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Abstract. Two systems of Lorenz-type equations modelling 4300 days corresponds to an 11-year period. In Fithe
solar magnetic activity are studied: Firstly a low order dy- length roughly shows an inverse relation to the activity. How-
namic system in which the toroidal and poloidal fields are ever sometimes a more complicated relatibondstedt et
represented by x- and y-coordinates respectively, and the hyal., 2005 also appears.
drodynamical information is given by the z coordinate. Sec- The sunspot number is a coarse indicator of the variation
ondly a complex generalization of the three ordinary differ- of the toroidal magnetic field of the sun. During the Maunder
ential equations studied by Lorenz. By studying the Poincaréminimum (1645-1715) very few sunspot appeared and no
map we give numerical evidence that the flow has an attraceyclicity is visible. The cycle length was also increasing just
tor with fractal structure. The period is defined as the timebefore the start of the MMRrick et al, 2001). However,
needed for a point on a hyperplane to return to the hyperusing *C as and'°Be indicator, cyclicity and periods are
plane again. The periods are distributed in an interval. Forfound during the MM Beer et al. 1998 Lundstedt et aJ.
large values of the Dynamo number there is a long tail toward2006 Knudsen et a).2009.
long periods and other interesting comet-like features. These What can solar dynamo models tell us about the solar ac-
general relations found for periods can further be physicallytivity cycle length, amplitude and processes behind them?
interpreted with improved helioseismic estimates of the pa-Briefly, a modulation of the 11-year cycle dynamo and cy-
rameters used by the dynamical systems. Solar Dynamic Okele length can be achieved by changing the three parameters,
servatory is expected to offer such improved measurementsv, @ and the meridional circulation rate of the dynarimok¢

pati and Gilman200]). Dikpati and Charbonnea(1999

Keywords. Solar physics, astrophysics, and astronomyemphas'ze that the velocity of the meridional flow is a criti-

(Flares and mass ejections; Magnetic fields; Stellar interiorﬁcal factor in det_ermmmg the per!od of the dynamo cycle. .A
and dynamo theory) east-squares fit on their numerical data gave the following

scaling law governing the dependence of the dynamo period
on model parameters:

1 Introduction T =56.8u5 "%, 0139922 1)

Understanding and being able to predict the length of a solatVNere the time period” is measured in years ant, so

cycle is of great importance. Not only per se, but also due tg?"d77, i-e. the meridional flow speed, the source coefficient
its relation to the solar magnetic activity. (strength of source term representing the surface generation

Many indicators of solar magnetic activity may be used to of poloidal field due to the_dec_ay of tilted bipolar actiye re-
describe the solar cycle length. Lundstedt et al(2005 gions) and the turbulent diffusivity, are all measured in cgs
andFligge et al.(1999 wavelet studies of the sunspot num- units. When they introduced a random variation of the merid-
ber were carried out. The length can be estimated from thd2nal velocity, they found that a long cycle followed a short

wavelet coefficient maximum (WCM). A length of about ON€: but the long-term average was fixed at 11 years by the
long-term average velocity of about 17 m/s.

The strength of the polar field, at minimum, has been used

Correspondence ta:. Lundstedt as an indicator of the strength of the upcoming cy&ea(-
BY

(henrik@lund.irf.se) gaard et al.2005. It is based on the idea that the polar field
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Fig. 1. Upper panel time of wavelet coefficient maximum represent- K
ing the length vs. time in year. Lower panel: Wavelet coefficient = 02
maximum representing solar activity vs. time. 00
1500 1600 1700 1800 1900 2000
(as proxy of the poloidal field) is submerged, and strength- Years

ened by the differential rotation into a toroidal magnetic field

below the surface. When the toroidal field is strong enoughfid: 2. Upper panel shows sunspot number. Lower panel shows

it starts to move upward and finally emerges through the so- C. MM stands for Maunder Minimum and DM for Dalton Mini-

lar surface as a bipolar region and sunspots app8aal-

gaard et al(2005 compared the strengths of the polar fields

at sunspot minima and estimated the next cycle (Cycle 24p  Tgpology

to be weak, as weak as around 1900. This estimate is in

accordance to what we found in wavelet ampligram studiesTopology is formally defined in terms of set operations. Let

Lundstedt(20068. X be a set. A topology oX is a collection T of subsets of
The most recent (2008) forecast by the Cycle 24 Predictionx, called the open sets. The sétogether with a topology T

Panel, asked for by NASA and organized by NOAA, is that is called a topological space. A subsets dense in a space

the sunspot maximum will reach 90 in May 2013. That will X if and only if A intersects every nonempty open sekin

be the weakest since 1928. A comprehensive description of

all the predictions on which the forecast is based is given in2.1  Dynamical systems

Pesnel(2008. In this article we try to evaluate what can be ) i

stated in general about a solar cycle length/period and abouthe basic goal of the th_eory of dynamical systeris-(

the next. We therefore do not wish to restrict our study by us-10k and Hasselblat2008 is to understand the eventual or

ing limited observations of indicators of the solar magnetic @8ymptotic behaviour of an interative process. If the pro-

activity, such as the sunspot number and to use statisticdf€SS is a differential equation whose independent variable

methods. Instead we start with two different physics-basedS time, then the theory attempts to predict the ultimate be-

dynamical systemsTobias et al. 1995 Weiss et al. 1984 haviour of solutlon's of the equation in either the distant fu-

modelling the solar magnetic activity. On the other handtUreé ¢ — +oo) or distant past/(— —oo). _

these two systems have also been shown to describe many”A dynamical system is said to be chaotic (Devaney

of the features in the sunspot variation. These two system§haotic) Devaney 2003 if there exists at least one dense

are then studied mathematically, using topological methods'Pit and the set of periodic orbits is dense. Topological in-

to examine what can be said in general about a period an¥ariants of periodic orbits, such as the linking numbem(d-
the following period. stedt 2009, can be used to identify the strange attractor

and the stretching and squeezing mechaniggisnpre and
Lefrang 2002.
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P(z,y,0)

Fig. 4. The action of the may is that it flows the point{x, y,0)
until it hits M, at the pointP (x, y,0).

Fig. 3. Trajectories of a dynamical system that are suggested tol0 in Tobias et al(1995. 1 represents the dynamo state and
mimic present solar sunspot cycles (Third set of parameters). w the hydrodynamic stat& represents the rotation rate and
is related to. andu as

2.2 Solar cycles and dynamical systems = Q2 (4)
The regeneration of the solar cycle is given by, A= }[(m(g) exp(—$2/100)]. (5)
4
o vQ
Br— Bp— Br, 2 The w and thex effects are not explicitly given, but intro-
duced througlis2.

whereBT is the toroidal Bp the poloidal field 2 the rotation

. o Th m of differential ions is given
andw is a pseudo-tensor requiring a turbulent model. e system of differential equations s given by

20-(22;8 is by the so called and thex effects Ossendrijver i =x—wy+azx+dx (x2+y2)’ (6a)
In «$2 mean field models has been suggested to be esti- ¥ =*Y T @x +azy, (6b)

mated either only by the kinetic helicity or by, t=pu—22—(x°+y?) +cd, (6c)

aN_%[(u.vxu)_w.an)], 3) whereq, ¢, d, w, A andu are parameters.

wherea = b/47p is the Alfvén speed based on the small- 2-2-2 Existence of a strange attractor
scale magnetic component andthe correlation time of the

_ e 2, .2 -
turbulent motion Charbonnea2005. Let My, ={(x,y,2):2=0 andx+ y“> p} be a plane with

a hole of radius,/i. The setM,, consists of the set of
2.2.1 Low dimension Lorenz equation points (x,y,z) in the planez = 0 such that < 0 according

to Eq. 6¢). Hence, the flow defined by Ecg)(intersects the
Tobias et al(1995 describe the modulation and occurrence, manifold M, transversely. We may therefore consider the
of the solar cycle by using a low order dynamic system of Poincaré magP: M, — M, of the flow with respect to the
Lorenz equation type (Egs. 6a, b, c). The toroidBk)  manifold M, . Figure4 shows a picture of the séf,,. Any
and poloidal fields Bp) are represented by the x- and the y- point(x, y,0) on M, flows downward and if it returns tf,,
coordinates, respectively. The hydrodynamical informationit flows up through the hole and then hitg, from above in
is given by the z-coordinate. They suggest that as the paranthe pointP (x, y,0), as indicated at the picture.
eters are varied, a single fixed point loses stability in a Hopf By studying the Poincaré map we will give numerical evi-
bifurcation to a periodic orbit, which then undergoes a sec-dence that the flong) has an attractor with fractal structure.
ondary Hopf bifurcation creating a two-torus, and with the We will concentrate on three sets of parameters, but empha-

torus in turn breaking down to give chaotic motion. sise that our method can be used for any set of parameters.
We solved this Lorenz system of equations for different The three sets of parameters are shown in Table
values of the parameters,¢,d, 1,0, u,2), Tablel. The If U C M, is a non empty and open set (open as a subset

cases correspond to increasifigvalues and Figs. 5, 7, and of M,,), such thatP(U) C U, then there exists an attracting

www.ann-geophys.net/28/993/2010/ Ann. Geophys., 28, 932 2010
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Table 1. Three sets of parameters.

Set of
parameters a ¢ d uw w A
fi,st 3 —-04 04 045 1025 0.100542
second 3 -04 04 07 10.25 0.32009
third 3 -04 04 17 20.25 04
M,
A(T‘l,’l"z)

Fig. 5. Picture of the seM,, and the se#\(r1,r7).

closed set\ c U defined by

A =closur

n

o0
P (U).
=0

(7)

This means that\ is the smallest closed set, such thapif
is a point inU thend(P"(p),A) — 0 asn — oo, whered
denotes the distance. In other words,is the smallest set
such that the orbit of all points i&¥ is attracted toA. Thus,
in order to prove that there exists an attractor of the fley (
it is sufficient to find a set/ € M, such thatP(U) CU. We
will do this as follows.

Let /i <r1 <rz2. Consider the annulug\(ry,r2) =
{(x,y,2):2=0 andr12 <x24+y%< r22} c M,, see Fig.5.
For each set of parameters we will find numbersandr;
such thatP (A(r1,r2)) C A(r1,r2). This implies that there is
an attractor insidel (1, ).

Using the method ifTucker (2002, we use the classical
Runge-Kutta method to integrate the flow of points on the
circlesC,, andC,,, where

Cr={(x,y,0): x2+y2 =72},

until they return toM,. Note thatC,, and C,, are the
boundary of the set(r1,r2). We thus calculaté® (C,,) and
P(Cy,).

If P(C) C A(r1,r2) and P(C,,) C A(r1,r2), it follows
by the continuity and invertibility ofP that P(A(r1,r2)) C
A(r1,r2). This means that any point iA(r1,r2) returns to
A(r1,r2) as indicated in Figb.

Ann. Geophys., 28, 993002 2010
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A(r1,72)

Fig. 6. Any point of A(rq,r2) returns toA(rq,rp).

Table 2. Values ofr’l and ré for different step sizes for the first
parameter set.

Step size rq rp ri ré
0.02 1.16 1.33 1.16438 1.2353
0.01 1.16 1.33 1.16438 1.23497
0.001 1.16 1.33 1.16438 1.23496
0.0001 1.16 1.33 1.16438 1.23496

Since the numerical integration is associated with some
errors, it is preferable to have numerical evidence that
P(C,),P(Cy,) C A(ry,rp), with r1 <r; <r; <rz and that
the differences; —r1 andr, —r;, are not too small.

After a few tries one easily finds values af andr;, for
each set of parameters, such that the numerical approxima-
tion P maps a set of 1024 equally spaced pointpnand
C,, into A(ry,ry). Table2-Table4 show, for different step
sizes, the largest and the smallest possible value$ and
r, compatible with the calculated returns of 1024 points each
onC,, andC,.

Since in all three sets of parameters, we have good num-
merical evidence that the Poincaré mBpmapsA(ry,r2)
into itself, we feel confident that there is an attractor inside
A(r1,r2) defined by

o
A= closureﬂ P"(A(r1,1r2)).
n=0

)

Let us now investigate some of the properties of this at-
tractor. Let us first observe that because of ), the
set P"(A(r1,7r2)) is an approximation of the attractay if
n is sufficiently large. We will therefore visualise the set
P"(A(ry,rp)) for a differentn.

To get a picture of the attractor, we proceed as follows:
Switching to polar coordinates, the sétri,r2) is trans-
formed to the square

A@ry,r)={(p,r):0<¢p <2m, r1<r <rz}.

This is indicated in Fig.7. Let n be a natural num-
ber and(¢,r) € A(r1,r2). If P~%(¢p,r) € A(ry,ro) for k =

www.ann-geophys.net/28/993/2010/
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Table 3. Values ofri andré for different step sizes for the second

parameter set.
ST T
Step size rp r s

0.01 1615 175 1.61713 1.71801
0.001 1.615 175 1.61713 1.71801
0.0001 1.615 1.75 1.61713 1.71801

Table 4. Values ofri and ré for different step sizes for the third
parameter set.

T2

1

0 27
Stepsize r1 o g 5 l
0.02 2.0 29 2.01503 2.79804
0.01 20 29 2.01503 2.79803 T2
0.001 2.0 29 2.01503 2.79803
0.0001 2.0 29 2.01503 2.79803 .
0 2

Fig. 7. The transformation oA\ (r1,r») into polar coordinates.

0,1,...,n, then (¢,r) € P"(A(r1,r2)). Hence by numer-
ically integrating points backwards times and checking
whether P~*(¢,r) € A(r1,r2) we get an approximation of
P"(A(r1,r2)). The approximations for the three sets of pa- gjince the Poincaré mapmaps points in the plane=0 onto
rameters are shown in Fig8-10, for different values of. themselves, the derivativé, P of P ata pointp = (x, y,0) is

a linear map that maps vectors parallel to the plaa® onto
vectors parallel to the plane=0. Hence the derivative can
be represented as ax2 matrix. Similarly, if we consider
any powerP”" of P, wheren is a natural number, then we

2.2.4 Derivatives and Lyapunov exponents

2.2.3 Prediction of period length

Even though all points i (r1,r2) return toA(r1,r2), differ-

er_1t points may n_eed different a_lmounts of time to return. Wemay consider the derivativé, (P") of P" at a pointp. As

will r_efer to this tlme_ as th_e period. If we h_ave observed thgt ith d, P we can represent,(P") as a 2x 2 matrix. One

a point has a certain period, wh_at be said _about the p(_erlo%van show that for almost all poingse A(r1,r2) the limit

of the next return. We pursue this problem in the following

way. For any pointx,y,0) in the attractorA we want to 1 ld,(P™)(v)]

calculate the time needed for this point to returPia, y,0)  *~+(P)= lim Y log Q;%XT

and then calculate the time needed ftx, y,0) to return

to P?(x,y,0). We then want to plot the second period as aexists. The numbex  (p) is called the largest Lyapunov ex-

function of the first period in a diagram to see if there are anyponent of P at the pointp. If A (p) is positiv, this means

correlations. that in average, small neighbourhoods aroprate stretched
We cannot know exactly what points are iy nor can  a factor~ ¢*+(P)" in some direction under the action 8f'.

we calculate the period for all infinitely many points in So if A+ (p) is positive, then there are arbitrary points close

We therefore take the finitely many points R (A(r1,r2)) to p that move away from the orbit g with exponential

which we have found and are shown in F&:10, and we  speed. A positive Lyapunov exponent is therefore related to

calculate the periods for these points. This was done, ané chaotic behaviour of the map, and it is then impossible

the result is shown in Figl1-13. As is evident from these to make long time predictions since errors grow with expo-

figures, there are some correlations between a period and theential speed.

following period. This means that if one observes a period of We estimated A (p) for all points p that is in

some certain length, it is possible to make non-trivial predic- P" (A(r1,72)), which are our approximation of the attractor

tions of the length of the following period, using only the ob- A. Using the methods fromucker(2002), the derivative of

served period. For instance, if we observe a period of IengthP" was numerically calculated for points ' (A(r1,r2)).

2.5 in the case of the third set of parameters, then we camy Eq. @) we then obtain an approximation of the Lyapunov

predict that the next period will be of a length between 2.39exponent by

and 2.84.

: ©)
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ry ry

0 2 0 2

Fig. 8. First set of parameters: Pictures Bf (A(rq,r2)) in polar Fig. 9. Second set of parameters: Picture®8{A(r1,r2)) in polar
coordinates for =1,2,10. coordinates for =1,2, 3.
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r2

Uy

Fig. 10. Third set of parameters: Pictures Bf (A(r1,r2)) in polar

coordinates forn =1,2, 3.
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Fig. 11. Periods of the first parameter set.
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Fig. 12. Periods of the second parameter set.

1 |dp(P) ()]
A = Zlogmax————. 10
+(p) X 9#0 ] (10)
Table 5 shows the obtained approximations of the Lya-
punov exponents.

2.2.5 Complex generalization of the Lorenz equation

Another equation system, describing the solar magnetic state,
is consideredWeiss et al(1984 developed a complex gen-
eralization of the Lorenz equation:

A=2DB—A, (11a)
. 1

B:iA—EiQA*—B, (11b)
Q=—iAB—vQ. (11c)

The dynamo numbeb is given by:

D =aoAQOr%/ntz. (12)

Ann. Geophys., 28, 932 2010
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Table 6. Estimating the dimension of the attractor of EfL)
35 B " N n N
9 55 125 1800
16 107
: 243 6928
25 169
3t 2 ] 27 187 256 637
\ fg 64 644 625 62895
81 911 1024 241900
25 i JE—
? 25 3 35 4 However we cannot numerically check the return of any
point in the boxes, so instead we checked the returms®of
Fig. 13. Periods of the third parameter set. uniformly distributed points in each of the boxes. Some of

these points did not return to the boxes, so instead we added
new boxes containing these returns. For these new boxes,
we again checked the returns, and this process was repeated
several times. This process eventually stopped, and no more
Lyapunov exponents boxes were needed. Hence this is a numerical evidence for
the existance of an attractor. These calculations were carried
out form =4 andn = 256, and smaller values of these pa-
rameters. Each case resulted in that a trapping region was

Table 5. Approximations of the largest Lyapunov exponent for the
three sets of parameters.

Set of
parameters  miny(p) average.i(p) maxiy(p)

first  0.00403302 0.200217 0.285357 found.
second 0.461513  1.78518 2.57619 To estimate the dimension of the attractor, we estimated
third  0.383764 1.29197 241458 the attractor with a big number of returns of one point and
checked how many boxes from the above mentioned grid that
Parameters for the approximation were needed to cover the returns. This was done with differ-
Set of ent numbers of returns, and different grid sizes.
parameters n  k grid size  step size If the grid consists of:® boxes, then it is expected that
first 10 30 1000<1000  0.0005 asymptoticallyn® boxes are needed to cover the attractor. If
second 3 10 10001000 0.0005 we let N denote the number of boxes in the cover, by plot-
third 3 30 1000<1000 0.0005 ting logN against log and fitting a straight line to the data,

the slope of this line is an estimate of the dimension of the
attractor. Tableés shows the results from an estimate of the
attractor using 1®points. There is a plot of this in Fig4.
The slope of the line suggests a dimension of the attractor (as
dynamo number measures the strength of the two inductiot subset (?f the hyperplane) of about IHence t.h|s suggests
effectsao and AQo, relative to the diffusivity. that the dimension of the attractor of the flow is aboat 2

We studied the Poincaré map of the flow returning to the ~\We again studied the relationship between the periadd
hyperplane Re4) =0, for the parameter® = 2 andv =0.4,  Periodrn+1. In both cases < 0.4. In Fig.15, D was chosen
using the Runge—Kutta method. Since this flow is in 60 be 2.0. Only two values for the following periods are ex-
real dimensions (3 complex dimensions), the analysis of thig?ected. WherD is sufficiently large and < 1, then the pe-
Poincaré map is much more numerically involved than thatfiodic solution becomes unstable, first by multiply periodic
of the system@). Starting with a poin(A, B, Q) we calcu-  and finally by chaotic solutions. The periods are distributed
lated a big number of returns to the hyperplané/Re= 0. in intervals A _comet—llke dlstrlbutloq of points appears for
The returns were situated in a 5-dimensional box of sizeP =50 and higher. Most of the points (period, following)
4.1x3.4x4.0x3.0x6.0. This box was divided into a grid  @Ppear inthe head and are therefore similar. Figérshows
of n5 boxes. The aim was to find a subset of these boxegvhenD was set to 5.0.
such that any point in any of the boxes returns to some of the When D is increased shorter periods exist and also in-
boxes. If such a subset is found, then welldbe the interior  teresting, pronounced comet-like tail structures. Figlife
of the union of the boxes. Then, as in the previous case, thershows wherD was set to 9.0. These tails illustrate how long
exists an attractoa satifying Eq. {). periods are followed by short periods and vice versa.

Hereq is explicitly mentioned.Kitiashvili and Kosovichev
(2008 also include magnetic helicity and herewitl). The

Ann. Geophys., 28, 993002 2010 www.ann-geophys.net/28/993/2010/
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Fig. 16. Periodn vs.n+1 for D =5.0.
Fig. 14. Plot of the dimension estimate.
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Fig. 17. Periodn vs.n+1 for D =9.0.
Fig. 15. Periodn vs.n+1 for D =2.0.

variation of the meridional velocity, they also found that a

3 Conclusions and future plans long cycle followed a short.
In Fig. 18 the period of a sunspot cycle vs. the follow-
The fundamental question we asked was, “What can be saithg is plotted. There might be similar discerned structures;
in general about a solar cycle/period and the following one?’long periods can be followed by a short or an average and
We used Poincaré maps to explore two dynamical systemsa short can be followed by a long. However, the number
A low-dimension Lorenz system, constructedlmpias etal.  of estimated solar cycle periods is very small. Some of the
(1999, and a six-dimensional complex generalizatidfe{ss  estimates are also uncertain. The estimates were produced
et al, 1984. The Poincaré maps gave numerical evidenceby National Geophysical Data Center (NGDC) in Boulder,
that the flow has an attractor with fractal structure. The pe-USA.
riod was defined as the time needed for a point on a hyper- We expect upcoming helioseismic observations with So-
plane to return the hyperplane again. The periods were distar Dynamics Observatory (SDOHoeksema and the HMI
tributed in an interval. For large values of the Dynamo num-magnetic Tean2008 will give us improved physical values
ber there is a long tail toward long periods and also otherfor the dynamical systems. More advanced equation systems,
interesting features. There is a tendency the long periods ar@cluding terms describing helicity, will also be explored.
followed by short periods, and short periods are followed by The found interesting structures will herewith be further
long periods. studied and neural networks will be used to learn these pat-
These results can be compared with wiakpati and  terns for predictionslundsted; 2005 2008.

Charbonnea1999 found. They emphasize that the veloc-
ity of the meridional flow is a critical factor in determining
the period of the dynamo cycle. When introducing a random

www.ann-geophys.net/28/993/2010/ Ann. Geophys., 28, 932 2010
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