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Abstract. Eight years of magnetic field data, taken while
the four Cluster spacecraft pass through, or adjacent to, the
equatorial ring current, have been surveyed to investigate the
effects on the Earth’s magnetic field of the externally driven
current systems connecting the ionosphere, cusp and ring
current regions. This study extends previous work to cover
a greater range of orbit location and external conditions. We
compare the modeled magnetic field from different global
field models (Tsyganenko, 1989, 1996, and 2001, hereafter
T89, T96 and T01) with data from the four Cluster space-
craft. Comparing with the different models allow us not only
to characterize each model’s performance, but also provides
insight into the physical sources of observed signals. The
data generally deviate much less from the expected model
field during the years close to the solar minimum, implying
that the models perform better during weaker geomagnetic
activity. There are particular deviations from the models as-
sociated with the ring current (well-defined smooth trends)
and region 2 field aligned currents (FACs) or low-altitude
cusp FACs (sharp bipolar signatures). During the ring cur-
rent crossings (through perigee, at 4–5RE), the T96 model
always overestimates the ring current, while the T01 and T89
models sometimes underestimate it. The sharp bipolar sig-
natures are not always sampled, implying a localized extent,
but only the T96 and T01 models include forms for the re-
gion 2 FACs and T01 appears to model these better. Overall,
all deviations from T01 are much smaller than for the other
models, indicating that this model achieves the best fit to the
data. The 4 Cluster spacecraft observe nearly the same sig-
natures at small separations (during the early years of the
mission) but do sample different signatures at the large sep-
arations (during the later years). Using the four-spacecraft
technique, we infer that the region 2 FACs, with a transverse
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thickness of∼0.17–0.54RE, and cusp FACs, with a thick-
ness of∼0.06–0.12RE, are very stable in size and location.
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Magnetopause, cusp, and boundary layers; Magnetospheric
configuration and dynamics)

1 Introduction

Woodfield et al. (2007) surveyed the contribution of iono-
spheric and magnetospheric current systems to the Earth’s
magnetic field, by using perigee pass data from the Clus-
ter spacecraft, based on predictions of the Tsyganenko 2001
(T01) (Tsyganenko, 2002a, b) global field model. The results
showed that the T01 model performs very well in a global
sense, although absolute residuals between the data and the
model can reach∼20 nT near perigee, often with stable bipo-
lar signatures, which repeat on the phase period of the Cluster
orbit and were assumed to be observed field-aligned currents
(FACs). In order to further investigate the external current
systems in the magnetosphere, this paper extends the study
of Woodfield et al. (2007) to compare eight years magnetic
field data from the 4-spacecraft Cluster array with the Tsy-
ganenko models.

The semi-empirical Tsyganenko magnetic field models
have been widely utilized in the space physics community
for many years. They are best-fit representations for the
magnetic field, based on a large number of satellite observa-
tions (IMP, HEOS, ISEE, POLAR, Geotail, GOES, etc). The
models include contributions from major external magneto-
spheric sources: the ring current, magnetotail current system,
magnetopause currents, and the large-scale system of field-
aligned currents.

There are currently four main versions. The 1989 ver-
sion (T89) (Tsyganenko, 1989) was primarily developed as
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a simple empirical approximation for the global magneto-
sphere, binned into several intervals of the disturbance in-
dex Kp. The 1996 version (T96) (Tsyganenko, 1996) has
an explicitly defined realistic magnetopause, large-scale Re-
gion 1 and 2 Birkeland current systems, and Interplanetary
Magnetic Field (IMF) penetration across the boundary. T96
is parameterized by the solar wind ram pressure, distur-
bance storm time index (Dst (Sugiura and Kamei, 1991) –
or its high time resolution counterpart SYM-H (Wanliss and
Showalter, 2006)), and transverse components (BY andBZ)

of the IMF. The 2001 version (T01) (Tsyganenko, 2002a, b)
represents the variable configuration of the inner and near
magnetosphere for different interplanetary conditions and
ground disturbance levels. It also takes into account the ob-
served dawn-dusk asymmetry of the inner magnetosphere
due to the partial ring current that develops during magne-
tospheric disturbances. The T01 model is driven by the same
input parameters as the T96 model: solar wind ram pres-
sure, Dst or SYM-H, and transverse components (BY and
BZ) of the IMF, but it also requires a one-hour time his-
tory of external inputs to the magnetosphere. The 2004 ver-
sion (T04S) (Tsyganenko, 2005) is a dynamical model of the
storm-time geomagnetic field in the inner magnetosphere,
based on space magnetometer data taken during 37 major
events in 1996–2000 and concurrent observations of the so-
lar wind and IMF. Most of the data set used in the current
study does not correspond to storm time conditions, so only
the first three model versions have been used here.

In order to analyze and characterize the modelled and ac-
tual magnetospheric field contributions, the output from the
T89, T96 and T01 models has been compared to magnetic
field data from the Cluster mission (Escoubet et al., 2001)
during its ring current crossing (through perigee, at 4–5RE).
Orbits separated in time but “in-phase” relative to the day-
side, nightside and dawn-dusk flanks are compared, such that
the changes in ring current and FACs existing in the magne-
tosphere are investigated. The results from a particular orbit
sample are shown to recur in an analysis of eight full years
of data. Such a comparison with Cluster data provides an
independent assessment of the accuracy of the Tsyganenko
models, since these data are not included in the empirical
database of the models. This comparison also allows the
magnetic field behaviour observed by Cluster to be assessed
in a large-scale context.

2 Data sources and methodology

2.1 Field models

Since the Tsyganenko models represent only the magneto-
spheric contributions to the overall magnetic field of the
Earth, we have used the International Geomagnetic Refer-
ence Field (IGRF) version 10 (Maus et al., 2005a, b) to rep-
resent the Earth’s internal magnetic field in order to model

the full magnetic field at the Cluster orbit. The following
analysis assumes that both the ionospheric and crustal con-
tributions to the magnetic field at the altitude of the Cluster
orbit are not significant.

The mathematical structure of the T89 model includes the
major magnetospheric current systems: magnetotail current
system, ring current, and Chapman-Ferraro currents, while
the T96 model adds the large-scale Region 1 and 2 Birkeland
current systems and a parameterisation for the interplanetary
magnetic field penetration. In addition to the current sys-
tems mentioned above, the T01 model also includes the par-
tial ring current with the associated dawn-dusk asymmetry
of the inner magnetosphere, and a more detailed form of par-
tial IMF penetration. The pertinent features of these current
structures are summarized below. For a full description the
reader is referred to Tsyganenko (1989, 1996, 2002a, b) and
references therein.

The T01 ring current includes both an axisymmetric and a
partial ring current, with field-aligned closure currents. The
cross-tail current sheet, which is allowed to warp in response
to the geo-dipole tilt, has a thickness that varies both across
and along the tail. The location of the inner boundary of
this current sheet along the Sun-Earth line varies with chang-
ing geomagnetic disturbance levels. The contribution of the
magnetopause currents to the total magnetic field is repre-
sented using a potential field and is optimized so that, when
added to the field from internal sources, it provides the re-
quired distribution of the net normal component at the model
magnetopause boundary. The general magnetopause shape
is defined by the empirical model of Shue et al. (1998) and is
also allowed to be geo-dipole tilt-dependent. The FAC rep-
resentation includes both region 1 and region 2 FACs (Iijima
and Potemra, 1976) which are allowed to vary with inter-
planetary conditions such that their ionospheric footprints
can move in latitude. Finally, the interconnection field, con-
trolled by the IMF, allows the model magnetosphere to as-
sume open configurations (by allowing a finiteB normal to
the magnetopause).

The magnitude of the total external magnetic field contri-
butions from the Tsyganenko models can reach tens of nano-
Tesla within±1 h of Cluster perigee. The majority of this
is due to the ring current since, at perigee, Cluster is close
to 4RE radial distance and passes adjacent to or through the
ring current region. At that distance, the dominant IGRF con-
tribution from the Earth’s internal magnetic field is hundreds
of nano-Tesla.

The other field models use similar mathematical structure,
but with different emphasis and definitions of the various
sources. For the intervals covered in this paper, the geo-
magnetic activity input to the T89 model is provided by the
Kp index resulting in quasi-static model output. The inter-
planetary input data for the T96 and T01 models (i.e. solar
wind dynamic pressure, IMFBY andBZ) were the lagged
solar wind and magnetic field data from the OMNIWeb site
(http://omniweb.gsfc.nasa.gov/); an extra shift of 5 min has
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Fig. 1. Orbit plots in XZ or YZ plane in GSM coordinates for night-side orientations orbit 558/559 on 13 February 2004(a) and 1018/1019
on 12 February 2007(b), for dayside orientations orbit 630/631 on 2 August 2004(c) and 1096/1097 on 16 August 2007(d), and for dusk-
dawn orientation orbit 594/595 on 8 May 2004 (e, duskside) and 528/529 on 4 December 2003 (f, dawnside), respectively. The orbit also
shows the configuration of the Cluster spacecraft array as a tetrahedron (size scaled up by a factor of 80 for Fig. 1a and f, 5 for Fig. 1b and
d, and 20 for Fig. 1c and e). Model geomagnetic field lines are drawn from the T01 model with the average inputting parameters during the
interval of interest on each orbit.

been added to the OMNIWeb data to account for the convec-
tion from the bow shock nose to magnetopause. A one-hour
time history of solar wind data was used to calculate the pa-
rametersg1 andg2 for T01 (Tsyganenko, 2002b). The ge-
omagnetic activity input to T96 and T01 is provided by the
dynamic SYM-H index (Wanliss and Showalter, 2006).

2.2 Cluster data

The ESA Cluster mission is composed of an array of four
spacecraft carrying identical payloads. The spacecraft were
launched in pairs in July and August 2000 into similar ellip-
tical, polar orbits, each with a perigee of∼4RE, an apogee
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Table 1. Input parameters for T01 model as used in Fig. 1.

Figure Pdyn IMFBY IMF BZ Dst
(nPa) (nT) (nT) (nT)

Fig. 1a 1.66 −2.38 −4.55 −25
Fig. 1b 1.16 −3.75 −0.57 −9
Fig. 1c 0.71 −1.24 −0.62 −14
Fig. 1d 1.36 −4.10 −0.62 −10
Fig. 1e 0.93 −3.32 1.42 −27
Fig. 1f 1.05 −3.11 −3.87 −1

of ∼19.6RE and identical orbital periods of 57 h. A typi-
cal orbital orientation with respect to the model field lines
is shown in Fig. 1. Due to the Earth’s orbital motion, Clus-
ter’s orbit precesses in the Geocentric Solar Magnetospheric
(GSM) coordinate system, so that every year all magnetic
local times (MLT) are covered. The orbital parameters of
each spacecraft produce a tetrahedral spacecraft formation,
which evolves around the orbit. The orbits are adjusted ap-
proximately once every 6 months via a sequence of manoeu-
vres to vary the spatial scales between 100 km and a fewRE.
Each Cluster spacecraft has eleven experiments on board;
here, we have used 1 min averaged data from the fluxgate-
magnetometer (FGM) (Balogh et al., 2001). In-flight cali-
brations on the FGM data routinely determine the maximum
error in the data for each spacecraft to within 0.1 nT.

2.3 Method

We have used a combination of approaches to compare the
residuals between different models and between different
spacecraft to reveal pertinent features in the data. Firstly, we
have compared the predicted contributions to the magnetic
field from the various external current systems at the orbit
tracks of Cluster, using the outputs from T89, T96 and T01
models, respectively, to assess the behaviour of the differ-
ent models. Secondly, we have analysed the magnetic field
data observed by Cluster S/C 1 by differencing (subtracting)
the predicted static IGRF (BEO= BObserved−B IGRF) and the
modeled magnetic field data (dB = BObserved−B T −B IGRF,
whereB T is the Tsyganenko magnetic field) from T89, T96,
and T01, respectively. Finally, we have compared the mag-
netic field data from the 4 Cluster spacecraft with that mod-
eled by T01 to make spatial comparisons during similar ex-
ternal conditions. This methodology is designed to unravel
the predicted and measured effects of both the time depen-
dence and spatial sampling of the external current systems.

In the following assessment, the data residuals are formed
by subtracting the model values of magnetic field (the Tsyga-
nenko model and/or IGRF) from the data (note that we have
used absolute rather than percentage residuals). A positive
residual, therefore, suggests the model value is too small.

GSM coordinates are used throughout. The Cluster orbits
are, by convention, numbered from perigee to perigee and,
for our purpose to generate a set of data for the whole avail-
able eight years of the Cluster mission, we have investigated
partial orbits centered on perigee. Data from all 4 Cluster
spacecraft are used for these comparisons.

3 The modeled and measured external current
contributions

Figure 1a and b shows two orbit plots projected into the XZ
plane in GSM coordinates for orbit 558/559 on 13 February
2004 and 1018/1019 on 12 February 2007, which represent
two night-side orientations at small and large spacecraft sep-
arations. Figure 1c and d shows orbits 630/631 on 2 August
2004 and 1096/1097 on 16 August 2007, which represent the
dayside configurations at small and large separations, pass-
ing through the cusp. Figure 1e and f shows the YZ plane
in GSM for orbits 594/595 on 8 May 2004 and 528/529 on 4
December 2003, representing the dawn-dusk, flank orienta-
tions. The plots show the configuration of the Cluster space-
craft array as a tetrahedron every two hours along the orbit
(size scaled up by a factor of 80 for Fig. 1a and f, 5 for Fig. 1b
and d, and 20 for Fig. 1c and e). Model geomagnetic field
lines are drawn from the T01 model with the input parame-
ters given in Table 1.

3.1 Cluster orbit coverage

From Fig. 1a (b), we find that on 13 February 2004 (12
February 2007) the spacecraft moved from the pre-midnight
(midnight) sector south of the magnetic equator through
perigee at 01:00 MLT (02:00 MLT) to the midnight (pre-
midnight) sector north of the equator. The Cluster space-
craft array passed through or near the outer radiation belt or
ring current near to perigee and passed into the high-latitude
cusp region in the Northern Hemisphere after about 19:00 UT
on 13 February 2004 and after 06:00 UT on 12 February
2007. Comparing Fig. 1a and b, we find the Cluster orbit
has clearly dropped southward by 12 February 2007, which
leads to a middle altitude cusp crossing about 2 h earlier than
that on 13 February 2004, and demonstrates the southward
motion of the Cluster apogee in later years. For the dayside
perigees (Fig. 1c and d), the change in the line of apsides is
not so significant. From Fig. 1c (d), we find that on 2 August
2004 (16 August 2007) the spacecraft moved from the post-
noon sector south of the magnetic equator through perigee at
14:00 MLT to the pre-noon sector north of the equator. The
Cluster spacecraft array passed through or near the ring cur-
rent close to perigee and passed into the low altitude cusp
region in the Northern Hemisphere after about 08:00 UT on
2 August 2004 and after 15:00 UT on 16 August 2007. The
comparison from Fig. 1b and e also shows the southward mo-
tion of the Cluster apogee in later years. In addition, the
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Fig. 2. External magnetic field predicted by T89 (black), T96 (red) and T01 (green) models and measured by Cluster S/C 1 (the observations
minus the predictions from IGRF model, magenta) at the tracks of Cluster S/C 1 on 13 February 2004(a), 2 August 2004(b), 8 May 2004(c)
and 4 December 2003(d), respectively, together with the IMFBZ and SYM-H index. From top to bottom panels in each figure are for the
XGSM, YGSM, ZGSM and the magnitude of the field. The black vertical dashed lines show the ring current region crossing.

Cluster array shows that Cluster S/C 3 and 4 move close to-
gether in the orbit phase for the 12 February and 16 August
2007, which leads to triangular rather than tetrahedral con-
figurations. The dawn-dusk flank orbits show the spacecraft
moves from dawnside (duskside) sector south of the mag-
netic equator through perigee at 20:30 MLT (07:00 MLT) on
the duskside (dawnside) and back to the dawnside (dusk-

side) sector north of the equator on 8 May 2004 (4 December
2003).

Since the orbital period is 57 h, successive passes do not
cross perigee at the same time of day, i.e. for the same dipole
tilt. This issue has already been discussed by Woodfield et
al. (2007), who chose to compare every 8th orbit in pairs (19
days apart) in order to sample the same dipole phase. In this
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paper we acknowledge the issue of changing magnetospheric
locations, using the Bryant style format (Bryant et al., 1985)
to summarise the magnetic sampling during the mission, and
concentrate on the comparative modelled and actual residu-
als monitored over the wider data range (these plots are 2-D
colour plots with the colour scale representing the residu-
als, the x-axis representing the orbit number and y-axis being
time relative to perigee).

3.2 Comparison of the output from different Tsyga-
nenko models and Cluster S/C 1

In Fig. 2, we show the predicted external magnetic field con-
tributions from the T89 (black), T96 (red) and T01 (green)
models for the MLT sectors: nightside, dayside, duskside
and dawnside. The estimated external field contributions
observed by Cluster S/C1 (BEO=BObserved−B IGRF) at the
tracks of Cluster S/C 1 is shown in magenta. From top to
bottom, the panels are theBXGSM, BYGSM, BZGSM, the mag-
nitude of the field, IMFBZ and SYM-H index.

Figure 2a shows the night-side pass from 13 February
2004. During the interval of interest, the predictions of all
three models (for example, of the ring current field) are sim-
ilar. The approximate times of entry into and exit from the
ring current region of Cluster S/C 1 are highlighted by the
grey region between the two grey vertical dashed lines (this
was determined by the high electron and proton flux observed
by RAPID (Wilken et al., 2001), not shown here). From
Fig. 2a, we find that the predicted components from the three
models vary as follows: theBX components vary from neg-
ative (about−40 nT), via zero in the ring current region, to
positive (about +40 nT) (see first panel in Fig. 2a); theBY
components are near zero at the beginning and the end of
this interval, and vary from negative (about−15 nT), via zero
at the middle of the ring current, to positive (about +10 nT)
(see second panel in Fig. 2a); theBZ components are al-
most always negative and decrease during pre-perigee cross-
ing to reach about−50∼ −80 nT (i.e. for T01,∼ −50 nT
, for T96, ∼ −70 nT, for T89,∼ −80 nT) at the middle of
ring current region (see third panel in Fig. 2a).1Bmodel
(1Bmodel= |BIGRF+Bmodel|−|BIGRF|) shows an “M” shape
with minimum magnitude of about−50∼ −80 nT in this re-
gion (i.e. for T01,∼ −50 nT, for T96,∼ −65 nT, for T89,
∼ −80 nT) (see fourth panel in Fig. 2a). This signature arises
because the combined field of the ring and tail currents is di-
rected southward, opposite to the main field, in the equatorial
inner magnetosphere (Sugiura et al., 1971).

For the February 2004 pass, the magnitude estimated by
T89 is maximum at the center of the ring current crossing,
and shows the most significant deviation in theBX andBZ
components, overestimating the observed ring current. In
contrast T96 produced the biggest magnitude at the center
of ring current crossing for most of the eight years data, as
is shown in some detail below. The magnetic field estimated
by the quasi-static T89 model (input of a single Kp at 3 h

resolution) shows the smoothest features with a small jump
at the beginning when the Kp index changed (the Kp index
changes to 4+ at the beginning and remains at 4− for the later
interval). The dynamic output from the T96 and T01 models
(through input of solar wind dynamic pressure, IMFBY and
BZ, and SYM-H at 1 min resolution) in Fig. 2 shows that they
predict the magnetic field in the region 2 FAC at both bound-
aries of the ring current, but at a lower amplitude than ob-
served. This is especially clear in theBY component, where
T01 estimated a bigger signature than T96. In fact, the ob-
served field excursions are more than twice those of the T01
model. During this interval, the solar wind dynamic pressure
varied between∼1.2–2.8 nPa, IMFBZ andBY in GSM var-
ied between−5 and +5 nT, and SYM-H varied between−42
and−22 nT (see the bottom two panels in Fig. 2a).

Figure 2b shows the dayside pass from 2 August 2004
where the low-altitude cusp is encountered (see Fig. 1c).
This figure shows theBY component predicted by T01 (green
line) is much larger than that from the other models near the
boundary of the ring current, whereas the Cluster observa-
tions (magenta line) show a persistent ring current signature
not predicted by the models. During this pass, the IMFBZ
varies between about−5 and 5 nT, and SYM-H varies be-
tween about−15 and−30 nT through the central region. The
BX components from the three models increase from nega-
tive (about−20 nT) to positive near the boundary of the ring
current region, slightly decrease to negative (about−5 nT) at
the center of the ring current region and then increase (cross-
ing zero near the boundary of the ring current region) again
to positive (about +20 nT) (see first panel in Fig. 2b). TheBX
andBY components in the measured data are near zero at the
beginning and the end of this interval and vary like a distorted
“S” shape, which slightly increases to positive (about 8 nT),
then decreases to negative in the ring current region (later
increasing to near zero about 2 h after perigee: see second
panel in Fig. 2b). TheBZ components all show negative val-
ues, but are much more complicated between about−3 and
+3 h relative to perigee.1Bmodel shows a “V” shape for this
interval with minimum magnitude between−10 and−30 nT
(for T01,∼ −20 nT; for T96,∼ −30 nT; for T89,∼ −10 nT)
(see fourth panel in Fig. 2b). These effects arise because the
magnetic field due to the ring current is oppositely directed
to the main field in the equatorial inner magnetosphere (Sug-
iura et al., 1971). It is worth noting the bulges on the green
lines (T01) and red lines (T96) at the boundary of ring cur-
rent, which may be related to low-altitude cusp FACs and
show clear signatures which are of the order of the observed
external currents. It is apparent from these day and night-side
passes that the models can predict either the smooth ring cur-
rent or the short period FACs accurately, but do not always
do so, and generally do not show the smaller-scale structure
(transients) in the FACs.

Figure 2c and d shows a duskside and dawnside pass on
5 May 2004 and 4 December 2003, respectively. The con-
ditions during the duskside pass are relatively active (IMF
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BZ varies between about−5 and 5 nT, and SYM-H varies
between about−10 and−35 nT). The dawnside pass occurs
under quiet conditions (IMFBZ varies between about−5 and
5 nT, and SYM-H varies between about−10 and 5 nT). The
BX , BZ and1Bmodel panels in Fig. 2c and d show similar
features to those for the nightside pass. TheBY components,
however, show a positive to negative polarity for the dusk-
side pass and negative to positive polarity for the dawnside
pass between about−4 h and +2 h relative to perigee; T96
estimated the biggest magnitude at the center of ring current
crossing. It is also worth noting that there are some bulges
on green lines (T01) and red lines (T96) at the boundary of
ring current, which are related to region 2 FACs. Comparing
the different phases of the Cluster crossings, we find all the
components are smallest during the dayside pass and largest
during the nightside pass. There is a clear asymmetry at both
boundaries of the ring current during the dayside pass, which
leads to a single bipolar signature at one boundary of the ring
current associated with the low altitude FACs in the cusp re-
gion.

In a similar manner to the test performed by Woodfield
et al. (2007) we compare the measured external field with
the modelled ones. If one of the Tsyganenko models gave a
perfect representation of the external magnetic field, the pre-
dicted traces (black, red, or green line) would be identical to
the magenta lines. In Fig. 2 we find the magenta lines gen-
erally lie close to the three model lines for the whole interval
but they show clear short bipolar signatures at the boundaries
of the ring current crossing and similar monopolar signatures
during the middle altitude cusp crossing (see Fig. 1). It is
worth noting that the magenta lines are closest to the green
line (T01) for the whole interval in each phase, which sug-
gests that T01 achieves the best fit to the data.

Figure 3 shows an overview of the external magnetic field
predicted by T01 at the tracks of Cluster S/C 1 for the whole
eight years data (from orbit 93 on 1 February 2001 to or-
bit 1244 on 31 August 2008), together with the measured ex-
ternal field relative to the IGRF (BEO = BObserved−B IGRF,
as shown in Fig. 2). In this plot format each vertical strip
is a section of an orbit: the x-axis gives the orbit number,
the y-axis is time relative to perigee and the colour scale is
the value ofBXGSM, BYGSM, BZGSM, 1Bmodel or 1Bobserved
(1Bobserved= |Bobserved|− |BIGRF|). The left column shows
the output from T01 and the right column shows the mea-
sured external field (BEO). Note that in this figure (and also
in Figs. 5 and 6) there are some regular and irregular data
gaps in the measured field (white areas on the plots). The
regular gaps, such as the ellipse-shaped gaps near perigee
from the middle of February to the middle of March in each
year, and the short white bars near +4 from the end of Octo-
ber to the beginning of July in 2002–2007, arise for various
operational reasons. There are also missing data between or-
bit 719 (2 March 2005) and 745 (2 May 2005), which can be
seen as a discontinuity in the colours shown in the plots.

Comparing the data and model panels of Fig. 3, we find
that the observed external field is broadly similar to the
T01 modeled external field (the predictions from T89 and
T96 (not shown) show similar but weaker features to those
from T01). For the whole eight year period, theBX com-
ponents are negative during pre-perigee crossing and posi-
tive during post-perigee, with “step-like” colour signatures
near the perigee crossing at around−1 h to perigee starting
from each June to December. TheBY components are much
weaker during the midnight sector perigee crossing between
the middle of February and March and during the noon sec-
tor perigee crossing between the middle of August and Oc-
tober. Relative to perigee, they are negative (in blue) around
−2 h, positive (in red) around +1 h, and negative around +5 h
between the middle of October and next February, and are
positive (in red) around−2 h, negative (in blue) around +1 h,
and positive around +5 h relative to perigee from the mid-
dle of March to the middle of August. It is worth noting
that the weaker values around +3 h to perigee tend to move
from about +3 h to about +2 h during the later years, which
arises from the southward drop of the Cluster orbit as shown
in Fig. 1.

From Fig. 3 we find that the T01 model predicts the ring
current, which appears as the seasonally-dependent trough in
theBZ component and in1Bmodel around perigee: strongly
negative in winter and spring (when perigee is on the night-
side and passing close and through the ring current), and
weakly positive or negative in summer and autumn (when
perigee is on the dayside). The ring current crossing (be-
tween the boundaries of the trough represented by deep blue
colour around the perigee) occurs between∼ −0.5 to 0.5 h
around perigee at the beginning and end of the dataset and
extends to∼ −1.0 to 1.0 h in the middle. In the orbits around
420, 600 and 780, dating from spring and summer in 2003,
2004 and 2005 respectively, the time taken to pass through
the ring current is particularly long. The extension of the
ring current does not change smoothly from orbit to orbit,
but has a sawtooth shape at both boundaries at about +1 and
−1 h relative to perigee. Near both boundaries of the ring
current, we find that there are small signatures (positive to
negative or negative to positive in pre-perigee crossing and/or
in post-perigee crossing) in theBY component, especially for
the T01 prediction (see the example in the second panels in
Fig. 2), which are associated with the region 2 FAC or cusp
FAC. As an example, we show a region, highlighted by the
black ellipse in each column, when the Cluster spacecraft
were crossing the region 2 FAC. We find the FAC signature is
increasingly prominent from T89, through T96 to T01. This
is because the T89 model (not shown) does not include re-
gion 2 FAC, the T96 model (not shown) underestimates it
and the T01 model (the left column in Fig. 3) performs better
and closest to the measured FAC (the right column in Fig. 3).

Comparing the modelled, external magnetic field from
the different models, we find that theBX component was
stronger, and theBY andBZ components and1Bmodel were
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 31

755 Figure 3: 

756 

Fig. 3. Plots of the three components and magnitude of external magnetic field predicted by T01 and measured by Cluster S/C 1 (minus
IGRF) at the tracks of Cluster S/C 1 for the whole eight years data. Each vertical strip is a section of an orbit – the x-axis is the orbit number,
y-axis is time relative to perigee and the colour scale is the value ofBXGSM, BYGSM, BZGSM, and1Bmodel or 1Bobserved(each row), for
the panels of the left column from T01 and the measured (minus IGRF) for the right column.
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weaker for the T01 model compared with the others. Note
that the time variation in input conditions causes signifi-
cant deviations inB (see detailed discussion in Sect. 4.1).
The residuals of the Cluster S/C 1 observations with the
IGRF model (the observed external field,BEO= BObserved−

B IGRF, column 2 of Fig. 3) show that Cluster S/C 1 observed
the ring current magnetic field around perigee and observed
prominent sharp, bipolar signatures in all three components
before perigee (∼ −1.5 h) and after perigee (∼+1 h) (also
seen in Fig. 2a, b, c and d). The location of these bipo-
lar features is closely aligned with the boundary of the ring
current during the perigee pass. There are some sharp sig-
natures around 5 and 6 h after perigee (see Fig. 2a). These
are suggestive of crossings through regions of enhanced
plasma pressure and might be contributed to by the current
in the cusp region. Support for this hypothesis comes from
the sharp increase in the electron and ion flux observed by
RAPID (not shown here). These sharp changes in the resid-
ual component fields are mainly monopolar in shape and are
much more complicated at the cusp region (about 5 to 6 h
away from perigee).

Woodfield et al. (2007) suggested the bipolar signatures
that Cluster sees close to the ring current are the result of
passing through, or close to, a region 2 FAC. The components
and magnitude of the observed external fields are indeed con-
sistent with the spacecraft passing a tube of current, albeit
including additional filamentary structure. During the space-
craft cusp crossing, the residuals show monopolar structures
with a decrease in magnetic field magnitude, which might
indicate that the spacecraft passes through or close to a cur-
rent system not parallel to the main magnetic field, poorly
estimated by the Tsyganenko models (magnetic field depres-
sions associated with the cusps were extensively discussed
by Tsyganenko and Russell, 1999, and Tsyganenko, 2009).

4 Results for the measured residuals

4.1 Comparison between Cluster data and the different
Tsyganenko models

Figure 4 shows the data residuals after differencing the
Cluster S/C 1 observations with the predictions from the
T89 (black), T96 (red) and T01 (green) models (dB =

BObserved−B T −B IGRF) respectively for: (a) the nightside
pass on 13 February 2004, (b) the dayside pass on 2 Au-
gust 2004, (c) the duskside pass on 8 May 2004 and (d) the
dawnside pass on 4 December 2003. From top to bottom the
panels in each of Fig. 4a–d are for thedBXGSM, dBYGSM,
dBZGSM and the residuals in the magnitude of the field. As
in Fig. 2, the grey shaded region shows the ring current ex-
tent as defined by the energetic particle flux. The residuals
are almost zero except during the crossings of the ring cur-
rent, region 2 FAC and cusp current regions. These resid-
uals measure the degree to which the model currents match

the measured behaviour on these days. The residuals show
that the models overestimate or underestimate the contribu-
tions of the ring current, underestimate the contributions of
the FAC, especially the region 2 FAC, and do not identify the
contributions from the cusp current (about 5 h after perigee in
Fig. 4a). The offset between the data and the predicted value
of the magnetic field within the region 2 FAC reaches a max-
imum of approximately 50 nT (e.g. Fig. 4a), and a maximum
of about 20 nT within the ring current. These differences
also depend on the global orbital orientation, represented by
each pass in Fig. 4a–d (dayside, nightside, and both flanks).
The sharp signatures, associated with the region 2 FAC or the
cusp FAC, are shown in all three components for the night-
side pass, mainly inBY with weaker signatures inBX for
the dayside pass, mainly inBX with weaker signatures inBY
for the duskside pass and mainly shown inBX with weaker
signatures inBY andBZ for the dawnside pass. This might
reflect the distribution of FACs at different local times. Com-
paring the residuals from the different models, we find that
they all show similar features during the whole interval, par-
ticularly in theBY component. From the residual of the mag-
nitude, we find that for these cases, T96 overestimated the
ring current (positive residuals) and the other models under-
estimated it (negative residuals). None of the models identify
the cusp current.

Comparing the residuals relative to the Tsyganenko mod-
els with those relative to IGRF only (in Fig. 2), we find the
Tsyganenko models estimate the ring current well, but give a
poor estimate of the field strength arising from region 2 FAC.
The cusp currents remain largely un-modeled. Thus, we find
that, while clear signatures of FACs and cusp persist in the
traces in Fig. 4, the deviations in the ring current are differ-
ent for each model. It is interesting to note that in most of
the regions sampled, theBY component shows very similar
residuals from the 3 models. Additionally, in the dawnside
and dayside regions (Fig. 4b, d),BX shows similar residuals
for all models. These effects are reflected in the trends seen
over the whole mission as discussed below (in Fig. 5).

Figure 5 shows the residuals from the comparisons of
Cluster S/C 1 observations with T89, T96 and T01 models
(dB = BObserved−B T−B IGRF) for the whole eight years of
data in a similar format to Fig. 3. Residuals are shown from
T89, T96 and T01 respectively from left to right columns.
The T89 and T01 models generally underestimated the ring
current in the earlier 4 or 5 years, while the T96 overesti-
mated it almost for the whole 8 years. For T89, thedBX com-
ponent in GSM coordinates deviates much more than the oth-
ers, so that the pre-perigee crossing (in the Southern Hemi-
sphere) is underestimated and the post-perigee crossing (in
the Northern Hemisphere) is overestimated. ThedBY com-
ponent is similar for all the models, and the behaviour is gov-
erned more by the external conditions, but is progressively
underestimated during the later years. For T96,dBX and
dBY vary between the results for T89 and T01.dBZ shows
similar, but more complicated, behaviour. For T01, all of the
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Fig. 4. Residuals from the comparisons of Cluster S/C 1 observations with T89 (black), T96 (red) and T01 (green) and IGRF (magenta)
models for the nightside pass on 13 February 2004(a), dayside pass on 2 August 2004(b), duskside pass on 8 May 2004(c) and dawnside
pass on 4 December 2003(d). From top to bottom panels of Fig. 5a–d are for thedBXGSM, dBYGSM, dBZGSM and the magnitude of the
field. The black vertical lines show the ring current region crossing.

components of the deviations are much smaller than from the
other models, indicating that this model best fits the data. The
time-varying input parameters return a time-varying model
field since the magnetospheric response is partially contained
in T01. Although this time varying input provides a better fit
to the data the residuals have less meaning. Nevertheless, it
is clear that the features indicated by the line plots (Fig. 4),
for FAC and cusp, persist throughout. The T01 deviations
revealed are weaker during the later years, which might be
because of the approach to solar minimum with reducing ge-
omagnetic activity. (The IMF conditions and SYM-H index
(not shown) confirm that conditions are broadly active dur-
ing the first four and a half years (from orbit 93 to∼800) and
quiet in the later years (from orbit∼800 to 1244)).

As mentioned above, the lines of apsides of the Cluster
spacecraft drop southward in the later years,. In order to
investigate the regions encountered at different times due
to this dropping, we compare in detail three months (Jan-
uary to March) of results from 2004 and 2007. Figure 6a
and b shows the residuals from the comparisons of Cluster
S/C 1 observations with the T89, T96 and T01 models for
the orbits 540–578 and 1001–1038, which are from 1 Jan-
uary to 31 March in 2004 and 2007, respectively. Figure 6a
and b shows clear bipolar signatures (sharp blue/red trends
or red/blue trends) corresponding to the contributions of re-
gion 2 FAC at∼1.0 h either side of perigee for the whole
three months of 2004, and∼ −2.0 h and 0.5 h relative to the
perigee for the whole three months of 2007 (most clear in the
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759 Figure 5. 

 760 

Fig. 5. Plots of the residuals from the comparisons of Cluster S/C 1 observations with T89, T96 and T01 models for the whole eight years
data. Each vertical strip is a section of an orbit – the x-axis is the orbit number, y-axis is time relative to perigee and the colour scale is
the value ofdBXGSM, dBYGSM, dBZGSM (each row), the panels from the left to right columns are the residuals from T89, T96 and T01,
respectively.
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Fig. 6. Plots of the residuals from the comparisons of Cluster S/C 1 observations with T89, T96 and T01 models for the orbits 553–566 and
1014–1026, which are from 1st to 29 (28) February in 2004 and 2007, respectively.

BY component). These tend to show underestimated signa-
tures around±1.0 h of perigee indBZ. The T89 model, how-
ever, does not include (and the T96 model does not well re-
produce) the region 2 FACs, resulting in larger residuals. The
deviations also show that there are underestimated signatures
(redder colour, especially indBZ), reflecting the contribu-
tions of the cusp current system, between∼+3.0 and +6.0 h
for the whole three months of 2004, and between∼+1.0 and
+3.0 h for the whole three months of 2007, again a result of
the progressive dropping southward of the Cluster orbit as
shown in Fig. 1.

4.2 Comparisons between the 4 Cluster spacecraft

In order to further investigate the cause of the bipolar signa-
tures we have attributed to FACs in the previous section we
make use of the multi-spacecraft nature of the Cluster mis-
sion. By studying the individual spacecraft residuals from
T01 for the whole eight years of data (not shown), we find

that the residuals are almost the same at all 4 spacecraft.
There are some clear differences in thedBX anddBY compo-
nents in later years, as a consequence of the larger spacecraft
separations. At the boundary of the ring current in the later
years, the Cluster S/C 2 observed the strongest signatures,
followed by S/C 1; S/C 3 and 4 measured almost the same
features. This might be because Cluster S/C 2 is always lo-
cated outermost, S/C 1 follows and S/C 3 and 4 are located
innermost (and move almost together: see, for example, the
configurations in Fig. 1), resulting in each spacecraft cross-
ing or passing close to different parts of the FAC.

Figure 7 demonstrates the effects of the different space-
craft separations and orientations on the magnetic field resid-
uals. Figure 7a shows the nightside passes on 13 February
2004 (small average separation,∼160 km) in the left-hand
panels and on 12 February 2007 (large average separation,
∼1600 km) in the right-hand panels. The left and right pan-
els in Fig. 7b similarly show the dayside passes on 2 Au-
gust 2004 (middle average separation,∼720 km) and on 16
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Fig. 6. Continued.

August 2007 (large average separation,∼2058 km), respec-
tively. In the same format, Fig. 7c shows the pair of flank
passes on 8 May 2004 and 4 December 2003. In each of
the plots in Fig. 7, the top four panels are residuals (data-
model) of magnetic field in GSM coordinates and the fifth
panel shows the magnetic field magnitude from the 4 Clus-
ter spacecraft for the two orbits. In addition, at the bottom
of each plot, the normal components of the residuals aver-
aged over the 4 Cluster spacecraft are shown. These are the
projections ofdBavg andBEO−avg onto the normal direction
of the current tubes for each FAC:dBNavg= dBavg• n̂v and
BEO−Navg= BEO−avg• n̂v. In BEO−Navg, the bipolar signa-
ture is attributed to a current tube crossing by the spacecraft,
while in dBNavg, it is due to the contributions of the un-
derestimated part of the observed current tube. This means
the model performs better when the offset is larger between
dBNavg andBEO−Navg. The x-axis in these lower panels is
time relative to the perigee for each orbit.

From Fig. 7, we find all four spacecraft observed the same
signatures when they were at small separation and observed
similar signatures, successively with small differences, when
they were at large separation. The bipolar signatures, which
are thought to be the contributions from region 2 FACs, are
clearly shown in the residuals from all the four spacecraft, the
differences between the spacecraft to spacecraft give an indi-
cation of FAC spatial extent. In Fig. 7a there are also some
complicated structures between +1.8 and +2.8 h of perigee in
the February 2007 pass (about three hours earlier than the one
in February 2004). This may suggest the Cluster spacecraft
are crossing the cusp current system at mid to high altitudes.

Since all four spacecraft typically sample the region 2
FACs, we may apply four-spacecraft timing analysis (Rus-
sell et al., 1983; Dunlop and Woodward, 1998) to calculate
the motion and scale of the FACs observed by Cluster, us-
ing the known tetrahedral spacecraft configuration. The re-
sults are given in Table 2, which are similar in each case and
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Fig. 7. Results from six orbits with different separations and different orientations of Cluster 4-spacecraft on 13 February 2004 and 12
February 2007 (a, in small and large separation, nightside pass), on 2 August 2004 and 16 August 2007 (b, in middle and large separation,
dayside pass), and on 8 May 2004 and 4 December 2003 (c, in small separation, both flanks pass), together with the average residual normal
component ofdBavg (black trace) andBEO−avg (magenta trace) for each FAC. The x-axis is time relative to the perigee for each orbit. Top
four panels are residuals (data-model) of magnetic field in GSM coordinates. Fifth panel shows the magnetic field magnitude from the 4
Cluster spacecraft for the two orbits.

give the average direction of the magnetic field from the 4
Cluster spacecraft,̂bavg (the third column of Table 2) and the
normal of the current tubes,n̂v (the fourth row of Table 2).

Angles between̂bavg andn̂v range from 86.8 to 111.5◦ (the
sixth column of Table 2), suggesting that these structures are
likely to be FACs, and are crossed perpendicularly. From
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Fig. 7. Continued.

Table 2. Catalogue of the average magnetic field and FACs motion for the FACs observed by Cluster spacecraft in the orbit shown in Fig. 1,
together with the angle between the average magnetic field and the FACs motion. The directions (nv) and the speeds (|V |) of the motion are
obtained from four-spacecraft techniques, and the size (DFAC) of each FAC observed by Cluster was estimated by using the velocity and the
duration of the whole bipolar signature of each FAC.

Date Hours to perigee Bavg GSM nv GSM |V| Angle DFAC
X, Y, Z X, Y, Z (km/s) (◦) (RE)

13 Feb 2004
∼ −1.4 −0.87,−0.48,−0.09 −0.24, 0.92,−0.31 0.73 101.7 0.21
∼ +0.6 0.95, 0.29,−0.12 −0.39, 0.92,−0.06 0.77 96.8 0.54

2 Aug 2004 ∼ +1.5 −0.68,−0.45,−0.58 −0.54, 0.84, 0.09 0.13 93.5 0.06

8 May 2004
∼ −2.2 −0.24, 0.84, 0.50 −0.41,−0.73, 0.55 0.21 104.0 0.15
∼ +0.4 0.29,−0.50,−0.82 −0.94,−0.32, 0.13 0.17 102.5 0.09

4 Dec 2003
∼ −2.5 0.04,−0.92,−0.39 −0.76, 0.18,−0.63 0.42 86.8 0.25
∼ +0.6 −0.00, 0.80,−0.60 0.20,−0.57,−0.80 0.53 89.0 0.32

12 Feb 2007
∼ −2.1 −0.72,−0.36,−0.59 0.88, 0.01,−0.47 1.42 111.5 0.43
∼ +0.2 0.88, 0.45,−0.14 −0.24, 0.97,−0.03 0.35 102.8 0.17

16 Aug 2007 ∼ +0.4 −0.79,−0.18,−0.58 −0.34, 0.71, 0.62 0.22 102.5 0.12

Table 2, we also find that for nightside passes (the FACs
on 13 February 2004 and 12 February 2007) the directions
of motion, along the components ofn̂v, are southward and
tailward and strongly duskward (eastward), except for the
FAC at ∼ −2.1 h to perigee on 12 February 2007 which is
southward and duskward, but dominated by a sunward mo-
tion. For the dayside passes (the FACs on 2 August 2004
and 16 August 2007), the implied directions of motion are
all northward and tailward with very strong duskward (east-

ward) components. For the duskside pass (the FACs on 8
May 2004), the implied directions of motion are all dawn-
ward (westward), northward and tailward. For dawnside pass
(the FACs on 4 December 2003), the implied direction of
motion is duskward, dominated by southward and tailward
components for the FAC at∼ −2.5 h to perigee and dawn-
ward and sunward, dominated by a southward component for
the FAC at∼+0.6 h to perigee.
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The timing analysis is calculated relative to the spacecraft
motion during the crossing of the structure. The FAC speeds,
|V| in Table 2, range from about 0.22 km/s to 1.42 km/s, sug-
gesting that the structures are very stable and are almost sta-
tionary during the Cluster crossings. Assuming a cylindrical
current tube we can estimate the maximum current tube size
(transverse thickness),DFAC using DFAC = |V | · 1t where
1t is the duration of the whole bipolar signature surround-
ing each FAC.DFAC ranges (see Table 2) from about 0.17
to 0.54RE for the region 2 FACs, and from about 0.06 to
0.12RE for the cusp FACs. We project the average residuals
of dBavg andBEO−avg(defined earlier) from the 4 spacecraft
onto the relative normal directionŝnv for these FACs. The
results show clear bipolar structures (see the lower panels in
Fig. 7a, b and c) with a peak-to-peak magnitude of∼50 and
∼70 nT for the FACs on 13 February 2004, and of∼20 and
∼25 nT for the FACs on 12 February 2007. This also sug-
gests the residuals are much weaker in the later years.

5 Discussion

The comparisons of eight years of magnetic field data from
the 4 Cluster spacecraft with the predictions from Tsyga-
nenko models confirm the frequent occurrence of sharp,
bipolar features in the residual values (data minus model) in
all three GSM magnetic field components, which were at-
tributed to region 2 FAC by Woodfield et al. (2007). These
bipolar signatures place the observed FACs on or near the
boundary of the ring current. The morphology of the Birke-
land current system suggested by Iijima and Potemra (1976)
closes the region 2 system via the ring current; the ring cur-
rent can extend from−65 to 65◦ in latitude all over the
evening and the post-midnight sector (Vallat et al., 2005).
It is therefore possible that the FACs we have observed were
indeed part of the region 2 current circuit (Woodfield et al.,
2007), or the region 2 FACs located at the boundary of the
ring current. This is in agreement with Vallat et al. (2005)
where the authors used the four Cluster spacecraft to esti-
mate the current using the curlometer technique (e.g. Dunlop
et al., 2002). A curlometer analysis has not been included
here since the quality is expected to be low in view of the
spacecraft configuration in some of the relevant regions in
these orbits. Nevertheless, such a study is being attempted
through improvements to the curlometer technique.

The quasi-static model (T89) takes into account the tail
current, ring current and Chapman-Ferraro currents, but does
not include the larger scale region 1 and 2 FAC. The dynamic
models (T96 and T01) take a detailed approach to modelling
the region 1 and 2 Birkeland currents, including the change
of ionospheric latitude with activity, dipole tilt-related defor-
mation and the observed day-night asymmetry (Tsyganenko,
1996, 2002a). It is a difficult task to model these FAC sys-
tems realistically, however, and any attempt to include them
in a global model is almost certain to be a simplification as

a matter of necessity. In general, we find that T96 and T01
model the location of the observed FAC system signatures
well but the magnitude and fine structure are less well repro-
duced, as there are additional filamentary structures embed-
ded within each FAC. It is unrealistic to expect the model
to be able to estimate accurately the detailed structure. It is
of prime concern, however, to obtain a realistic prediction of
the magnitude of the effect the FAC system has on the mag-
netic field. As the individual events showed, the intensity of
the magnetic field perturbation due to the FAC system varies
greatly. This increases the need for accurate and large data
sets to be used in generating a model. The results presented
here demonstrate the need for empirical models of the ex-
ternal field to better exploit Cluster magnetic field measure-
ments, especially in the Birkeland current region.

The time that the FACs are encountered with respect to
perigee alters over the course of a year as the plane of the
Cluster orbit precesses through 24 h in local time (see Wood-
field et al., 2007, Fig. 13). It would be expected, given
the day-night asymmetry mentioned above, that orbits with
a dayside perigee would observe any region 2 current sig-
natures further towards the poles (see, for example, Tsyga-
nenko (2002a), Fig. 4). This is in agreement with our re-
sults; the FAC signatures occur further away from perigee
from about July to December.

The separations of the 4 Cluster spacecraft vary over the
mission from about 100 km to 2–3RE, which allows us to
make spatial comparisons during similar external conditions.
At small separations, all the spacecraft observed the same
features with clear bipolar signatures resulting from the re-
gion 2 FACs (see Fig. 7). The 4-spacecraft technique (timing
analysis) works very well for calculating the normal direction
and scale of these FACs and the results confirm the presence
of FACs. The deviations in the normal directions show a pos-
itive to negative bipolar signature at the pre-perigee cross-
ing and a negative to positive bipolar signature, with some
turbulence at the end, during the post-perigee crossing (see
the bottom panels in Fig. 7). This indicates that the Cluster
spacecraft array is crossing one or two poleward FACs in the
pre-midnight, post-noon and dusk sectors, and tailward FACs
in the dawn sector, which confirms the statistical distribu-
tion of region 2 FACs above the polar region in the Northern
Hemisphere (Iijima and Potemra, 1976). We intend to im-
prove the curlometer technique to calculate the current accu-
rately for confirmation and investigation of the distributions
of the region 2 FACs at the altitude of 4–5RE in the future.

At large separations, all four spacecraft observed similar
signatures one by one with few differences other than those
due to convection of the FACs in time. The large separations
and the abnormal tetrahedral configuration of the Cluster
spacecraft array may reduce the validity of the 4-spacecraft
technique. Nevertheless, the similar bipolar signatures ob-
served one-by-one by the 4 Cluster spacecraft also suggest
that the region 2 FACs are very stable and are almost sta-
tionary during the Cluster array crossing, which indicates
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the timing analysis should work well under these conditions.
For example, the results from timing analysis confirm the
FACs referred to in Sect. 4.2 for the events on 12 Febru-
ary 2007, when the average large separation between the 4
Cluster spacecraft is about 1600 km. The deviations in the
normal direction in this case also show a positive to nega-
tive bipolar signature at the pre-perigee crossing (see the left
panel of the right part of Fig. 7a), and a less common nega-
tive to positive bipolar signature at the post-perigee crossing
(see the right panel of the right part of Fig. 7a), which also
indicate the Cluster spacecraft array might be crossing one
or two poleward FACs in the pre-midnight sector. We find
that the variations in the averageBEO−Navg are much larger
than those in the averagedBNavg. This might be because T01
overestimates these FACs during quiet IMF conditions. Sim-
ilar features can also be found in the residuals for the later
years, resulting from the quiet external conditions during the
years near solar minimum.

6 Conclusion

An investigation comparing eight years of magnetic field
data from the 4 Cluster spacecraft with Tsyganenko 1989
(T89), 1996 (T96), and 2001 (T01) field models, while Clus-
ter passes through, or adjacent to, the equatorial ring cur-
rent, has been carried out which significantly extends that of
Woodfield et al. (2007), both with different orbit locations
and model versions. There are some differences in the com-
parisons of the data with the different models and with dif-
ferent spacecraft, and as a result of the changing magneto-
spheric location (due to the progressive dropping southward
of the Cluster orbit). During the Cluster ring current crossing
(through perigee, at 4–5RE), the T01 and T89 models under-
estimate the ring current, while T96 overestimates it. This
study confirms that the deviations between the data and the
model take two forms: a sharp, bipolar signature and well-
defined trends over a larger spatial region; these residuals can
reach∼70 nT near perigee. We have shown here that these
deviations are much weaker during the years close to the
solar minimum, when geomagnetic activity is weaker. The
sharp bipolar signatures are suggested to be Cluster cross-
ings of the region 2 FACs or low-altitude cusp FACs, depend-
ing on dayside or nightside orientation. For Cluster region 2
crossings, only T96 and T01 include the region 2 FACs in the
model structure and T01 performs better. Overall, the resid-
uals from T01 are much smaller than from the other models
for all of the magnetic field components, indicating that this
model achieves the best fit to the data.

The four Cluster spacecraft observe nearly the same signa-
tures at the small separations characteristic of the early years
of the mission, but do sample different signatures at the large
separations during the later years, allowing comparisons to
be made during similar external conditions. Using the four-
spacecraft technique, we find that the region 2 FACs, with a

size of∼0.17–0.54RE, and cusp FACs, with a size of∼0.06–
0.12RE, are very stable and are almost stationary during the
Cluster array crossings.

In future, we hope to better map the magnetospheric re-
sponse in this region generally, and to study the quiet and
storm time ionospheric current systems linked via the re-
gion 2 FAC.
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