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Abstract. Similar to the Dst index, the SYM-H index may
also serve as an indicator of magnetic storm intensity, but
having distinct advantage of higher time-resolution. In this
study the NARX neural network has been used for the first
time to predict SYM-H index from solar wind (SW) and IMF
parameters. In total 73 time intervals of great storm events
with IMF/SW data available from ACE satellite during 1998
to 2006 are used to establish the ANN model. Out of them,
67 are used to train the network and the other 6 samples for
test. Additionally, the NARX prediction model is also val-
idated using IMF/SW data from WIND satellite for 7 great
storms during 1995–1997 and 2005, as well as for the July
2000 Bastille day storm and November 2001 superstorm us-
ing Geotail and OMNI data at 1 AU, respectively. Five in-
terplanetary parameters of IMFBz, By and totalB compo-
nents along with proton density and velocity of solar wind
are used as the original external inputs of the neural network
to predict the SYM-H index about one hour ahead. For the 6
test storms registered by ACE including two super-storms of
min. SYM-H< −200 nT, the correlation coefficient between
observed and NARX network predicted SYM-H is 0.95 as
a whole, even as high as 0.95 and 0.98 with average rela-
tive variance of 13.2% and 7.4%, respectively, for the two
super-storms. The prediction for the 7 storms with WIND
data is also satisfactory, showing averaged correlation coeffi-
cient about 0.91 and RMSE of 14.2 nT. The newly developed
NARX model shows much better capability than Elman net-
work for SYM-H prediction, which can partly be attributed to
a key feedback to the input layer from the output neuron with
a suitable length (about 120 min). This feedback means that
nearly real information of the ring current status is effectively
directed to take part in the prediction of SYM-H index by
ANN. The proper history length of the output-feedback may
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mainly reflect on average the characteristic time of ring cur-
rent decay which involves various decay mechanisms with
ion lifetimes from tens of minutes to tens of hours. The El-
man network makes feedback from hidden layer to input only
one step, which is of 5 min for SYM-H index in this work and
thus insufficient to catch the characteristic time length.

Keywords. Magnetospheric physics (Solar wind-
magnetosphere interactions; Storms and substorms;
Instruments and techniques)

1 Introduction

Magnetic storm is a multi-faceted phenomenon that orig-
inates from the sun and interplanetary disturbances and
manifests in the geospace of magnetosphere-ionosphere-
thermosphere (M-I-T) coupling system. Long-lasting large
southward IMF (Interplanetary Magnetic Field) enables en-
ergy transfer from the solar wind to the magnetosphere to
enhance greatly through magnetic reconnection at dayside
magnetopause. Large interplanetary electric fields (IEF)
break into geospace, leading to dramatically enhanced and
earthward shifted ring currents which cause a rapid decrease
in the horizontal component of the geomagnetic field on the
ground at low latitudes and characterize a geomagnetic storm
development (Gonzalez et al., 1994; Gosling et al., 1991;
Tsurutani et al., 1988; Daglis, 2006). Satellite observations
show that storm time ring current mainly consists of ions
with energy from tens to hundreds keV which drift westward
over the equatorial area within 2–7RE height. During the
main phase of large storm, the content of heavy ionospheric
ions (especially O+) in the ring current (L < 4) is extremely
increased. The larger the magnetic storm is, the greater the
O+ contributes to the ring current (Daglis, 1997). When
southward IMF decreases or disappears, the rate of magnetic
reconnection reduces, convection electric field turns weak,
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Fig. 1. Histogram of minimum SYM-H index for the events used in
ANN model
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Fig. 1. Histogram of minimum SYM-H index for the events used in
ANN model.

particles newly input into ring current decreases, the con-
vection boundary moves outside, cold ionospheric plasma
refills the exhausted inner magnetosphere, then encounters
with energy particles, and thus gives rise to plasma waves.
Ring current ions loss is caused through 4 kinds of processes
such as charge exchanges with neutral atoms, Coulomb col-
lisions with plasma, pitch angle diffusion caused by wave-
particle interaction, as well as drifting out of the dayside
magnetopause (Daglis, 2006), and thus the ring current de-
cays. This is the recovery phase of a magnetic storm. Among
the loss processes cited above, the charge exchange is dom-
inant for mono-charged ions (e.g., H+, O+) with moderate
energy (10–100 keV). For ions with higher energy, the loss
caused by the wave-particle interaction becomes more sig-
nificant due to the decrease of charge exchange section. For
low energy heavy ions (less than 10 keV), the loss caused
by Coulomb collision cannot be neglected. The fast decay
of ring current during the recovery phase of intense storm is
caused by the rapid loss of O+ and He+.

The hourly Dst index is a measure of the total energy
content of the ring current, being used the most widely so
far to quantify the geomagnetic storm activity (Sugiura and
Poros, 1964; Mayaud, 1980; Rangarajan, 1989). SYM-H is
another geomagnetic storm index to measure the intensity of
the storm-time ring current proposed in recent more than two
decades. In contrast to 1 h time-resolution of Dst, SYM-H
has the advantage of much higher time resolution of 1 min.
Essentially, the SYM-H index is the same as Dst (Wanliss
and Showalter, 2006) except that it is calculated from a dif-
ferent set of stations and in a slightly different coordinate
system.

In the past several decades, many studies have been de-
voted to the relationship between the solar wind and the geo-
magnetic storm (e.g.,Rostoker and F̈althammar, 1967; Aka-
sofu, 1981; McPherron et al., 1988). Various methods have

been applied to predict geomagnetic disturbances as indi-
cated by Dst index from solar wind and IMF observations,
such as differential equations (Burton et al., 1975; Wang
et al., 2003), statistical correlative analysis (Baker, 1986;
Temerin and Li, 2002; Yermolaev et al., 2005), and artificial
neural networks (ANNs) (Wu and Lundstedt, 1996; Gleisner
et al., 1996; Wu and Lundstedt, 1997; Lundstedt et al., 2002;
Pallocchia et al., 2006; Amata et al., 2008). Of those, arti-
ficial neural networks have shown their great ability of non-
linear mapping in Dst prediction. However, there are not any
reports yet on the prediction of SYM-H index by ANN in the
publications. The prediction of SYM-H index can be applied
not only in magnetic storm forecasting, but also in predict-
ing thermosphere and ionosphere parameters through empir-
ical models where the SYM-H or Dst index plays a dominant
role (e.g.Zhou et al., 2009; Ridley and Liemohn, 2002). The
higher time-resolution of SYM-H index makes its prediction
somewhat different from and harder than the Dst index.

In this study, an artificial neural network (ANN) of Non-
linear Auto Regressive with eXogenous inputs (NARX) has
been developed for the first time to predict SYM-H index
about one hour in advance from solar wind and IMF parame-
ters. The newly developed NARX model shows much better
capability than Elman network in SYM-H prediction. In the
following sections we will firstly present the data used to es-
tablish the SYM-H prediction model of NARX NN and the
parameters selected as the external inputs. Then a brief de-
scription is given on the architectures and training methods
for Elman recurrent neural network (ERNN) that we have
ever tried, as well as the newly developed NARX network.
Afterwards, the performance and prediction results of the
two ANN models are shown and compared with each other.
Finally, a brief discussion and summary is given along with
ideas for further worthy studies.

2 Data sets and external inputs

The solar wind and IMF data observed from ACE satellite
at Lagrange point L1 are used to establish the neural net-
work model to predict SYM-H index. The ACE data are ob-
tained from CDAWeb site of NASA and the SYM-H index
data are provided by World Data Center for Geomagnetism,
Kyoto. The solar wind and IMF data are sampled at rates
of every 64 and 16 s, respectively, while SYM-H index at
1 min. To unify the temporal resolution, they are all aver-
aged every 5 min. Therefore, all the data we used to establish
the ANN model have the same time resolution of 5 min. In
this study, we collected 73 time intervals that contain storm
events with the minimum SYM-H value less than−85 nT
during 1998–2006, of which 67 intervals comprising 66 800
samples are used to train the neural network and the other 6
intervals are used for testing. The selection of the interval is
constrained by the data availability and quality of ACE obser-
vations in addition to the threshold of−80 nT for minimum
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Table 1. Storm intervals used to develop the ANN prediction model.

No. Start date End date Min. SYM-H (nT) No. Start date End date Min. SYM-H (nT)

1 1998-02-17 1998-02-19 −119 35 2001-10-21 2001-10-24 −210
2 1998-03-10 1998-03-12 −119 36 2001-10-27 2001-10-30 −150
3 1998-05-03 1998-05-06 −266 37 2002-03-23 2002-03-25 −114
4 1998-06-25 1998-06-26 −120 38 2002-04-17 2002-04-21 −183
5 1998-08-06 1998-08-08 −168 39 2002-05-11 2002-05-13 −109
6 1998-08-26 1998-08-28 −171 40 2002-05-23 2002-05-25 −113
7 1998-09-24 1998-09-26 −213 41 2002-08-01 2002-08-04 −114
8 1998-10-19 1998-10-20 −120 42 2002-08-19 2002-08-22 −119
9 1998-11-07 1998-11-10 −179 43 2002-09-03 2002-09-07 −108
10 1998-11-12 1998-11-15 −123 44 2002-09-07 2002-09-12 −167
11 1999-01-13 1999-01-14 −111 45 2002-10-01 2002-10-06 −153
12 1999-02-17 1999-02-20 −127 46 2002-10-14 2002-10-15 −88
13 1999-02-28 1999-03-02 −93 47 2002-10-23 2002-10-26 −87
14 1999-04-16 1999-04-17 −122 48 2002-11-20 2002-11-22 −126
15 1999-09-22 1999-09-24 −160 49 2003-05-29 2003-06-03 −162
16 1999-11-13 1999-11-15 −106 50 2003-06-16 2003-06-19 −162
17 2000-01-22 2000-01-24 −101 51 2003-07-10 2003-07-17 −125
18 2000-02-12 2000-02-13 −164 52 2003-08-17 2003-08-20 −138
19 2000-05-23 2000-05-26 −159 53 2003-11-04 2003-11-05 −87
20 2000-06-08 2000-06-09 −90 54 2003-11-19 2003-11-21

−488
21 2000-07-16 2000-07-21 −294 55 2003-11-21 2003-11-23
22 2000-08-10 2000-08-13 −235 56 2004-01-21 2004-01-27 −137
23 2000-09-17 2000-09-19 −196 57 2004-02-11 2004-02-12 −107
24 2000-10-02 2000-10-07 −183 58 2004-07-22 2004-07-24 −122
25 2000-10-12 2000-10-15 −100 59 2004-07-24 2004-07-27 −166
26 2000-10-28 2000-10-30 −120 60 2004-07-27 2004-07-29 −208
27 2000-11-06 2000-11-07 −174 61 2004-08-29 2004-09-01 −128
28 2000-11-10 2000-11-11 −126 62 2004-11-07 2004-11-13 −393
29 2000-11-26 2000-11-30 −165 63 2005-01-21 2005-01-23 −101
30 2001-03-19 2001-03-21

−434
64 2005-05-15 2005-05-22 −302

31 2001-03-27 2001-04-03 65 2005-06-12 2005-06-14 −112
32 2001-04-11 2001-04-14 −275 66 2005-06-23 2005-06-24 −101
33 2001-08-17 2001-08-19 −130 67 2005-09-11 2005-09-16 −127
34 2001-09-30 2001-10-05 −187

SYM-H. Generally, each time interval comprises 3 phases,
that is, 1 days before the storm commencement, the whole
storm (including initial, main and recovery phases), and∼1
day after the storm. All the storm events for network train-
ing are listed in Table1, giving the time interval, the value
of minimum SYM-H for each storm event. Figure1 displays
the histogram of the minimum SYM-H for the storm events
used for neural network training. It can be seen from Fig.1
and Table1 that the training samples contain 11 super-storms
with min. SYM-H less than−200 nT, occupying a fraction
of 16.4%, while great storms with minimum SYM-H value
from −200 nT to−100 nT hold a dominant percentage of
73%. The testing samples using ACE SW/IMF data are all
great storms (minimum SYM-H< −100 nT), containing 2
super-storms (see Table2, the 3 columns on the left). In ad-
dition, to validate the trained ANN model, another 9 storm
events registered in rather than ACE measurements are also

used for test. Of them, 6 great storms occurring in 1995–
1997 and one super-storm in 2005 are tested using SW/IMF
data from WIND satellite (see Table3, the 3 columns on the
left). The other two ones are superstorms occurring on July
2000 Bastille day and 24 November 2001, which are tested
using Geotail and OMNI data at 1 AU with no time ahead,
respectively.

The selection of inputs has an important impact on the
result of ANN prediction. In previous studies of Dst pre-
diction by ANNs, different combinations of solar wind and
IMF parameters with different time-length (i.e., the correla-
tion time between each input and Dst) have ever been used
as the ANNs’ inputs, such as group ofn, V and IMF Bz
with 1 h correlation length (Lundstedt et al., 2002) wheren

is the proton number density of solar wind, andV the so-
lar wind velocity, and group of only IMF ofBz, B2

y and

B2
= B2

x +B2
y +B2

z with the same correlation time length
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Fig. 1. Histogram of minimum SYM-H index for the events used in
ANN model
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Fig. 2. Architecture of two-layer back-propagation neural network.

(Pallocchia et al., 2006) and others. In the present study we
use the parameter combination ofn, V , Bz, By andB with
90-min history length for each parameter as input to predict
SYM-H index 60 min ahead. Thus, our prediction model has
totally 90 input nodes, each 18 forBy, Bz, B, n andV . The
input I at momentt and the corresponding outputO are:

I(t) = {By(t),Bz(t),B(t),n(t),V (t),...,By(t −17),

Bz(t −17),B(t −17),n(t −17),V (t −17)}, (1)

O(t) = {SYM-H(t +12)}. (2)

In order to make the neural network converge more easily,
all the input parameters are normalized to [−0.8, 0.8] before
used in ANN.

3 ANN models

In this study, we introduce for the first time the NARX neu-
ron network to the prediction of magnetic storm index SYM-
H with time resolution of a few minutes and compare it with
usual Elman network which enable already very good predic-
tion for Dst index with one hour resolution. In this section
we present first the architectures of the two kinds of neural
networks.

3.1 Architectures

Both of the Elman and NARX artificial neural network are
based on the two-layer BP network, having different layout
for global feedback. So, we begin with a brief presentation
of the so-called BP network.

3.1.1 BP neural network

BP (back-propagation) neural network is a kind of clas-
sic feed-forward network using error back-propagating al-
gorithm for its training. It is usually a two-layer network
with one hidden layer when used in the Dst prediction. Fig-
ure 2 shows its architecture. For prediction purpose, there
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Fig. 3. Architecture of Elman neural network.

is only one neural in output layer. The activation func-
tion is the hyperbolic tangent for the hidden layer and lin-
ear one for the output layer (Haykin, 1999). For the input
I = {I1,I2,...,IM}, the output of thej -th hidden unit,Hj , is

Hj = tanh

(
M∑
i=1

wjiIi +bj

)
, (3)

whereIi is the value of input nodei, M is the number of
input nodes,wji is the connecting weight between the input
nodei and the hidden neuronj , andbj is bias of the hidden
neuronj . And the outputO is

O =

S∑
j=1

wojHj +bo, (4)

whereS is the number of hidden neurons,woj is the con-
necting weight between the hidden neuronj and the output
neuron, andbo is bias of the output neuron.

3.1.2 Elman neural network

An Elman neural network is a two-layer BP network with
feedbacks from hidden neurons to input (Elman, 1990), be-
ing called also Elman recurrent network (ERN). Figure3
shows its architecture. The input of an ERN consists of two
parts, one is true external inputI = {I1,I2,...,IM}, and the
other is feedback inputC = {C1,C2,...,CS}. The feedback
input nodes are called context nodes or context units. The
value of context unitl at time stept is simply a copy of the
hidden output at time stept −1, i.e.

Cl(t) = Hl(t −1) l = 1,2,...,S. (5)

For the Elman network, thej -th hidden unit outputHj is

Hj = tanh

(
M∑
i=1

wjiIi +

S∑
l=1

wj lCl +bj

)
. (6)
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Context units are considered containing history information
of the network status. And it is proved that the Elman neural
network can give very good performance of Dst prediction
(Wu and Lundstedt, 1997).

The Elman ANN used in this study has various numbers of
original external input nodes, 12 hidden neurons and 1 output
neuron.

3.1.3 NARX neural network

We introduce a new kind of feedback neural network of
Nonlinear Auto Regressive with eXogenous inputs (NARX)
model (Haykin, 1999) to predict the SYM-H index from IMF
and solar wind. The NARX network is also a two-layer BP
network with a time-delay feedback connection as shown in
Fig. 4. The input of network consists of two parts as well:
true input and context input. In contrast to ERN, the context
input for NARX is not from the hidden layer but from the
output layer with some certain time-delay. Assuming that
I(t) andO(t) are the true input and output at time step t and
the length of feedback time delay line isL, the context input
is C(t) = {O(t −1),O(t −2),...,O(t −L)}. Thej th hidden
unit output is

Hj = tanh

(
M∑
i=1

wjiIi +

L∑
l=1

wj lCl +bj

)
. (7)

The context nodes fed back from the output contain the being
predicted parameter’s information with much more steps of
history than the Elman network. The determination of the
optimum history length for feedback, i.e., the proper number
of the context units, will be investigated in detail in Sect.4.

The NARX ANN used in this study has 90 original exter-
nal input nodes, and 12 hidden neurons as well as 1 output
neuron.

3.2 Establish of ANN prediction model

3.2.1 The training method

The Momentum Back-Propagation algorithm is used to train
the 2 kinds of networks. The course of learning all the sam-
ples for once is called an epoch. For each epoch, the cost
function is defined as

E =
1

2

N∑
k=1

(
T k

−Ok
)2

, (8)

whereT k andOk are, respectively, the target output and the
actual output of the output neuron,N is the number of train-
ing samples. For each connecting weightw at then-th epoch,
it is updated according to

1w(n)= −η
∂E

∂w
+α1w(n−1), (9)

whereη is the learning rate andα is the momentum param-
eter. For connecting weights between the hidden and output
neurons, they are adjusted following

1woj (n) = η

N∑
k=1

δk
oH

k
j +α1woj (n−1), (10)

δk
o = T k

−Ok. (11)

For connecting weights between the input nodes and the hid-
den neurons, the adjusting is as follows

1wji(n) = η

N∑
k=1

δk
j I

k
i +α1wji(n−1), (12)

δk
j =

(
1−

(
H k

j

)2
)

j = 1,2,...,S, (13)

where the inputI = {Ii} includes the context input for Elman
and NARX network.

While learning,η andα are adjusted dynamically. Accord-
ing to the change of cost function,1E, the adjusting rule is

η =


aη0 1E < 0

bη0 1E > 0 & 1E/E <ε

η0 1E > 0 & 1E/E > ε

, (14)

α =

{
α0 1E < 0

0 1E > 0
, (15)

wherea andb are positive constants anda > 1 andb < 1, α0
is the original momentum parameter,ε is a pre-defined scale
value that is usually less than 5%. In this study, we set the
training parameters as:a = 1.04, b = 0.7, η0 = 1, α0 = 0.7
andε = 0.03.

www.ann-geophys.net/28/381/2010/ Ann. Geophys., 28, 381–393, 2010
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When the neural networks are training, the accuracy pa-
rameters of correlation coefficientρ and root mean square er-
ror (RMSE) as well as the averaged relative variance (ARV)
are calculated for the training samples at the end of every
training epoch. The accuracy parameters ofρ, RMSE and
ARV are defined as (Wu and Lundstedt, 1997)

ρ =

N∑
k=1

(
T k

−T
)(

Ok
−O

)
√

N∑
k=1

(
T k −T

)2√ N∑
k=1

(
Ok −O

)2 , (16)

RMSE=

√√√√ 1

N

N∑
k=1

(
T k −Ok

)2, (17)

ARV =

N∑
k=1

(
T k

−Ok
)2

N∑
k=1

(
T k −T

)2 , (18)

whereN is the number of examples,T andO are the aver-
age values of the observed and the predicted SYM-H, respec-
tively.

At the beginning of training, RMSE decreases quickly.
With the epoch number increasing, the error decreases more
and more slowly, converging gradually to an asymptotic
value. Assuming that RMSEmin(n) is the minimum of RMSE
till epochn, we define a parameter ofγ as

γ (τ) =
RMSEmin(n−τ)−RMSEmin(n)

RMSEmin(n)
, (19)

to judge if the training should finish at epochn. When
γ (1000) < 0.001, the training is thought to be close to the
limit and should be stopped.

3.2.2 NARX ANN training with different output-
feedback lengths

A sequence of NARX networks with different lengthL of
the output feedback time-delay line (i.e. number of the con-
text nodes) has been trained using the 67 storm intervals in
order to find the most proper value ofL and its relationship
with the time scale of the ring current decay. The value of
L ranges from one (corresponding to 5 min) to 1152 (4 days)
with different time resolution, being taken as: 1, 2, 4, 6, 8,
10, . . . , 24, 26, 64, 144, 288, 576, 1152.

3.2.3 Elman ANN training with different history length
of input

All the 67 storm intervals are also trained using a series of
Elman network with different history length of the external
input to see the performance of the Elman network for SYM-
H prediction. The history length of the input was taken as
90 min, 240 min, 480 min, and 720 min, separately.

4 Prediction testing results

We use the parameters ofρ, RMSE and ARV cited in
Sect. 3.2.1 to characterize the network prediction perfor-
mance.

4.1 SYM-H prediction by NARX neural network

4.1.1 The optimum length of the output feedback time-
delay

As described in Sect.3.2.2, a sequence of NARX networks
with different lengthL of the output feedback time-delay line
(i.e. number of the context nodes) has been trained in order to
find the most proper value ofL. All the trained NARX net-
works with differentL are tested for the 6 storm events using
IMF/SW data from ACE satellite. The test results are shown
in Fig. 5, which gives the variation of the prediction perfor-
mance (characterized by the three parameters ofρ, RMSE
and ARV) with output-feedback delay time length ofL.

It can be seen from Fig.5 that the optimum value of
L is 24 (about 120 min) when the prediction performance
gets a maximum correlation coefficient of 0.95 between the
observed and predicted SYM-H and a minimum RMSE of
17.12 nT for all the 6 testing events as a whole. It seems that
the delay time length of the output feedback would be at least
larger than 60 min so as to get fair prediction performance. If
the length is less than 40 min, the prediction performance is
poor. On the other hand, larger length about 1–2 days seems
still to provide not so bad prediction performance.

4.1.2 Prediction results by using ACE data for 6 testing
events

Table2 lists on its right 3 columns the three parameters of
prediction performance for each test event by the NARX neu-
ral network with a context node number of 24. The correla-
tion coefficient between the observed and predicted SYM-H
for each individual test event is more than 0.92 and the best
one reaches about 0.98 with a RMSE as small as 7.2 nT. Es-
pecially, the two super-storms with minimum SYM-H less
than−200 and−300 nT respectively are also accurately pre-
dicted, having correlation coefficients equal or larger than
0.95 and averaged relative variances less than 13.5%. Fig-
ure6 displays a comparison of the observed SYM-H indices
with predicted ones for each test event.

4.1.3 Validation of NARX model using more data
(WIND, Geotail/OMNI)

In order to verify the prediction capability of NARX model,
we have made further tests using IMF/SW data available
from WIND satellite for another 7 great storms occurring
in 1995–1997 and 2005, in which the time ahead of predic-
tion is adjusted according to the position of WIND relative
to ACE for each event.
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Table 2. Prediction performance by using ACE data for 6 test events.

No.
Time period Min. SYM-H

(nT)
Prediction result

Start date End date ρ RMSE (nT) ARV

1 1999-10-21 1999-10-23 −221 0.948 21.84 0.132
2 2000-04-06 2000-04-09 −315 0.976 19.34 0.074
3 2005-05-07 2005-05-10 −115 0.927 13.52 0.159
4 2005-05-28 2005-05-31 −126 0.954 17.97 0.198
5 2005-08-31 2005-09-01 −116 0.979 7.22 0.047
6 2006-04-13 2006-04-15 −110 0.931 15.72 0.255
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Fig. 5. Prediction performance by NARX network versus feedback delay time length of L. (a) For L value from 0 to 24 hours; (b) A zoom-in
view of (a) for L value from 5 to 130 minutes.
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Fig. 6. Comparison of observed SYM-H index with that predicted by NARX neural network with output-feedback delay time length of 120
min for testing storm events using ACE data.

Fig. 5. Prediction performance by NARX network versus feedback delay time length ofL. (a) For L-value from 0 to 24 h;(b) A zoom-in
view of (a) for L-value from 5 to 130 min.

The prediction model is still the NARX network withL =

24 which is trained using IMF/SW data from ACE satellite.
Because WIND is nearer to the earth than ACE and the

distance varies in a large range, the preact time of predic-
tion is corrected for each event according to the distance be-
tween WIND and the earth at the event occurrence. Table3
lists the prediction results of the 7 events. These test results
show again that the NARX model has good performance
in prediction of SYM-H. As a whole of the 7 events, the
three performance parameters have the values ofρ = 0.91,
RMSE= 14.6 nT, ARV= 18.0%. The best one has the per-
formance parameters ofρ = 0.966, RMSE= 8.58 nT and
ARV= 7.3%, as seen in Table3. Figure7 shows the SYM-
H index predicted by NARX neural network with 24 con-
text units in comparison with the observed SYM-H for the
7 testing storm events whose IMF/SW data are from WIND
satellite measurements.

Besides, in order to validate our NARX model, we have
also tried to predict the SYM-H index for the superstorms
of July 2000 and 24 November 2001 using IMF/SW data
from Geotail and OMNI at 1 AU, respectively. Data from
Geotail and OMNI can be treated as from dayside mag-
netospause, so the prediction using these data should be
of short time ahead. In the testing, the prediction is one

point (5 min) ahead. Figure8 gives the prediction results,
which also show acceptable good performance as:ρ = 0.89,
RMSE= 37.3 nT, ARV= 23.5% for July 2000 storm, while
ρ = 0.91, RMSE= 30.2 nT, ARV= 30.2% for 24 November
2001 storm.

The prediction results for the 9 events using IMF/SW data
from rather than ACE satellite indicate that the NARX pre-
diction model we established has potential capability to pre-
dict SYM-H index using input data of IMF/SW from other
sources.

4.2 Comparison with Elman neural network

To make clear if the Elman network is also effective in SYM-
H prediction as it is in Dst prediction, we have made a series
training of the Elman networks with different input time de-
lay lines of 90, 240, 480, 720 min (i.e., 1.5 h, 4.0 h, 8.0 h,
12 h), using ACE IMF/SW data for the 67 storms. And, a
series of tests are then carried out for the 6 great storms.

Table 4 gives the prediction performance of Elman net-
work with different input time delay lines. When using
90 min length of IMF/SW wind data as input, the testing re-
sult shows that the correlation coefficient between the pre-
dicted and the observed SYM-H is 0.682, RMSE is 38.54 nT
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Fig. 5. Prediction performance by NARX network versus feedback delay time length of L. (a) For L value from 0 to 24 hours; (b) A zoom-in
view of (a) for L value from 5 to 130 minutes.
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min for testing storm events using ACE data.

Fig. 6. Comparison of observed SYM-H index with that predicted by NARX neural network with output-feedback delay time length of
120 min for testing storm events using ACE data.

Table 3. Prediction result of each test event whose IMF/SW data are from WIND.

No.
Time period Min. SYM-H

(nT)
Prediction result

Start date End date ρ RMSE (nT) ARV

1 1995-03-25 1995-03-29 −99 0.886 12.96 0.223
2 1995-04-06 1995-04-10 −163 0.943 14.65 0.157
3 1995-10-18 1995-10-20 −125 0.963 12.79 0.096
4 1997-04-20 1997-04-23 −100 0.882 13.95 0.366
5 1997-11-06 1997-11-09 −125 0.874 13.57 0.273
6 1997-11-21 1997-11-25 −121 0.966 8.58 0.073
7 2005-08-23 2005-08-27 −174 0.877 21.45 0.262

As a whole 0.91 14.6 0.18

and AVR is 54.4% for 6 test examples as a whole, which is
much worse than the prediction result of NARX model.

It is also shown from Table4 that when the input time
length increases from 90 min to 240 min, the SYM-H pre-
diction performance of the Elman ANN improves obviously

from ρ = 0.68, RMSE= 38.5 nT, ARV= 54.4% toρ = 0.86,
RMSE= 26.6 nT, ARV= 26.9%. If the input time length
continues to increase the SYM-H prediction performance
changes very slowly. When it reaches 720 min long, the
SYM-H prediction performance parameters for the 6 storms
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Fig. 7. Comparison of observed SYM-H index with that predicted by NARX neural network with 24 context units for each testing storm
event whose IMF/SW data are from WIND.

Fig. 7. Comparison of observed SYM-H index with that predicted by NARX neural network with 24 context units for each testing storm
event whose IMF/SW data are from WIND.

as a whole increased up to:ρ = 0.86, RMSE= 26.2 nT,
ARV= 26.2%, which is still not better than NARX model
(ρ = 0.95, RMSE= 17.1 nT, ARV= 10.7%). Besides, longer
input time length degraded greatly the applicability when
only short time qualified IMF/SW data are available (see
Fig. 9e).

Figure9 displays a comparison of observed SYM-H index
with that predicted by Elman neural network with 720 min
length of IMF/SW input data for each testing storm. The

SYM-H indices predicted by NARX model with 90 min
length of IMF/SW input data are also displayed by green
curves for a comparison of the two models. Figure10 gives
the spot plots of the model predicted SYM-H versus observed
ones for NARX model and two Elman models with different
input time lengths. Figures9 and10 show clearly that the
NARX model does exceed the Elman network in SYM-H
prediction.
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Fig. 8. Comparison of observed SYM-H index with that predicted by NARX neural network with 24 context units for testing storm events
whose IMF/SW data are from Geotail and OMNI.
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Fig. 9. Comparison of observed SYM-H index with that predicted by Elman neural network with 720 min length history IMF/SW parameters
as input for each testing storm event whose IMF/SW data are from ACE. The SYM-H indices predicted by NARX model are also plotted in
the corresponding figures by green lines for a comparison of the two models.

Fig. 8. Comparison of observed SYM-H index with that predicted by NARX neural network with 24 context units for testing storm events
whose IMF/SW data are from Geotail and OMNI.
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Fig. 8. Comparison of observed SYM-H index with that predicted by NARX neural network with 24 context units for testing storm events
whose IMF/SW data are from Geotail and OMNI.
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Fig. 9. Comparison of observed SYM-H index with that predicted by Elman neural network with 720 min length history IMF/SW parameters
as input for each testing storm event whose IMF/SW data are from ACE. The SYM-H indices predicted by NARX model are also plotted in
the corresponding figures by green lines for a comparison of the two models.

Fig. 9. Comparison of observed SYM-H index with that predicted by Elman neural network with 720 min length history IMF/SW parameters
as input for each testing storm event whose IMF/SW data are from ACE. The SYM-H indices predicted by NARX model are also plotted in
the corresponding figures by green lines for a comparison of the two models.

Thus, the classical Elman ANN is not effective in SYM-H
prediction as it is in Dst prediction. The cause of it could
be attributed to that as below. In general, it is not wrong
that the Elman network can catch more complex processes

than the NARX due to the connections from the hidden layer.
However, the classical Elman network makes feedback from
hidden layer to input only one step, which is of 5 min scale
for SYM-H index in this work and thus surely insufficient
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Fig. 10. Correlation plots of the SYM-H indices observed and predicted by Elman and NARX neural networks. (a) For the Elman model
with input history length of 90 min; (b) For the Elman model with input history length of 720 min; (c) For NARX model with feedback time
delay length of 120 min

Table 1. Storm intervals used to develop the ANN prediction model

No. Start date End date Min. SYM-H (nT) No. Start date End date Min. SYM-H (nT)

1 1998-02-17 1998-02-19 -119 35 2001-10-21 2001-10-24 -210
2 1998-03-10 1998-03-12 -119 36 2001-10-27 2001-10-30 -150
3 1998-05-03 1998-05-06 -266 37 2002-03-23 2002-03-25 -114
4 1998-06-25 1998-06-26 -120 38 2002-04-17 2002-04-21 -183
5 1998-08-06 1998-08-08 -168 39 2002-05-11 2002-05-13 -109
6 1998-08-26 1998-08-28 -171 40 2002-05-23 2002-05-25 -113
7 1998-09-24 1998-09-26 -213 41 2002-08-01 2002-08-04 -114
8 1998-10-19 1998-10-20 -120 42 2002-08-19 2002-08-22 -119
9 1998-11-07 1998-11-10 -179 43 2002-09-03 2002-09-07 -108

10 1998-11-12 1998-11-15 -123 44 2002-09-07 2002-09-12 -167
11 1999-01-13 1999-01-14 -111 45 2002-10-01 2002-10-06 -153
12 1999-02-17 1999-02-20 -127 46 2002-10-14 2002-10-15 -88
13 1999-02-28 1999-03-02 -93 47 2002-10-23 2002-10-26 -87
14 1999-04-16 1999-04-17 -122 48 2002-11-20 2002-11-22 -126
15 1999-09-22 1999-09-24 -160 49 2003-05-29 2003-06-03 -162
16 1999-11-13 1999-11-15 -106 50 2003-06-16 2003-06-19 -162
17 2000-01-22 2000-01-24 -101 51 2003-07-10 2003-07-17 -125
18 2000-02-12 2000-02-13 -164 52 2003-08-17 2003-08-20 -138
19 2000-05-23 2000-05-26 -159 53 2003-11-04 2003-11-05 -87
20 2000-06-08 2000-06-09 -90 54 2003-11-19 2003-11-21

-488
21 2000-07-16 2000-07-21 -294 55 2003-11-21 2003-11-23
22 2000-08-10 2000-08-13 -235 56 2004-01-21 2004-01-27 -137
23 2000-09-17 2000-09-19 -196 57 2004-02-11 2004-02-12 -107
24 2000-10-02 2000-10-07 -183 58 2004-07-22 2004-07-24 -122
25 2000-10-12 2000-10-15 -100 59 2004-07-24 2004-07-27 -166
26 2000-10-28 2000-10-30 -120 60 2004-07-27 2004-07-29 -208
27 2000-11-06 2000-11-07 -174 61 2004-08-29 2004-09-01 -128
28 2000-11-10 2000-11-11 -126 62 2004-11-07 2004-11-13 -393
29 2000-11-26 2000-11-30 -165 63 2005-01-21 2005-01-23 -101
30 2001-03-19 2001-03-21

-434
64 2005-05-15 2005-05-22 -302

31 2001-03-27 2001-04-03 65 2005-06-12 2005-06-14 -112
32 2001-04-11 2001-04-14 -275 66 2005-06-23 2005-06-24 -101
33 2001-08-17 2001-08-19 -130 67 2005-09-11 2005-09-16 -127
34 2001-09-30 2001-10-05 -187

Fig. 10. Correlation plots of the SYM-H indices observed and predicted by Elman and NARX neural networks.(a) For the Elman model
with input history length of 90 min;(b) For the Elman model with input history length of 720 min;(c) For NARX model with feedback time
delay length of 120 min.

Table 4. Prediction result by Elman ANN with different length of
input history.

Input history
(Mins)

Prediction result

ρ RMSE (nT) ARV

90 0.682 38.54 0.544
240 0.812 30.20 0.340
480 0.855 26.60 0.269
720 0.862 26.19 0.263

to catch the characteristic RC decay time that is at least tens
minutes. For Dst prediction by Elman network this feedback
of one step means a time scale of 60 min which is some ex-
tent enough to match the characteristic RC decay time. It
should be noted also that the RC decay processes associ-
ated with RC ion losses persistently occur during both of the
storm main and recovery phases rather than only the recov-
ery phase. So, the insufficiency of classical Elman ANN in
catching the characteristic RC decay time would deteriorate
the prediction performance of SYM-H for both of main and
recovery phases of the storms.

However, the Elman neural network has potential capabil-
ity to catch more complex processes due to the connections
from the hidden layer to the output. It is possible that a mod-
ified Elman ANN may become powerful as NARX by using
new techniques like pruning method etc.

4.3 Comparison with previous Dst prediction by ANN

A practical comparison between the SYM-H prediction per-
formances of our NARX model with previous ones is indeed
hard to be made, since the prediction of SYM-H index has

ever not been reported before. However, studies of Dst pre-
diction by neural network has been conducted for more than
ten years, among which, a detailed study on the prediction of
Dst by Elman network is made byWu and Lundstedt(1997).
A comparison between their Dst prediction results and our
SYM-H prediction results by NARX model will be made as
follows.

In the study byWu and Lundstedt(1997), IMF/SW data
with history length of 1, 4, 8 and 12 h are taken as input to
predict the variation of Dst index and a quite accurate pre-
diction is achieved. Table5 shows the comparison between
their Dst prediction result and our SYM-H prediction result
by NARX model, from which we can find that the accuracy
of SYM-H index prediction by NARX model is comparable
with that of the prediction of Dst by Elman neural network.

5 Discussion and conclusions

In this study, a new kind of neural network has been intro-
duced for the first time to predict storm time SYM-H index.
Its prediction capability is examined and compared with El-
man network and previous work for Dst prediction. The
NARX model introduced in this paper shows much better
capability than Elman network for SYM-H prediction, which
can partly be attributed to a key feedback to the input layer
from the output neuron with a suitable time delay length. An
extensive work of training and testing shows that when the
length of the output feedback sequence (i.e., the context unit
number)L is 24 corresponding to a time length of 120 min,
the NARX network gets the best performance.

It shows that although Elman network can make very ex-
cellent prediction of Dst, it is not able to predict the variation
of SYM-H index with satisfied high accuracy at least in its
present frame. The prediction errors are particularly large
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Table 5. Comparison of Dst prediction by Elman network with SYM-H by NARX ANN.

Model
IMF/SW

data source
Input history

(Mins)
Prediction result

ρ RMSE (nT) ARV

Wu & Lundstedt
Dst prediction

model
OMNI

60 0.90 15.5 0.19
240 0.92 14.1 0.16
480 0.92 13.8 0.15
720 0.92 14.1 0.15

SYM-H prediction
model of NARX

ACE 90 0.95 17.1 0.11
WIND 90 0.91 14.6 0.18

near the maximum of the main phase (minimum SYM-H)
and for the recovery phase. This may be attributed to a lack
of the inner status information of the ring current in the net-
work input. The input of the BP network is only the parame-
ters of outer space containing nothing on the information of
inner status of the magnetosphere, while the context units of
the Elman network fed back from the hidden neurons contain
the history information of inner status only 1 step, i.e. 5 min
in this study. This length is too short to catch the character-
istic time scale of RC decay that is at least tens of minutes.

The development, evolution and decay of the ring current
are controlled by both aspects of solar wind driving and mag-
netospheric internal physical status. The solar wind driving
dominates the initial and main phase of the storm, which can
be somewhat easily implemented by taking their key parame-
ters with proper history length as the external input of the net-
work. The internal status of the magnetosphere affect all the
course of RC growth, evolution and decay, especially dom-
inate the recovery phase of the storm. How to effectively
bring the internal status information of the ring current to
take part in the prediction is the key point to promote the pre-
diction performance. The global feedback in NARX network
developed in this study directs the predicted SYM-H which
contains the nearly real ring current information into the ex-
ternal input, thus provides an effective way to get this point.
Further, how to shape the feedback to contain necessary and
sufficient information for a good prediction becomes an im-
portant problem. Here the time scale of the feedback should
match the characteristic time of the ring current decay. The
time scale of the ring current decay ranges from a few tens
of minutes to more than tens of hours (Gonzalez et al., 1989;
Daglis, 2001). Too short delay time of the feedback, dur-
ing which the ring currents do not get change significantly,
would contribute little to the prediction. An amount of trials
(taking theL from 5 min to 24 h or more) indicates that the
output-feedback length seems to be at least larger than about
60 min so as to get fair prediction performance, while it does
also using feedback length as long as 1–2 days. The proper
history length of the output-feedback in our NARX model is
about 120 min. This length may mainly reflect the charac-
teristic time of ring current decay on average and weighted

especially for the early recovery phase, which involves vari-
ous decay mechanisms with ion lifetimes from tens of min-
utes for pitch angle scattering by EMIC wave-particle inter-
actions (Jordanova et al., 1997, 2001) to tens of hours or
more for charge-exchange and Coulomb collision loss etc.
This proper output-feedback delay time length may some-
what change with the collected storm samples, because dif-
ferent type of individual magnetic storm would have different
characteristic evolution and decay time.

Different combinations of solar wind and IMF parame-
ters for input and different time length of input parameters
would affect the prediction performance of the NARX net-
work, which have not been verified yet in this study. So the
present NARX network and its prediction result are not nec-
essarily the most optimum and the best. They will be exam-
ined in an accompanying investigation. However, our study
has proved the great advantage of the NARX neural network
in prediction of storm-time SYM-H index.

The Elman neural network has potential capability to catch
more complex processes due to the connections from the hid-
den layer to the output. It might be true in principle that
the Elman neural network could make storm prediction at
least as well as NARX even for higher resolution data. But
it needs major improvement by using new techniques like
pruning method etc. It is worthy of optimizing Elman net-
work and other ANNs in SYM-H prediction with some new
techniques in the further study.
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