codes
with 0.5 µs fractional resolution and 5 µs minimum baud
length. The transmission pulse length was 371 µs. The data
was sampled at sampled at 2 MHz sample rate. The large
number of pulses, together with the fairly long baud-length
allowed simultaneous analysis of space debris and the iono-
sphere, while not sacrificing too much in terms of meteor
head echo parameter estimation accuracy. We used the EIS-
CAT UHF radar located in Tromso, with the 32 m antenna
beam pointed approximately 99 km above Peera, Finland,
giving a zenith angle of about 42◦. The radar peak power
was approximately 1.4 MW.

During this campaign, one of the observed “strange” me-
teor echos was an echo at approximately 60 km. The meteor
head (or the dense cloud of plasma) is first seen decelerating
from about 1 km s−1 to 0 km s−1. After this, several disjoint
trail-like structures persist for nearly 2 s.

The meteor head echo was detected by searching for the
maximum likelihood parameters for a single echo moving
point-target model

mt = σεt−R0 exp{iωt}+ξt , (12)

whereσ is the backscatter amplitude,ω is the Doppler shift
and R0 is range (ξt denotes receiver noise). The maxi-
mum likelihood parameters were obtained using a grid search
of the likelihood function resulting from the measurement
model. This is necessary as the Doppler shift is usually sig-
nificant for meteor head echos at 929 MHz with such a long
pulse.

The detected echo was then analyzed using a coherent
spread target model (Eq.3), which assumes that the backscat-
ter comes from an extended region with a uniform Doppler
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Fig. 4. Simulated coherent echo from a 11-bit non-uniform baud-length code that is 13 µs long and the smallest baud-length is 1 µs. When
compared to the performance of a uniform baud-length 13-bit Barker code with 1 µs baud length, the performance is again better. The
simulated target length is 10 µs and SNR = 3.

The detected echo was then analyzed using a coher-
ent spread target model (Eq. 3), which assumes that the
backscatter comes from an extended region with a uniform
Doppler shift. The analysis resulted in the generalized linear
least-squares parameter estimate for range dependent com-
plex backscatter amplitude, which in other words is a range
sidelobe-free estimate of the target backscatter. The range
resolution was 0.5 µs, even though the minimum baud-length
of the code was 5 µs. The Doppler shift obtained from the
point-target estimate was used in the spread-target estimate –
although this correction was not significant after the first 0.2
s of the echo as the Doppler shift was very close to 0.

The results in of the moving point and spread target esti-
mates are shown in Fig. 5. The moving point-model indi-
cates that after the initial deceleration, the trails have nearly
zero Doppler shift. The spread target results show that there
are up to seven different layers separated in altitude. The
strongest layer also shows range spread up to 500 m. Had
a uniform baud length code with 5 µs bauds been used, the
a posteriori variance would have been approximately twice
larger.

This is the first time that such echos have been seen in EIS-
CAT UHF observations. As micrometeoroids do not reach
such a low altitude, one possible explanation is that this is a
larger object. Perhaps a bolide. Because the altitude of this
mono-static detection was obtained assuming that the target
was within the main lobe of the antenna, another possible ex-
plantion is that this is a far side lobe detection of a combined
meteor head and specular trail echo directly above the radar
at approximately 85-90 km altitude. However, this would

require the target to be approximately 45◦ off axis.
Meteor trail echos are not typically observed in EISCAT

UHF observations as the high latitude location does not al-
low observing magnetic field-aligned irregularities. Also, the
trail electron density is typically too small to be observed at
UHF frequencies, making observation of specular trail echos
unlikely.

Recent observations at Jicamarca (Malhotra and Mathews,
2009) have indicated a new type of scattering mechanism that
does not yet have a physical explanation. These so called
Low Altitude Trail Echos (LATE) seem to have no preference
to the angle between the magnetic field and radar beam. They
also have different characteristics than specular trail echos as
they are typically observed only at low altitudes, usually to-
gether with head echos. Malhotra and Mathews (2009) sug-
gest that these echos are produced as a by-product of frag-
mentation. Our results show that there are at least seven dis-
tinct layers, which is an indication that the meteor has frag-
mented multiple times. However, this event is different from
those described by Malhotra and Mathews in the sense that
this trail is at a much lower altitude (60-65 km) and also the
trail is more long lasting. So it is difficult to say if the same
scattering mechanism applies here.

8 Conclusions

In this paper, we first describe the statistical theory of es-
timating coherent and incoherent radar targets in amplitude
domain. We then study target amplitude domain estimation
variance for different codes. Using these results, we show
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Fig. 4. Simulated coherent echo from a 11-bit non-uniform baud-length code that is 13 µs long and the smallest baud-length is 1 µs. When
compared to the performance of a uniform baud-length 13-bit Barker code with 1 µs baud length, the performance is again better. The
simulated target length is 10 µs and SNR = 3.

The detected echo was then analyzed using a coher-
ent spread target model (Eq. 3), which assumes that the
backscatter comes from an extended region with a uniform
Doppler shift. The analysis resulted in the generalized linear
least-squares parameter estimate for range dependent com-
plex backscatter amplitude, which in other words is a range
sidelobe-free estimate of the target backscatter. The range
resolution was 0.5 µs, even though the minimum baud-length
of the code was 5 µs. The Doppler shift obtained from the
point-target estimate was used in the spread-target estimate –
although this correction was not significant after the first 0.2
s of the echo as the Doppler shift was very close to 0.

The results in of the moving point and spread target esti-
mates are shown in Fig. 5. The moving point-model indi-
cates that after the initial deceleration, the trails have nearly
zero Doppler shift. The spread target results show that there
are up to seven different layers separated in altitude. The
strongest layer also shows range spread up to 500 m. Had
a uniform baud length code with 5 µs bauds been used, the
a posteriori variance would have been approximately twice
larger.

This is the first time that such echos have been seen in EIS-
CAT UHF observations. As micrometeoroids do not reach
such a low altitude, one possible explanation is that this is a
larger object. Perhaps a bolide. Because the altitude of this
mono-static detection was obtained assuming that the target
was within the main lobe of the antenna, another possible ex-
plantion is that this is a far side lobe detection of a combined
meteor head and specular trail echo directly above the radar
at approximately 85-90 km altitude. However, this would

require the target to be approximately 45◦ off axis.
Meteor trail echos are not typically observed in EISCAT

UHF observations as the high latitude location does not al-
low observing magnetic field-aligned irregularities. Also, the
trail electron density is typically too small to be observed at
UHF frequencies, making observation of specular trail echos
unlikely.

Recent observations at Jicamarca (Malhotra and Mathews,
2009) have indicated a new type of scattering mechanism that
does not yet have a physical explanation. These so called
Low Altitude Trail Echos (LATE) seem to have no preference
to the angle between the magnetic field and radar beam. They
also have different characteristics than specular trail echos as
they are typically observed only at low altitudes, usually to-
gether with head echos. Malhotra and Mathews (2009) sug-
gest that these echos are produced as a by-product of frag-
mentation. Our results show that there are at least seven dis-
tinct layers, which is an indication that the meteor has frag-
mented multiple times. However, this event is different from
those described by Malhotra and Mathews in the sense that
this trail is at a much lower altitude (60-65 km) and also the
trail is more long lasting. So it is difficult to say if the same
scattering mechanism applies here.

8 Conclusions

In this paper, we first describe the statistical theory of es-
timating coherent and incoherent radar targets in amplitude
domain. We then study target amplitude domain estimation
variance for different codes. Using these results, we show

Fig. 4. Simulated coherent echo from a 11-bit non-uniform baud-length code that is 13 µs long and the smallest baud-length is 1 µs. When
compared to the performance of a uniform baud-length 13-bit Barker code with 1 µs baud length, the performance is again better. The
simulated target length is 10 µs and SNR= 3.

shift. The analysis resulted in the generalized linear least-
squares parameter estimate for range dependent complex
backscatter amplitude, which in other words is a range
sidelobe-free estimate of the target backscatter. The range
resolution was 0.5 µs, even though the minimum baud-length
of the code was 5 µs. The Doppler shift obtained from the

point-target estimate was used in the spread-target estimate
– although this correction was not significant after the first
0.2 s of the echo as the Doppler shift was very close to 0.

The results in of the moving point and spread target esti-
mates are shown in Fig.5. The moving point-model indicates
that after the initial deceleration, the trails have nearly zero
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Doppler shift. The spread target results show that there are up
to seven different layers separated in altitude. The strongest
layer also shows range spread up to 500 m. Had a uniform
baud length code with 5 µs bauds been used, the a posteriori
variance would have been approximately twice larger.

This is the first time that such echos have been seen in EIS-
CAT UHF observations. As micrometeoroids do not reach
such a low altitude, one possible explanation is that this is a
larger object. Perhaps a bolide. Because the altitude of this
mono-static detection was obtained assuming that the target
was within the main lobe of the antenna, another possible ex-
plantion is that this is a far side lobe detection of a combined
meteor head and specular trail echo directly above the radar
at approximately 85–90 km altitude. However, this would re-
quire the target to be approximately 45◦ off axis.

Meteor trail echos are not typically observed in EISCAT
UHF observations as the high latitude location does not al-
low observing magnetic field-aligned irregularities. Also, the
trail electron density is typically too small to be observed at
UHF frequencies, making observation of specular trail echos
unlikely.

Recent observations at Jicamarca (Malhotra and Mathews,
2009) have indicated a new type of scattering mechanism that
does not yet have a physical explanation. These so called
Low Altitude Trail Echos (LATE) seem to have no preference
to the angle between the magnetic field and radar beam. They
also have different characteristics than specular trail echos as
they are typically observed only at low altitudes, usually to-
gether with head echos. Malhotra and Mathews (2009) sug-
gest that these echos are produced as a by-product of frag-
mentation. Our results show that there are at least seven dis-
tinct layers, which is an indication that the meteor has frag-
mented multiple times. However, this event is different from
those described by Malhotra and Mathews in the sense that
this trail is at a much lower altitude (60–65 km) and also the
trail is more long lasting. So it is difficult to say if the same
scattering mechanism applies here.

8 Conclusions

In this paper, we first describe the statistical theory of es-
timating coherent and incoherent radar targets in amplitude
domain. We then study target amplitude domain estimation
variance for different codes. Using these results, we show
that when sub baud-length resolution is needed, a transmis-
sion code that has non-uniform baud length results smaller
estimation variance than a traditional code with uniform baud
lengths. We then discuss a numerical method for finding
suitable constrained transmission codes. The principles are
demonstrated using simulated and real coherent radar echos.

The main application of non-uniform baud-length coding
will be in cases where there is good SNR and sufficient
receiver bandwidth, but a limited transmission bandwidth.
Although the examples in this study only deal with coher-
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Fig. 5. A low-altitude meteor echo at 60 km seen with the EISCAT
UHF radar on 19.11.2009 at 5:16 UT during a low-elevation meteor
experiment. The meteor echo can been decelerating from 1 km/s
down to 0, and then then echos from a trail-like structure are seen
for a while. The three top panels show the results from a moving
point-target model that determines the most likely range, Doppler
shift and power of a point target. The fourth panel shows the range
resolved backscatter power from a spread target model. After the
initial head echo, many layers appear at altitudes above the initial
detection. Most of the layers show 100-400 m range spread.

Fig. 5. A low-altitude meteor echo at 60 km seen with the EIS-
CAT UHF radar on 19 November 2009 at 05:16 UT during a low-
elevation meteor experiment. The meteor echo can been decelerat-
ing from 1 km s−1 down to 0, and then then echos from a trail-like
structure are seen for a while. The three top panels show the results
from a moving point-target model that determines the most likely
range, Doppler shift and power of a point target. The fourth panel
shows the range resolved backscatter power from a spread target
model. After the initial head echo, many layers appear at altitudes
above the initial detection. Most of the layers show 100-400 m
range spread.
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ent targets, the considerations also apply for amplitude do-
main estimation of strong range and Doppler spread (inco-
herent) echos, such as the ones described inVierinen et al.
(2008b). Examples of practical use cases include Lunar mea-
surements, range spread meteor trail studies, and artificial
ionospheric heating induced enhanced ion- and plasma-line
echos.

Non-uniform baud-lengths are also advantageous for
multi-purpose high power large aperture radar experiments
where one mainly observes targets that benefit from longer
baud lengths (e.g., ionospheric plasma or space debris), but
where one would still want to be able to analyze strong tar-
gets at sub-baud resolution.

Although we have only studied the non-uniform baud-
length coded transmission envelope performance in the case
of amplitude domain target estimation, the same principles
can also be applied to find optimal high resolution transmis-
sion codes for lag-profile inversion (Virtanen et al., 2008c)
using estimation variance calculations that can be found e.g.,
in Lehtinen et al.(2008).
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