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Abstract. Beam-plasma instabilities are a key physical pro-
cess in many astrophysical phenomena. Within the fireball
model of Gamma ray bursts, they first mediate a relativis-
tic collisionless shock before they produce upstream the tur-
bulence needed for the Fermi acceleration process. While
non-relativistic systems are usually governed by flow-aligned
unstable modes, relativistic ones are likely to be dominated
by normally or even obliquely propagating waves. After re-
viewing the basis of the theory, results related to the rela-
tivistic kinetic regime of the poorly-known oblique unstable
modes will be presented. Relevant systems besides the well-
known electron beam-plasma interaction are presented, and
it is shown how the concept of modes hierarchy yields a cri-
terion to assess the proton to electron mass ratio in Particle
in cell simulations.

Keywords. Interplanetary physics (Cosmic rays) – Solar
physics, astrophysics, and astronomy (X rays and gamma
rays) – Space plasma physics (Waves and instabilities)

1 Introduction

Gamma ray bursts (GRB) and high energy cosmic rays
(HECR) are among the most interesting enigmas in astro-
physics. A promising scenario to generate these events is
the so-called Fireball model where a relativistic collision-
less shock generated by a Supernova, accelerates particles
up to ultra-relativistic energies (Piran, 1999). By radiating in
the vicinity of the shock, particles emit the photons subse-
quently detected under the form of a GRB. Besides relativis-
tic shocks, non-relativistic shocks such as Supernova rem-
nants (SNR) or merging galaxy cluster shocks (van Weeren
et al., 2010), are also believed to accelerate particles.
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Collisionless shocks are closely related to beam-plasma
instabilities. To start with, the very birth of the shock is me-
diated by these instabilities (Medvedev and Loeb, 1999). In-
deed, within a collisionless environment, two plasmas slabs
would simply pass through each other without anything more
happening, if counterstreaming plasmas flows were stable.
Once the shock propagates, accelerated particles escaping
ahead interact with the interstellar medium, generating again
a number of unstable modes. The resulting electromagnetic
turbulence happens to be a key ingredient of the acceleration
process (Blandford and Ostriker, 1978), as it is responsible
for scattering back particles to the shock. The more often
particles bounce back against the shock, the more energy
they gain until they finally escape. Finally, the turbulence
deflects particles and produces the X orγ radiation detected
on earth.

GRBs and HECRs physics requires therefore a detailed
knowledge of various beam-plasma instabilities processes.
The shock formation stage involves the collision of com-
parable density shells, with relativistic energies for GRBs’
physics. The acceleration process involves some rather thin
beam-plasma interaction, and relativistic issues are to be
dealt with even for SNR shock which accelerate particles to
mildly relativistic energies. The goal of this paper is thus to
review recent progresses made in this field, and explore the
consequences on shock physics and related issues.

2 Relativistic electron beam-plasma instabilities

Although beam-plasma instabilities are one of the oldest top-
ics of plasma physics (Bohm and Gross, 1949a,b), the rela-
tivistic regime has gained a renewed interest within the last
15 years due to its role in astrophysics and in one scenario
of inertial confinement fusion (Tabak et al., 2005). The
best explored system so far consists in a relativistic elec-
tron beam of densitynb, velocity vb and Lorentz factor
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Fig. 1. Growth-rate map forvb = 0.9c and nb/np = 1/10. The
fastest growing modes are not found aligned with a privileged axis.
The background plasma electronic frequency readsωp.

γb = (1−v2
b/c2)−1/2 passing through a plasma with a return

current of densitynp and velocityvp such asnbvb = npvp.
Ions are considered fixed with densityni = nb+np, neutral-
izing in charge the beam and the return current. From the
Vlasov-Maxwell system of equations, the dispersion equa-
tion for modes exp(ik · r − iωt) has now been solved con-
sidering Dirac’s delta distributions functions (Watson et al.,
1960), waterbag (Bret et al., 2004, 2005) or Maxwell-J̈uttner
distributions functions (Bret et al., 2010). The cold case is
worth examining in order to evidence the most interesting
relativistic effects. Figure1 features the growth rate in the
cold regime in terms of the parallel and perpendicular com-
ponents of the wave-vector. Two-stream modes are found
aligned with the flow and filamentation ones (sometimes re-
ferred to as “Weibel”) in the normal direction. As shown
on the plot, the fastest growing modes are here found in the
oblique direction, evidencing the need to explore the full un-
stable spectrum in order not to “miss” the leading instabil-
ities. In this diluted beam regime, it has been found that
two-stream, filamentation and oblique modes scale likeγ −1

b ,

γ
−1/2
b and γ

−1/3
b , respectively (Făınberg et al., 1970), ex-

plaining thus the domination of the oblique regime here.
The beam to plasma density ratio and the beam Lorentz

factor are so far the sole parameters of the problem. The
hierarchy map gives the leading mode in terms of these vari-
ables in the 2-D plot on Fig.2 (Bret and Deutsch, 2005).
Filamentation is found to govern the rather high beam to
plasma density ratio regime, whereas oblique modes gov-
ern the highly relativistic one. The shock formation and ac-
celeration phases are thus likely to be mediated by filamen-
tation and oblique modes, respectively. Consequences are
numerous, both on the kind of turbulence and spatial pat-
terns eventually produced. Oblique modes generate finite
length filaments and mostly electrostatic turbulence (Gremil-
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Fig. 2. Hierarchy map in the cold regime in terms of the beam
Lorentz factor and the beam to plasma density ratioα. The non-
relativistic regimeγb = 1 pertains to two-stream modes.

let et al., 2007; Dieckmann et al., 2006). Filamentation ones
produce infinitely long filaments and electromagnetic turbu-
lence. Note that regardless of the parameters, every unstable
mode is excited, but the dominant one give the main flavor of
the linear phase.

Thermal spreads have been taken into account for the
beam and the plasma considering Maxwell-Jüttner distribu-
tions for every species (the flow is aligned with the y-axis),

f 0(p) =
µ

4πγ 2K2(µ/γ )
exp

[
−µ(γ (p)−βbpy)

]
, (1)

whereµ = mec
2/kBT is the normalized inverse temperature,

K2 the modified Bessel function of the second kind. The first
two moments are given by∫

d3pf 0(p)d3p = 1,∫
d3pf 0(p)

py

mγ (p)
d3p = βb. (2)

Figure 3 now displays a growth rate map calculated with
such distributions forγb = 1.2, nb = np, Tb = 500 keV and
Tp = 5 keV. Noteworthily, the dominant mode is here oblique
whereas such symmetric systems withnb = np are always
governed by filamentation in the cold regime (see Fig.2).
It turns out that filamentation modes are the most sensi-
tive of all to beam temperature. When working with wa-
terbag distributions, it is well known that this modes can be
rigourously shut down beyond a threshold temperature (Silva
et al., 2002). Such shutting down is not recovered with the
present distributions, but the filamentation maximum growth
rate falls likeT

−3/2
b , while two-stream and oblique modes

increments only decrease byT −1
b . We thus find that the col-

lision of two equal density plasma shells does not necessarily
trigger a filamentation dominated regime (Bret et al., 2008).

Although they are found to govern an important part of the
parameter space, oblique modes have received little attention
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Fig. 3. Growth-rate map accounting for Maxwell-Jüttner distri-
bution functions, withγb = 1.2 andnb = np, Tb = 500 keV and
Tp = 5 keV.

until recently. Their kinetic scalings in terms of the beam
density, temperature and energy have now been determined.
The most unstable oblique mode has its kinetic growth rate
varying like(nb/np), T

−1
b andγ

−1/3
b . Apart from theγb scal-

ing, these power laws are the same for the two-stream modes,
which illustrate the close relation between the electrostatic
two-stream instability and the quasi-electrostatic oblique one
(Bret et al., 2010).

The location of the most unstable wave vectorkm =

(km‖,km⊥) equally deserve attention, for it determines the
geometry of the patterns generated from the linear phase.
Its knowledge is also critical for assessing the strength of
the wave-particle coupling since it enters the expression of
both the wave phase velocity, and the bounce frequency of
the trapped particles (Davidson et al., 1972). The parallel
componentkm‖ has been found to follow closely the most
unstable two-stream wave vector (Bret et al., 2010). The per-
pendicular componentkm⊥ displays an interesting behavior:
it remains locked with the most unstable filamentation mode
at low beam temperature, until both quantities decouple with
the fluid to kinetic transition for

Tb

mec2
& γ

1/3
b

(
nb

np

)2/3

. (3)

Beyond this threshold temperature,km⊥ seems to saturate,
whereas thek⊥ for the dominant filamentation modes de-
creases likeT −1/2

b .

3 Beam-plasma instabilities related to other kind of
systems

Beyond the case of a relativistic electron treated previously,
many systems are likely to be relevant for astrophysics.
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Fig. 4. Growth rate of the flow aligned unstable modes for a cold
proton beam withvb = 0.4c interacting with a cold plasma 100
times denser.

For GRBs physics, the collisione−p+/e−p+ of two elec-
tron/proton plasma shells may be involved, as well as pair
plasmas collisionse−e+/e−e+ or even a mixe−p+/e−e+.
While some results may be extrapolated from the electron
beam case, the unstable spectrum is usually different. See
for exampleYalinewich and Gedalin(2010) for the analy-
sis of two counterstreaming proton beams in the presence of
a thermal electron background. If the proton reaction may
be ignored (Bret and Dieckmann, 2008), and the system is
unmagnetized, the behavior of these three systems may be
deduced from the electron beam case. For the magnetized
case, the charge of the particles (not just itssquare) enters
the expression of the linear response tensor, and positrons no
longer behave like electrons. If in addition ion motion needs
to be accounted for, new modes are excited, and a new hier-
archy map emerges. Since the magnetic field may have every
possible orientation with respect to the flow, and each species
its own temperature, the number of possibly relevant systems
is considerable.

However, some modes, arising from the joint effects of a
guiding magnetic field with finite mass ions, have attracted
much attention is recent years. These so-called Bell’s modes
(Bell, 2004, 2005) are destabilized Alfv́en like waves with
the ability to saturate at a magnetic field level orders of mag-
nitude higher than the ambient one (up to 3, seeAmato and
Blasi, 2009). Figure4 shows the growth rate of all the unsta-
ble modes found for flow aligned wave vectors in the case of
a magnetized proton beam/plasma interaction. Here, a cold
proton beam passes through a plasma 100 times denser where
the electrons are assumed to drift in order to cancel the proton
current. Protons have a finite mass 1836 times heavier than
that of the electrons. The unstable spectrum is quite rich as it
displays Buneman, Two-stream, non-resonant Bell’s and res-
onant Alv̀en unstable modes (seeAmato and Blasi, 2009, for
an in depth kinetic study of these resonant and non-resonant
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Fig. 5. Mass ratio dependant hierarchy map for the system de-
scribed in Sect.2. The system represented by a circle switches
from an obliquely dominated regime to a filamentation one, when
the mass ratio goes from 1836 to 30. By contrast, the system rep-
resented by the square is governed by the same kind of mode for
R = 30 and 1836.

modes). Although Bell’s modes are not the fastest growing
ones, they can still play a role due to the orders of magni-
tude separating their wavelength and growth rate from the
Buneman/Two-stream ones. In this respect, it is probable
that Two-stream and Buneman modes have time to grow and
saturate long before the lowk’s modes get excited. From the
standpoint of the later, the growth of the former simply re-
sult in a plasma hotter than the one considered as an initial
condition.

4 Assessing the mass ratio in particle in cell simulations

Choosing the electron to proton mass ratio in particle in cell
simulations has become an art where the modeler needs to
ponder the processing time required by heavy ions, with
the need to render reality. Lighter protons speed up calcu-
lations but may render the simulation unrealistic. Since a
e−p+ plasma with protons weighting the same that electrons
is eventually a pair plasmae−e+, a critical mass ratio must
be crossed between 1836 and 1 where a given simulation no
longer describes reality.

A dimensional analysis of the problem shows that regard-
less of the number of dimensionless parameters introduced,
the mass ratioR = mp/me necessarily remains a part of the
problem (Bret and Dieckmann, 2010). In the current absence
of any rigorous criterion allowing to choose a proper mass ra-
tio, the concept of modes hierarchy introduced above allows
to define the critical mass ratio asthe smallest mass ratio
leaving the mode hierarchy unchanged.
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Fig. 6. Critical mass ratio for the system described in Sect.2.

Hierarchy maps such as the one pictured on Fig.2 areR-
dependant because finite mass protons introduce new unsta-
ble modes, and modify the already unstable ones. Consider a
real systemS with R = 1836. The linear analysis can deter-
mine the most unstable mode which leads the linear phase.
The same analysis forS(R < 1836) may yield a most unsta-
ble of the same nature, or not. If such is not the case, the
smallestR for which the dominant mode remains the same
defines the critical mass ratioRc.

As an example, consider the system investigated in Sect.2.
A finite mass ratio gives rise to anR-dependant hierarchy
map such as the one depicted on Fig.5. Four kinds of un-
stable modes are here excited, namely Two-stream, Bune-
man, oblique and filamentation modes (the dominion of two-
stream modes is restricted to the lineγb = 1). ForR = 1836,
the plain black lines picture the frontiers between the re-
gions where the various modes govern the linear phase. For
R = 30, the plain gray lines have the same function. The sys-
tem represented by a circle switches from an obliquely domi-
nated regime to a filamentation one, when the mass ratio goes
from 1836 to 30. By contrast, the system represented by the
square is governed by the same kind of mode forR = 30 and
1836. For the circle system, the transition goes from a quasi-
electrostatic dominant mode (oblique) to an electromagnetic
one (filamentation), which obviously results in different lin-
ear and non-linear phases. Note that the criterion isneces-
sary, but not sufficient. Qualitatively different linear phases
should result in different non-linear evolutions as well. But
similar studies have showed that similar linear phases (with
varyingR) may still result in a different non-linear evolutions
(Burkart et al., 2010).

The critical mass ratio can be evaluated numerically for
the system of Sect.2 and the result is displayed on Fig.6.
The most sensitive systems are the ones which represen-
tative points in the parameters phase space lie just be-
neath the oblique/filamentation frontier, or just above the
oblique/Buneman one, forR = 1836. Indeed, the slightest
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decrease ofR will move the frontiers towards them, provok-
ing a switch of dominant mode. In the context of shock for-
mation, where the higher part of the graph is involved (high
density ratio), changes in mass ratio are likely to be quite re-
stricted. Things seem to be simpler for the acceleration phase
implying the lower graph, with a thin beam-plasma interac-
tion.

5 Conclusions

Progress in relativistic beam-plasma instabilities have been
recently spurred by inertial fusion issues, and GRBs and
HECRs problems. While non-relativistic unstable beam-
plasma systems are likely to be governed by two-stream (or
Buneman) modes, relativistic effects unraveled much more
variety. Because such effects are not homogenous over thek

spectrum, spotting the most unstable mode demands the ex-
ploration of every possible unstable mode. Much work has
been done for the case of a relativistic electron beam passing
through a plasma, and it is now possible to know which kind
of mode will lead the linear phase according to the parame-
ters of the problem.

Although the number of relevant beam-plasma systems is
considerable, a new kind of mode has been discovered, be-
sides to already known two-stream, Buneman, oblique or fil-
amentation ones. These so-called Bell’s modes have spurred
a great amount of interest in recent years, due to their ability
to strongly amplify an ambient magnetic field. Furthermore,
their presence is various settings seems quite robust as they
are based on Alfv́en waves.

Finally, the work done on beam plasma instabilities has
been found capable of providing a criterion to assess the mass
ratio in Particle in cell simulations. By stating that the reduc-
tion of the mass ratio must leave unchanged the nature of
the most unstable mode, it has been possible to determine
a critical ratio below which the system evolution should be
unphysical. This criterion is necessary but not sufficient, as
systems with different mass ratios sharing the same linear
phase may still differ in their non-linear evolution.
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