^{1}

^{1}

^{1}

Fast and accurate retrieval of lightning sources is crucial to the early warning and quick repairs of lightning disaster. An algorithm for computing the location and onset time of cloud-to-ground lightning using the time-of-arrival (TOA) and azimuth-of-arrival (AOA) data is introduced in this paper. The algorithm can iteratively calculate the least-squares solution of a lightning source on an oblate spheroidal Earth. It contains a set of unique formulas to compute the geodesic distance and azimuth and an explicit method to compute the initial position using TOA data of only three sensors. Since the method accounts for the effects of the oblateness of the Earth, it would provide a more accurate solution than algorithms based on planar or spherical surface models. Numerical simulations are presented to test this algorithm and evaluate the performance of a lightning detection network in the Hubei province of China. Since 1990s, the proposed algorithm has been used in many regional lightning detection networks installed by the electric power system in China. It is expected that the proposed algorithm be used in more lightning detection networks and other location systems.