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Abstract. Two systems of Lorenz-type equations modelling
solar magnetic activity are studied: Firstly a low order dy-
namic system in which the toroidal and poloidal fields are
represented by x- and y-coordinates respectively, and the hy-
drodynamical information is given by the z coordinate. Sec-
ondly a complex generalization of the three ordinary differ-
ential equations studied by Lorenz. By studying the Poincaré
map we give numerical evidence that the flow has an attrac-
tor with fractal structure. The period is defined as the time
needed for a point on a hyperplane to return to the hyper-
plane again. The periods are distributed in an interval. For
large values of the Dynamo number there is a long tail toward
long periods and other interesting comet-like features. These
general relations found for periods can further be physically
interpreted with improved helioseismic estimates of the pa-
rameters used by the dynamical systems. Solar Dynamic Ob-
servatory is expected to offer such improved measurements.

Keywords. Solar physics, astrophysics, and astronomy
(Flares and mass ejections; Magnetic fields; Stellar interiors
and dynamo theory)

1 Introduction

Understanding and being able to predict the length of a solar
cycle is of great importance. Not only per se, but also due to
its relation to the solar magnetic activity.

Many indicators of solar magnetic activity may be used to
describe the solar cycle length. InLundstedt et al.(2005)
andFligge et al.(1999) wavelet studies of the sunspot num-
ber were carried out. The length can be estimated from the
wavelet coefficient maximum (WCM). A length of about
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4300 days corresponds to an 11-year period. In Fig.1 the
length roughly shows an inverse relation to the activity. How-
ever sometimes a more complicated relation (Lundstedt et
al., 2005) also appears.

The sunspot number is a coarse indicator of the variation
of the toroidal magnetic field of the sun. During the Maunder
minimum (1645–1715) very few sunspot appeared and no
cyclicity is visible. The cycle length was also increasing just
before the start of the MM (Frick et al., 2001). However,
using 14C as and10Be indicator, cyclicity and periods are
found during the MM (Beer et al., 1998; Lundstedt et al.,
2006; Knudsen et al., 2009).

What can solar dynamo models tell us about the solar ac-
tivity cycle length, amplitude and processes behind them?
Briefly, a modulation of the 11-year cycle dynamo and cy-
cle length can be achieved by changing the three parameters,
ω,α and the meridional circulation rate of the dynamo (Dik-
pati and Gilman, 2001). Dikpati and Charbonneau(1999)
emphasize that the velocity of the meridional flow is a criti-
cal factor in determining the period of the dynamo cycle. A
least-squares fit on their numerical data gave the following
scaling law governing the dependence of the dynamo period
on model parameters:

T = 56.8u−0.89
0 s−0.13

0 η0.22
T (1)

where the time periodT is measured in years andu0, s0
andηT , i.e. the meridional flow speed, the source coefficient
(strength of source term representing the surface generation
of poloidal field due to the decay of tilted bipolar active re-
gions) and the turbulent diffusivity, are all measured in cgs
units. When they introduced a random variation of the merid-
ional velocity, they found that a long cycle followed a short
one, but the long-term average was fixed at 11 years by the
long-term average velocity of about 17 m/s.

The strength of the polar field, at minimum, has been used
as an indicator of the strength of the upcoming cycle (Sval-
gaard et al., 2005). It is based on the idea that the polar field
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Fig. 1. Upper panel time of wavelet coefficient maximum represent-
ing the length vs. time in year. Lower panel: Wavelet coefficient
maximum representing solar activity vs. time.

(as proxy of the poloidal field) is submerged, and strength-
ened by the differential rotation into a toroidal magnetic field
below the surface. When the toroidal field is strong enough
it starts to move upward and finally emerges through the so-
lar surface as a bipolar region and sunspots appear.Sval-
gaard et al.(2005) compared the strengths of the polar fields
at sunspot minima and estimated the next cycle (Cycle 24)
to be weak, as weak as around 1900. This estimate is in
accordance to what we found in wavelet ampligram studies
Lundstedt(2006b).

The most recent (2008) forecast by the Cycle 24 Prediction
Panel, asked for by NASA and organized by NOAA, is that
the sunspot maximum will reach 90 in May 2013. That will
be the weakest since 1928. A comprehensive description of
all the predictions on which the forecast is based is given in
Pesnell(2008). In this article we try to evaluate what can be
stated in general about a solar cycle length/period and about
the next. We therefore do not wish to restrict our study by us-
ing limited observations of indicators of the solar magnetic
activity, such as the sunspot number and to use statistical
methods. Instead we start with two different physics-based
dynamical systems (Tobias et al., 1995; Weiss et al., 1984)
modelling the solar magnetic activity. On the other hand
these two systems have also been shown to describe many
of the features in the sunspot variation. These two systems
are then studied mathematically, using topological methods,
to examine what can be said in general about a period and
the following period.

Fig. 2. Upper panel shows sunspot number. Lower panel shows
14C. MM stands for Maunder Minimum and DM for Dalton Mini-
mum.

2 Topology

Topology is formally defined in terms of set operations. Let
X be a set. A topology onX is a collection T of subsets of
X, called the open sets. The setX together with a topology T
is called a topological space. A subsetA is dense in a space
X if and only if A intersects every nonempty open set inX.

2.1 Dynamical systems

The basic goal of the theory of dynamical systems (Ka-
tok and Hasselblatt, 2006) is to understand the eventual or
asymptotic behaviour of an interative process. If the pro-
cess is a differential equation whose independent variable
is time, then the theory attempts to predict the ultimate be-
haviour of solutions of the equation in either the distant fu-
ture (t → +∞) or distant past (t → −∞).

A dynamical system is said to be chaotic (Devaney
chaotic) (Devaney, 2003) if there exists at least one dense
orbit and the set of periodic orbits is dense. Topological in-
variants of periodic orbits, such as the linking number (Lund-
stedt, 2009), can be used to identify the strange attractor
and the stretching and squeezing mechanisms (Gilmore and
Lefranc, 2002).
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Fig. 3. Trajectories of a dynamical system that are suggested to
mimic present solar sunspot cycles (Third set of parameters).

2.2 Solar cycles and dynamical systems

The regeneration of the solar cycle is given by,

BT
α
−→ BP

∇�
−−→ BT, (2)

whereBT is the toroidal,BP the poloidal field,� the rotation
andα is a pseudo-tensor requiring a turbulent model.

This is by the so calledω and theα effects (Ossendrijver,
2003).

In α� mean field modelsα has been suggested to be esti-
mated either only by the kinetic helicity or by,

α ∼ −
τc

3
[〈u ·∇ ×u〉−〈a ·∇ ×a〉], (3)

wherea = b
√

4πρ is the Alfvén speed based on the small-
scale magnetic component andτc the correlation time of the
turbulent motion (Charbonneau, 2005).

2.2.1 Low dimension Lorenz equation

Tobias et al.(1995) describe the modulation and occurrence,
of the solar cycle by using a low order dynamic system of
Lorenz equation type (Eqs. 6a, b, c). The toroidal (BT)
and poloidal fields (BP) are represented by the x- and the y-
coordinates, respectively. The hydrodynamical information
is given by the z-coordinate. They suggest that as the param-
eters are varied, a single fixed point loses stability in a Hopf
bifurcation to a periodic orbit, which then undergoes a sec-
ondary Hopf bifurcation creating a two-torus, and with the
torus in turn breaking down to give chaotic motion.

We solved this Lorenz system of equations for different
values of the parameters (a,c,d,λ,ω,µ,�), Table 1. The
cases correspond to increasing� values and Figs. 5, 7, and

(x, y, 0)
P (x, y, 0)

Fig. 4. The action of the mapP is that it flows the point(x,y,0)

until it hits Mµ at the pointP(x,y,0).

10 inTobias et al.(1995). λ represents the dynamo state and
µ the hydrodynamic state.� represents the rotation rate and
is related toλ andµ as

µ = �1/2, (4)

λ =
1

4
[(ln(�)exp(−�/100)]. (5)

The ω and theα effects are not explicitly given, but intro-
duced through�.

The system of differential equations is given by

ẋ = λx −ωy +azx +dx(x2
+y2), (6a)

ẏ = λy +ωx +azy, (6b)

ż = µ−z2
−(x2

+y2)+cz3, (6c)

wherea, c, d, ω, λ andµ are parameters.

2.2.2 Existence of a strange attractor

Let Mµ = {(x,y,z) : z = 0 andx2
+y2 > µ} be a plane with

a hole of radius
√

µ. The setMµ consists of the set of
points(x,y,z) in the planez = 0 such thaṫz < 0 according
to Eq. (6c). Hence, the flow defined by Eq. (6) intersects the
manifold Mµ transversely. We may therefore consider the
Poincaré mapP : Mµ → Mµ of the flow with respect to the
manifoldMµ. Figure4 shows a picture of the setMµ. Any
point (x,y,0) onMµ flows downward and if it returns toMµ

it flows up through the hole and then hitsMµ from above in
the pointP(x,y,0), as indicated at the picture.

By studying the Poincaré map we will give numerical evi-
dence that the flow (6) has an attractor with fractal structure.
We will concentrate on three sets of parameters, but empha-
sise that our method can be used for any set of parameters.
The three sets of parameters are shown in Table1.

If U ⊂ Mµ is a non empty and open set (open as a subset
of Mµ), such thatP(U) ⊂ U , then there exists an attracting
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Table 1. Three sets of parameters.

Set of
parameters a c d µ ω λ

first 3 −0.4 0.4 0.45 10.25 0.100542
second 3 −0.4 0.4 0.7 10.25 0.32009

third 3 −0.4 0.4 1.7 20.25 0.4

√

µ

A(r1, r2)

Mµ

Fig. 5. Picture of the setMµ and the setA(r1,r2).

closed set3 ⊂ U defined by

3 = closure
∞⋂

n=0

P n(U). (7)

This means that3 is the smallest closed set, such that ifp

is a point inU thend(P n(p),3) → 0 asn → ∞, whered

denotes the distance. In other words,3 is the smallest set
such that the orbit of all points inU is attracted to3. Thus,
in order to prove that there exists an attractor of the flow (6)
it is sufficient to find a setU ⊂ Mµ such thatP(U)⊂ U . We
will do this as follows.

Let
√

µ < r1 < r2. Consider the annulusA(r1,r2) =

{(x,y,z) : z = 0 andr2
1 < x2

+ y2 < r2
2 } ⊂ Mµ, see Fig.5.

For each set of parameters we will find numbersr1 and r2
such thatP(A(r1,r2)) ⊂ A(r1,r2). This implies that there is
an attractor insideA(r1,r2).

Using the method inTucker(2002), we use the classical
Runge-Kutta method to integrate the flow of points on the
circlesCr1 andCr2, where

Cr = {(x,y,0) : x2
+y2

= r2
},

until they return toMµ. Note thatCr1 and Cr2 are the
boundary of the setA(r1,r2). We thus calculateP(Cr1) and
P(Cr2).

If P(Cr1) ⊂ A(r1,r2) and P(Cr2) ⊂ A(r1,r2), it follows
by the continuity and invertibility ofP that P(A(r1,r2)) ⊂

A(r1,r2). This means that any point inA(r1,r2) returns to
A(r1,r2) as indicated in Fig.6.

A(r1, r2)

Fig. 6. Any point ofA(r1,r2) returns toA(r1,r2).

Table 2. Values ofr ′
1 and r ′

2 for different step sizes for the first
parameter set.

Step size r1 r2 r ′
1 r ′

2

0.02 1.16 1.33 1.16438 1.2353
0.01 1.16 1.33 1.16438 1.23497

0.001 1.16 1.33 1.16438 1.23496
0.0001 1.16 1.33 1.16438 1.23496

Since the numerical integration is associated with some
errors, it is preferable to have numerical evidence that
P(Cr1),P (Cr2) ⊂ A(r ′

1,r
′

2), with r1 < r ′

1 < r ′

2 < r2 and that
the differencesr ′

1−r1 andr2−r ′

2 are not too small.
After a few tries one easily finds values ofr1 and r2 for

each set of parameters, such that the numerical approxima-
tion P maps a set of 1024 equally spaced points onCr1 and
Cr2 into A(r ′

1,r
′

2). Table2–Table4 show, for different step
sizes, the largest and the smallest possible values orr ′

1 and
r ′

2 compatible with the calculated returns of 1024 points each
onCr1 andCr2.

Since in all three sets of parameters, we have good num-
merical evidence that the Poincaré mapP mapsA(r1,r2)

into itself, we feel confident that there is an attractor inside
A(r1,r2) defined by

3 = closure
∞⋂

n=0

P n(A(r1,r2)). (8)

Let us now investigate some of the properties of this at-
tractor. Let us first observe that because of Eq. (8), the
setP n(A(r1,r2)) is an approximation of the attractor3 if
n is sufficiently large. We will therefore visualise the set
P n(A(r1,r2)) for a differentn.

To get a picture of the attractor, we proceed as follows:
Switching to polar coordinates, the setA(r1,r2) is trans-
formed to the square

A(r1,r2) = {(φ,r) : 0≤ φ < 2π, r1 < r < r2}.

This is indicated in Fig.7. Let n be a natural num-
ber and(φ,r) ∈ A(r1,r2). If P −k(φ,r) ∈ A(r1,r2) for k =

Ann. Geophys., 28, 993–1002, 2010 www.ann-geophys.net/28/993/2010/
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Table 3. Values ofr ′
1 andr ′

2 for different step sizes for the second
parameter set.

Step size r1 r2 r ′
1 r ′

2

0.01 1.615 1.75 1.61713 1.71801
0.001 1.615 1.75 1.61713 1.71801

0.0001 1.615 1.75 1.61713 1.71801

Table 4. Values ofr ′
1 and r ′

2 for different step sizes for the third
parameter set.

Step size r1 r2 r ′
1 r ′

2

0.02 2.0 2.9 2.01503 2.79804
0.01 2.0 2.9 2.01503 2.79803

0.001 2.0 2.9 2.01503 2.79803
0.0001 2.0 2.9 2.01503 2.79803

0,1,...,n, then (φ,r) ∈ P n(A(r1,r2)). Hence by numer-
ically integrating points backwardsn times and checking
whetherP −k(φ,r) ∈ A(r1,r2) we get an approximation of
P n(A(r1,r2)). The approximations for the three sets of pa-
rameters are shown in Figs.8–10, for different values ofn.

2.2.3 Prediction of period length

Even though all points inA(r1,r2) return toA(r1,r2), differ-
ent points may need different amounts of time to return. We
will refer to this time as the period. If we have observed that
a point has a certain period, what be said about the period
of the next return. We pursue this problem in the following
way. For any point(x,y,0) in the attractor3 we want to
calculate the time needed for this point to return toP(x,y,0)

and then calculate the time needed forP(x,y,0) to return
to P 2(x,y,0). We then want to plot the second period as a
function of the first period in a diagram to see if there are any
correlations.

We cannot know exactly what points are in3, nor can
we calculate the period for all infinitely many points in3.
We therefore take the finitely many points inP n(A(r1,r2))

which we have found and are shown in Fig.8–10, and we
calculate the periods for these points. This was done, and
the result is shown in Fig.11–13. As is evident from these
figures, there are some correlations between a period and the
following period. This means that if one observes a period of
some certain length, it is possible to make non-trivial predic-
tions of the length of the following period, using only the ob-
served period. For instance, if we observe a period of length
2.5 in the case of the third set of parameters, then we can
predict that the next period will be of a length between 2.39
and 2.84.

0
r1

r2

2π

0
r1

r2

2π

r2

r1

Fig. 7. The transformation ofA(r1,r2) into polar coordinates.

2.2.4 Derivatives and Lyapunov exponents

Since the Poincaré mapP maps points in the planez = 0 onto
themselves, the derivativedpP of P at a pointp = (x,y,0) is
a linear map that maps vectors parallel to the planez = 0 onto
vectors parallel to the planez = 0. Hence the derivative can
be represented as a 2×2 matrix. Similarly, if we consider
any powerP n of P , wheren is a natural number, then we
may consider the derivativedp(P n) of P n at a pointp. As
with dpP we can representdp(P n) as a 2×2 matrix. One
can show that for almost all pointsp ∈ A(r1,r2) the limit

λ+(p) = lim
n→∞

1

n
logmax

v 6=0

|dp(P n)(v)|

|v|
, (9)

exists. The numberλ+(p) is called the largest Lyapunov ex-
ponent ofP at the pointp. If λ+(p) is positiv, this means
that in average, small neighbourhoods aroundp are stretched
a factor∼ eλ+(p)n in some direction under the action ofP n.
So if λ+(p) is positive, then there are arbitrary points close
to p that move away from the orbit ofp with exponential
speed. A positive Lyapunov exponent is therefore related to
a chaotic behaviour of the mapP , and it is then impossible
to make long time predictions since errors grow with expo-
nential speed.

We estimated λ+(p) for all points p that is in
P n(A(r1,r2)), which are our approximation of the attractor
3. Using the methods fromTucker(2002), the derivative of
P k was numerically calculated for points inP n(A(r1,r2)).
By Eq. (9) we then obtain an approximation of the Lyapunov
exponent by

www.ann-geophys.net/28/993/2010/ Ann. Geophys., 28, 993–1002, 2010
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0 2π
r1

r2

0 2π
r1

r2

0 2π
r1

r2

Fig. 8. First set of parameters: Pictures ofP n(A(r1,r2)) in polar
coordinates forn = 1,2,10.

0 2π
r1

r2

0 2π
r1

r2

0 2π
r1

r2

Fig. 9. Second set of parameters: Pictures ofP n(A(r1,r2)) in polar
coordinates forn = 1,2,3.
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0 2π
r1

r2

0 2π
r1

r2

0 2π
r1

r2

Fig. 10. Third set of parameters: Pictures ofP n(A(r1,r2)) in polar
coordinates forn = 1,2,3.

Fig. 11. Periods of the first parameter set.

Fig. 12. Periods of the second parameter set.

λ+(p) =
1

k
logmax

v 6=0

|dp(P k)(v)|

|v|
. (10)

Table 5 shows the obtained approximations of the Lya-
punov exponents.

2.2.5 Complex generalization of the Lorenz equation

Another equation system, describing the solar magnetic state,
is considered:Weiss et al.(1984) developed a complex gen-
eralization of the Lorenz equation:

Ȧ = 2DB −A, (11a)

Ḃ = iA−
1

2
i�A∗

−B, (11b)

�̇ = −iAB −ν�. (11c)

The dynamo numberD is given by:

D = α04�0r
3⊙/η2

t . (12)
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Fig. 13. Periods of the third parameter set.

Table 5. Approximations of the largest Lyapunov exponent for the
three sets of parameters.

Lyapunov exponents

Set of
parameters minλ+(p) averageλ+(p) maxλ+(p)

first 0.00403302 0.200217 0.285357
second 0.461513 1.78518 2.57619

third 0.383764 1.29197 2.41458

Parameters for the approximation

Set of
parameters n k grid size step size

first 10 30 1000×1000 0.0005
second 3 10 1000×1000 0.0005

third 3 30 1000×1000 0.0005

Hereα is explicitly mentioned.Kitiashvili and Kosovichev
(2008) also include magnetic helicity and herewithαm. The
dynamo number measures the strength of the two induction
effectsα0 and4�0, relative to the diffusivity.

We studied the Poincaré map of the flow returning to the
hyperplane Re(A) = 0, for the parametersD = 2 andν = 0.4,
using the Runge–Kutta method. Since this flow is in 6
real dimensions (3 complex dimensions), the analysis of this
Poincaré map is much more numerically involved than that
of the system (6). Starting with a point(A,B,�) we calcu-
lated a big number of returns to the hyperplane Re(A) = 0.
The returns were situated in a 5-dimensional box of size
4.1×3.4×4.0×3.0×6.0. This box was divided into a grid
of n5 boxes. The aim was to find a subset of these boxes
such that any point in any of the boxes returns to some of the
boxes. If such a subset is found, then we letU be the interior
of the union of the boxes. Then, as in the previous case, there
exists an attractor3 satifying Eq. (7).

Table 6. Estimating the dimension of the attractor of Eq. (11).

n N

9 55
16 107
25 169
27 187
64 644
81 911

n N

125 1800
243 6928
256 637
625 62 895

1024 241 900

However we cannot numerically check the return of any
point in the boxes, so instead we checked the returns ofm5

uniformly distributed points in each of the boxes. Some of
these points did not return to the boxes, so instead we added
new boxes containing these returns. For these new boxes,
we again checked the returns, and this process was repeated
several times. This process eventually stopped, and no more
boxes were needed. Hence this is a numerical evidence for
the existance of an attractor. These calculations were carried
out for m = 4 andn = 256, and smaller values of these pa-
rameters. Each case resulted in that a trapping region was
found.

To estimate the dimension of the attractor, we estimated
the attractor with a big number of returns of one point and
checked how many boxes from the above mentioned grid that
were needed to cover the returns. This was done with differ-
ent numbers of returns, and different grid sizes.

If the grid consists ofn5 boxes, then it is expected that
asymptoticallyns boxes are needed to cover the attractor. If
we letN denote the number of boxes in the cover, by plot-
ting logN against logn and fitting a straight line to the data,
the slope of this line is an estimate of the dimension of the
attractor. Table6 shows the results from an estimate of the
attractor using 108 points. There is a plot of this in Fig.14.
The slope of the line suggests a dimension of the attractor (as
a subset of the hyperplane) of about 1.7. Hence this suggests
that the dimension of the attractor of the flow is about 2.7.

We again studied the relationship between the periodn and
periodn+1. In both casesν < 0.4. In Fig.15, D was chosen
to be 2.0. Only two values for the following periods are ex-
pected. WhenD is sufficiently large andν < 1, then the pe-
riodic solution becomes unstable, first by multiply periodic
and finally by chaotic solutions. The periods are distributed
in intervals A comet-like distribution of points appears for
D = 5.0 and higher. Most of the points (period, following)
appear in the head and are therefore similar. Figure16shows
whenD was set to 5.0.

When D is increased shorter periods exist and also in-
teresting, pronounced comet-like tail structures. Figure17
shows whenD was set to 9.0. These tails illustrate how long
periods are followed by short periods and vice versa.

Ann. Geophys., 28, 993–1002, 2010 www.ann-geophys.net/28/993/2010/
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Fig. 14. Plot of the dimension estimate.

Fig. 15. Periodn vs.n+1 for D = 2.0.

3 Conclusions and future plans

The fundamental question we asked was, “What can be said
in general about a solar cycle/period and the following one?”
We used Poincaré maps to explore two dynamical systems:
A low-dimension Lorenz system, constructed byTobias et al.
(1995), and a six-dimensional complex generalization (Weiss
et al., 1984). The Poincaré maps gave numerical evidence
that the flow has an attractor with fractal structure. The pe-
riod was defined as the time needed for a point on a hyper-
plane to return the hyperplane again. The periods were dis-
tributed in an interval. For large values of the Dynamo num-
ber there is a long tail toward long periods and also other
interesting features. There is a tendency the long periods are
followed by short periods, and short periods are followed by
long periods.

These results can be compared with whatDikpati and
Charbonneau(1999) found. They emphasize that the veloc-
ity of the meridional flow is a critical factor in determining
the period of the dynamo cycle. When introducing a random

Fig. 16. Periodn vs.n+1 for D = 5.0.

Fig. 17. Periodn vs.n+1 for D = 9.0.

variation of the meridional velocity, they also found that a
long cycle followed a short.

In Fig. 18 the period of a sunspot cycle vs. the follow-
ing is plotted. There might be similar discerned structures;
long periods can be followed by a short or an average and
a short can be followed by a long. However, the number
of estimated solar cycle periods is very small. Some of the
estimates are also uncertain. The estimates were produced
by National Geophysical Data Center (NGDC) in Boulder,
USA.

We expect upcoming helioseismic observations with So-
lar Dynamics Observatory (SDO) (Hoeksema and the HMI
magnetic Team, 2008) will give us improved physical values
for the dynamical systems. More advanced equation systems,
including terms describing helicity, will also be explored.

The found interesting structures will herewith be further
studied and neural networks will be used to learn these pat-
terns for predictions (Lundstedt, 2005, 2008).

www.ann-geophys.net/28/993/2010/ Ann. Geophys., 28, 993–1002, 2010
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Fig. 18. Periodn vs.n+1 in years, based on sunspot numbers.
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