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Abstract. The spontaneous onset of magnetic reconnec-
tion in thin plane collisionless current sheets is shown to re-
sult from a thermal-anisotropy driven non-relativistic mag-
netic electron Weibel-mode, generating seed-magnetic field
X-points in the centre of the current layer. The proposed
mechanism is of larger generality. It also works in the pres-
ence of magnetic guide fields.

Keywords. Magnetospheric physics (Storms and sub-
storms) – Space plasma physics (Magnetic reconnection)

1 Introduction

The idea of magnetic reconnection as the main plasma pro-
cess that converts stored magnetic energy into kinetic energy
originates from the intuitive geometric picture of annihilat-
ing antiparallel magnetic field lines when approaching each
other (see, e.g.,Sweet, 1957; Parker, 1958; Dungey, 1961).
Observations in space have unambiguously confirmed the
presence of reconnection under collisionless conditions (see,
e.g.,Fujimoto et al., 1997; Øieroset et al., 2001; Nagai et
al., 2001) when the fluid theoretical approaches break down.
However, no convincing theoretical argument for the sponta-
neous occurrence of reconnection has so far been given. In
most collisionless numerical simulations reconnection is ar-
tificially ignited (cf., e.g.,Zeiler et al., 2000), mostly by ad
hoc imposing a seedX-point on the current sheet separat-
ing the anti-parallel fields. (Imposing a seed-X-point has a
number of effects which we will briefly discuss in the final
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discussion section.) The ongoing search for the mechanism
of spontaneous onset of collisionless reconnection points to
the “missing microphysics” in thin current sheets. The ex-
ception is a paper byRicci et al.(2004) where reconnection
is started from scratch and is attributed to the action of the
lower-hybrid drift instability thereby referring to diffusive
driving of reconnection.

In the present Letter we show that instability of the inner
current layer gives rise to the self-consistent generation of
local magnetic fieldsB = (Bx,0,Bz) transverse to the cur-
rent layer. Such local fields are equivalent to the genera-
tion of microscopic seedX-points in the current sheet cen-
tre and are capable of spontaneously igniting reconnection
as is known from two-dimensional PIC particle simulations
(cf., e.g.,Zeiler et al., 2002; Scholer et al., 2003, and others).
Since, in an ideal current sheet, ions and electrons become
non-magnetic on their respective inertial scalesλi,e= c/ωi,e,
whereωi,e= e

√
N/ε0mi,e are the plasma frequencies of ions

and electrons, (classical) collisionless convective transport of
magnetic fields into the current layer takes place up to a ver-
tical distancez ∼ λe from the centre of the current sheet. The
region betweenλe . z . λi is known as the “Hall-current”
(Sonnerup, 1979) or (mistakenly, as there is no diffusion
present) “ion-diffusion” region. They close along the mag-
netic field by electrons that are accelerated in the oblique
lower-hybrid-drift/modified-two-stream instability driven by
magnetised Hall-electrons on the non-magnetic ion back-
ground thereby coupling the reconnection site to the auroral
ionosphere (Treumann et al., 2009).

When speaking of a current sheet, we refer to ideal homo-
geneous current sheets separating strictly antiparallel mag-
netic fields thereby excluding any residual normal mag-
netic field components. Indeed, the observational paradigm
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of a reconnecting current sheet is the magnetospheric tail-
current sheet. This current sheet is not ideal in the above
sense as it is embedded into a quasi-dipolar field which still
might preserve a weak rudimentary (normal) magnetic field
componentBz pointing northward. ThisBz component re-
magnetises the central-sheet electrons and affects the evo-
lution of (collisionless) tearing modes (Galeev and Zelenyi,
1975). Nevertheless below, when using numbers, we will
for reasons of resolution refer to conditions in the magneto-
tail even though our theory might apply better to the mag-
netopause, interplanetary space or astrophysics. In principle,
observation of the electron-inertial (“electron-diffusion”) re-
gion is difficult because of its narrow width. Unambiguous
observations do not yet exist. At the magnetopause, in par-
ticular, very narrow electron layers have sometimes been re-
ported assuming that they relate to the electron-inertial re-
gion during reconnection (for a recent discussion of the ex-
perimental prospects of resolving the electron-inertial region
cf., Scudder et al., 2008).

2 Magnetic field generation in the current layer

Unless a guide field is imposed from the outside on a plane
collisionless homogeneous current sheet, the inner region
z . fewλe of the current sheet is about free of magnetic
fields, while at the same time carries a (diamagnetic) current
J⊥ perpendicular to the antiparallel magnetic fields to both
sides of the current, caused (for instance in the geomagnetic
tail current sheet or the Earths magnetopause) by a (macro-
scopic) electric potential drop1U along the current.

For the understanding of the mechanism of reconnection
it is of no interest how this potential drop is generated. This
may happen when two magnetised collisionless plasmas of
finite lateral extension collide. In the magnetotail current
sheet the potential is imposed from the outside by the solar
wind and the potential amounts to 1.1U . few 10 kV, and
electron and ion temperatures are of the order ofTe∼ 0.1 keV
andTi ∼ 1 keV, respectively. Electrons entering the centre of
the current sheet accelerate along the current, thereby becom-
ing the main current carriers here. Their high translational
velocity Ve =

√
e1U/me > ve exceeds their thermal speed

ve=
√

2Te/me providing conditions that are unstable against
the Buneman two-stream instability (Buneman, 1958), a fast
growing electrostatic instability with high frequencyωB ∼

0.03ωe and large growth rateγB ∼ ωB (cf., e.g.,Treumann
and Baumjohann, 1997, p. 22). In the geomagnetic tail cur-
rent sheet the growth rate amounts toγB ≈ 1.7 kHz, corre-
sponding to a growth time ofτB ∼ 0.006 s.

The Buneman instability readily generates localised
micro-scale (several Debye lengths) electrostatic structures
(known as electron and ion phase space holes) which trap a
substantial part of the electrons and heat them in the direction
along the current drift velocity. Numerical simulations sug-
gest that this process takes roughly 100–1000 plasma periods

(Buneman, 1959; Newman et al., 2001), or few 10 e-folding
times, in the magnetospheric tail.0.1 s. In this process the
instability shuts off itself by increasing the parallel electron
temperature untilve‖ ∼ Ve. At the end of this very fast pro-
cess the electrons develop a temperature anisotropy

A = Te‖/Te⊥ −1> 0 (1)

with current-parallel temperatureTe‖ > Te⊥ = Te exceeding
the initial electron temperature, roughlyA . 1 in the magne-
tospheric tail current sheet. The subscripts|| and⊥ refer to
the respective directions of maximum and minimum electron
temperatures, i.e. the two directions of the electron pressure
tensor

Pe= N [Te⊥I+(Te‖ −Te⊥)V eV e/V 2
e ] (2)

In this thermally anisotropic case the electrons obey a bi-
Maxwellian equilibrium distribution function

fe(v⊥,v‖) =
(me/2π)

3
2

Te⊥
√

Te‖
exp

[
−

mev
2
⊥

2Te⊥
−

mev
2
‖

2Te‖

]
(3)

which, in a nonmagnetised plasma (like the inner current re-
gionz . λe) is unstable with respect to the family of Weibel1

instabilities (Weibel, 1959). These are very low (about
zero) frequency (purely growing) electromagnetic instabil-
ities which are capable of generatingstationary magnetic
fields that grow from thermal fluctuations (not requiring any
magnetic dynamo mechanism). The linear electromagnetic
dispersion relation of the plasma becomes

(n2
−ε⊥)2ε` = 0 (4)

wheren = kc/ω is the refraction index, andω is the fre-
quency of the linear disturbance. The dielectric tensor has
the two scalar componentsε`(k,ω),ε⊥(k,ω) which are the
longitudinal and transverse response functions, respectively.
For our purposes it suffices to consider the electromagnetic
(transverse) response buried in

ε⊥ = 1−
ω2

e

ω2
{1−(A+1)[1+ζZ(ζ )]}−

ω2
i

ω2
= n2 (5)

whereZ(ζ ) is the plasma dispersion function,ζ = ω/k⊥ve⊥,
andve⊥ =

√
2T⊥/me is the electron thermal speed perpen-

dicular to the current. The Weibel instability grows in the
plane perpendicular to the direction of the higher thermal ve-
locity, which in our case has been assumed as the parallel
direction. Hence,k = (kx,0,kz) = (k⊥sinθ,0,k⊥cosθ); in an
extended medium there is noθ -dependence, a point to which
we will return later. The contribution of the resting ions has
been retained for completeness; because of the smallness of
the ion plasma frequencyωi � ωe, being much less than the

1Weibel – or current filamentation instabilities, as they are some-
times called followingFried(1959) where a simple physical model
of their mechanism was given early – have mostly been investigated
in view of astrophysical applications in a relativistic approach.
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electron plasma frequencyωe, it plays no role in the instabil-
ity.

At zero real frequencyω = iγ and A > 0 the right-
hand side of Eq. (5) becomes the dispersion relation of the
thermal-anisotropy driven Weibel mode (Weibel, 1959; Yoon
and Davidson, 1987, and others). Instabilityγ (k⊥) > 0
sets on at phase velocitiesω/k⊥ � ve⊥ for wavenumbers
k⊥ < k0,

k0λe '
√

A (6)

with instability growth rate

γW

ωe
'

√
2

π

ve⊥

c

k⊥

k0

(
1−

k2
⊥

k2
0

)
(A+1)(k0λe)

3 (7)

vanishing at long wavelengthsk⊥ = 0. The growth rate
maximises at wavenumberk⊥m = k0/

√
3 = λ−1

e
√

A/3 (see
Fig. 1) where its value is

γW,m

ωe
'

4

3

√
A32e

3π
(A+1) (8)

with 2e ≡ Te⊥/mec
2 the (ambient) temperature normalised

to the rest energy of an electron. Numerically this expression
yields for the maximum growth rate

γW,m ≈ 34
√

N[cm−3]Te⊥[eV]A
3
2 (A+1) Hz (9)

Depending on the value of the anisotropy, this growth rate
can be substantial. IfA > 1, it grows asγ ∝

√

A5, while for
anisotropiesA < 1 it grows likeγ ∝

√

A3. In the tail plasma
sheet we haveTe∼ 100 eV andN ∼ 1 cm−3. Then, even with
A ∼ 0.1 one finds quite a fast growth rate ofγW,m . 10 Hz.

The important point is that even though the growth rate
might not be extraordinarily large, it generates a magnetic
field that has two components,BW = (Bx,0,Bz), both be-
ing transverse to the initial current. The componentBx is
alternating between the directions parallel and antiparallel to
the initial magnetic field outside the current layer, being di-
rected±x̂ while the other component is perpendicular to the
current layer directed along±ẑ. This field modulates the cur-
rent layer alonĝx causing magnetic islands whose vertexes
lie in the centre of the current layer. It thus provides seed-
X points which, if sufficiently large amplitude, will sponta-
neously ignite reconnection. The finite nonmagnetic current
sheet width inz imposes a limit 2π/kz < 2λe which yields

kz/kx = cotθ ≈ kz/km > π
√

3/A (10)

the lower limit resulting from the restriction onA > 3me/2mi
(see below). Thus the Weibel mode propagates at angles

tan−1
[π−1

√
me/2mi] < θ < tan−1

[π−1
√

A/3] (11)

againstx̂. This is the maximum angle the wavevector as-
sumes in the Weibel-field vertexes. ForA = 0.1 andA = 1

1
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Fig. 1. The anisotropic-thermal Weibel instability growth rate
γ /γm, normalised to maximum growth, as function of the nor-
malised wavenumberk/k0 for three different thermal anisotropies.
This ratio increases asA−1. The vertical line indicates the position
of the maximum growing wave numberkm/k0.

these inclination angles are 0.3◦ < θ . 3.4◦ and∼ 11◦, re-
spectively. However, in addition, the Weibel mode can prop-
agate in two directions±x̂. The two cases are shown in
Fig. 6: (a) when the propagation direction choses to be along
the external field. In this case simple seed-X points in the
current sheet are generated which will allow reconnection to
evolve in the usual way. For the oppositely directed Weibel
vertices shown in Fig.6 (b), however, a multitude of addi-
tional reconnection sites are produced alongz ∼ ±λe, and
the current layer becomes highly unstable. Which is the most
probable case can be decided only after a complete solution
of the Weibel-unstable boundary value problem of the cur-
rent layer.

3 Thermal fluctuation level

In order to infer how long it takes the instability to achieve
substantial magnetic field amplitudes we need to estimate the
magnetic thermal fluctuation level〈bibj 〉k,ω=0 from where
the Weibel instability starts growing in the presence of
the electron pressure anisotropy (thermally fluctuating mag-
netic fields will be denoted by lower case letters). Mag-
netic thermal levels have recently been estimated (Yoon,
2007b; Baumjohann et al., 2010). From basic fluctuation
theory (Sitenko, 1967) the spectral energy density of the
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Fig. 2. Wavenumber dependencies of the normalised fluctua-
tion spectrum and normalised growth rates. The normalisation
of the thermal fluctuation spectrum is to its maximum value
given in Eq. (13). Normalisation of the growth rate is toγ0 =

ωe
√

π/2(c/ve). Since the growth rate depends on anisotropyA it
is given for the two casesA = 0.1,1. Note the competition between
growth rate and fluctuation level. At long wavelengths the high
fluctuation level partially compensates for the low growth rate. The
range of wavelength of interest in the magnetospheric tail is shown
shaded. It centres around maximum thermal fluctuation level.

zero-frequency thermally-anisotropic Weibel mode can be
written

〈|b|
2
〉k0

√
2π

=
µ0

ωe

c

ve⊥

Te⊥k⊥λe(A+1)2

(A+2)[k2
⊥
λ2

e−A+me/mi]
2

(12)

The 0-subscript refers to vanishing real frequency. Here the
ion contribution has been retained. In the isotropicA = 0 and
Weibel-stable−2 < A < 0 cases, the spectral energy den-
sity vanishes atk⊥ → 0,k⊥ → ∞ and, in a proton-electron
plasma, maximises atk⊥λe ≈ 0.013. Its maximum value is

〈|b|
2
〉k0,m = 8.25×10−23

√
Te[eV]

N[cm−3]

V2s3

m
(13)

One might note that for positive anisotropies the current sheet
is not in equilibrium anymore, and the thermal fluctuations
explode close to the boundary of the unstable domain for
k⊥λe ∼

√
A ≈ k0λe indicating onset of instability and phase

transition.
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Fig. 3. Normalised thermal fluctuation level at maximum growing
Weibel wave numberkm as function of Debye lengthλD. The fluc-
tuations are normalized to their value atTe = 1 eV, N = 1 cm−3.
The Debye normalisation is taken to the Debye lengthλD1 at these
numbers. As suggested by Fig.2, the initial fluctuation level from
where the maximum unstable Weibel mode grows decreases∼ A−1

because of its dependence onkm, which increases as
√

A. Since the
spectral energy density of fluctuations decreases∼ k−3, the initial
level of the fastest growing Weibel mode also decreases with grow-
ing anisotropy.

3.1 Fastest growing Weibel mode

The Weibel instability choses from this spectral energy den-
sity and supports the fastest growing wavenumberk⊥m. In-
serting fork⊥m the initial thermal level of the fastest growing
mode becomes

〈|b|
2
〉km0 '

9µ0

4

mec
2

ωe

√
π

3

Te⊥

mec2

(A+1)2/(A+2)

(A−3me/2mi)2
(14)

Since large thermal anisotropies are unrealistic, the cases of
small A � 1 and large anisotropiesA ∼ 1 may be distin-
guished yielding the limiting initial levels

〈|b|
2
〉km0 '

αµ0

A

mec
2

ωe

√
π

3

Te⊥

mec2
, A >

3

2

me

mi
(15)

with α = 9/8 for A � 1, andα = 3 for A . 1. Numerically:

〈|b|
2
〉km0 ≈ 8.8×10−28 α

A

√
Te[eV]

N[cm−3]

V2s3

m
(16)

where the temperature is measured in eV, and the density
is in cm−3. The numerical factor for the largest expected
anisotropyA ∼ 1, α = 3 is≈ 2.63×10−27.
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Fig. 4. Variation of the relevant growth timesτW,m (Eq. 18) of
the maximum growing Weibel mode with thermal anisotropyA for
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for onset of reconnection. In the geomagnetic tail current sheetτ0 &
0.1 s. Even though the initial thermal level in Fig. 2 decreases with
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the current sheet are mainly determined by the dependence of the
maximum growth rateγm on A. They depend only logarithmically
on the initial thermal wave field. They thus decrease with growing
anisotropy. The shaded area shows the range of anisotropies and
growth times expected in the geomagnetic tail current sheet.

The unstable Weibel spectral energy density evolves ac-
cording to

〈|B(t,km,0)|2〉 ≈

〈
|b|

2
〉
km0

exp(2γW,mt) (17)

The growth time of the fastest growing mode follows from
this expression as

τW,m ≈
1

2γW,m
ln

〈|B(km,τW,m)|2〉

〈|b|2〉km0

(18)

The spectral energy density of a|B| = 1 nT magnetic field
fluctuation is〈|B1nT|

2
〉k0 ≈ 4.3×10−12 V2 s3/m. This value

may be used when estimating the time it needs for the maxi-
mum growing thermal-anisotropy driven Weibel mode in the
magnetotail current sheet to grow up to a value comparable to
the external (lobe) magnetic fieldB0 ∼ few nT. If we take the
growth rate in the range 1. γW,m < 50 Hz which holds for
0.1. A < 1, short growth times from thermal level to 1 nT
fields of the order of

τW,m > 0.1 s (19)

are obtained, corresponding to mostly a few seconds of
growth time in the magnetospheric tail. Given the uncer-
tainty of the numerical values used, this is not an unreason-
able estimate of the length of the ignition phase that initiates
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Fig. 5. The Weibel mode at long wavelengths: Growth time depen-
dence on wavelength in the long wavelength range. The normalisa-
tion τ0 ≈ 5 s is obtained forTe= 100 eV,Ne= 1 cm−3, andA = 0.1.
Growth times are shown for two different temperaturesTe= 10 eV
andTe= 100 eV and three values of the anisotropyA = 0.1,0.2,0.3.
The shaded area is the acceptable wavelength domain for the geo-
magnetic tail.

reconnection in the tail current sheet, i.e. the time to produce
initial X-points which subsequently start reconnection. Typ-
ical times for the evolution of substorms following onset of
reconnection range from minutes to few tens of minutes and
depend on the connection of the magnetotail reconnection
site to the response of the ionosphere.

3.2 Long wavelength Weibel modes

Fastest growth corresponds to very short wavelengths
k⊥λe .

√
A/3. There may, however, as well be competition

between decreasing growth rate and increasing initial fluctu-
ation level at long wavelengths as shown in Fig.2.

Equation (12) suggests that the spectral energy density
of thermal fluctuations fork2

⊥
λ2

e < A+me/mi increases as
∼ k⊥λe. In isotropic plasmaA = 0 this implies wavelengths
λ � 2πλe

√
mi/me ≈ 300λe. In the magnetospheric tail the

wavelength of maximum thermal fluctuation level is thus
λ ∼ 1500 km. The spectral energy density in this long-
wavelength range is given by Eq. (13).

At such wavelengths one can neglect the termk⊥/k0 in the
expression for the Weibel growth rate. For small anisotropies
A < 1 the growth rate becomes

γW '
4Ac

λ

√
πTe⊥

mec2
(20)
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Inserting the long-wavelength restriction onλ yields

γW �0.01A

√
πTe⊥

mec2
ωe≈ 1.4A

√
Te[eV]N[cm−3] Hz (21)

The Weibel growth rate, forA ∼ 0.1 andTe∼ 0.1 keV, in this
wavelength range is thus of the order ofγW ∼ 0.1 Hz, one
order of magnitude less than at maximum growth, yielding
exponentiation timesγ −1

W ∼ 1 s and growth timesτW ∼ 10 s
(see Fig.5). This is the time a Weibel wavelength ofλ ∼

1500−3000 km, i.e. roughly half one Earth radius, needs to
grow from thermal level to an amplitude of 1 nT in the geo-
magnetic tail prior to onset of reconnection.

In anisotropic plasmaA 6= 0 and we may relax the con-
dition on the wavelength. In this case the mass ratio in the
thermal fluctuation expression becomes unimportant for rea-
sonably largeA � me/mi . Then long wavelengths imply that
k⊥λe�

√
A = k0λe and

〈|b|
2
〉k0 '

µ0mec
2

ωe

√
πTe⊥

mec2

k⊥λe

A2

�
µ0mec

2

ωe

√
π

A3

Te⊥

mec2
(22)

≈ 3.2×10−24A−
3
2
√

Te[eV]

V2 s3

m

With Te⊥ = 100 eV, andA = 0.1 and using the former expres-
sion for the growth rate, one correspondingly expects growth
times from thermal level of the order ofτW ∼ 100 s, between
1 and 2 min, for wavelengths of the order ofλ ∼ 1000 km
� 2πλe/

√
A ∼ 110 km.

4 Collisionless reconnection scenario

These estimates are sufficiently encouraging for developing
a microscopic scenario for collisionless reconnection as fol-
lows: Assume a plane homogeneous Harris current layer
Jy = −J0sech2(2z/1), with 1 the layer half-width, separat-
ing two (lobe) regions of antiparallel magnetic fields. The
magnitude of the field changes asBx(z) = B0tanh(2z/1).
Let this current layer be (locally) compressed until its width
shrinks to1 ∼ λi . In the ion-inertial region the ions become
locally non-magnetic and are accelerated in−ŷ direction by
the cross-field electric potential, carrying the pure ion Harris
current. Electrons remain magnetised, transporting the mag-
netic field with inward velocity−E/B(z) thus giving rise to
Hall currents (Sonnerup, 1979) which are restricted solely
to the ion-inertial region and close along the magnetic field
lines which connect them to the ionosphere (Treumann et al.,
2009). Thez-dependence of the Hall currents is

JH(z) ≈
eN0E

2B0

[1−2(|z|−zi)]2(|z|−ze)

sinh(4z/1)

where zi,e ≡ ξi,eλi,e and 1. ξi,e ∈ R are rational numbers
close to but larger than unity. Field line bending in recon-
nection is not taken into account here. Hall currents vanish
in the centre of the current sheet at distances|z|/ξe≤ λe, less
than the electron inertial lengthλe = c/ωe where the elec-
trons demagnetise. For the onset of reconnection the Hall
currents are thus of no importance.

The non-magnetic electrons in the central current sheet ex-
perience the cross-field potential1U , accelerate in+ŷ direc-
tion and become the primary carriers of the cross-tail current
here. Accelerated to large cross-tail velocitiesVe> ve, these
electron currents excite the Buneman two-stream instability
on growth times shorter thanτB < 10−3 s, a number holding
in the magnetotail. The Buneman instability stabilizes within
0.01< τ < 0.1 s by heating the trapped electrons along±ŷ

until v‖e ∼ Ve. As a consequence the current sheet elec-
trons develop a positive temperature anisotropy 0< A < 1
which is sufficiently large to drive the Weibel mode unstable
and result in the generation of a stationary magnetic Weibel-
field BW = (Bx,0,Bz) in the current sheet with components
in the (x,z)-plane perpendicular to both, the current flow
and anisotropy directions. The fastest growing wavelength
is λm ∼ 2πλe

√
3/A.

In the magnetospheric tail current layer we haveλe ≈

5.4/
√

N[cm−3] km. The maximum growing wavelength of the
Weibel magnetic vortices thus becomes shorter thanλm <

180 km, the value obtained for a weak anisotropyA ∼ 0.1.
The time for this field to grow to values of the order of 1 nT
(or a fraction of it) is of the order of few seconds.

It is usually claimed that the Weibel instability stabilizes
when the electron gyroradius in the Weibel magnetic field be-
comes comparable to the Weibel wavelength. When the elec-
trons are accelerated to>keV energies their gyroradius in a
1 nT magnetic field becomes the order of∼ 100 km, roughly
the same order as the above estimated maximum wavelength.
Thus the short wavelength Weibel field has sufficient time to
grow to substantial values until it stabilizes self-consistently
by deflecting the current electrons. Prior to this the Weibel
field has penetrated the current sheet forming vortices and
vertexes which serve as seed-X points for reconnection which
may then proceed at about along the lines that were discussed
long ago in an attempt of formulating a kinetic theory of
collisionless reconnection by ad hoc imposing aBz-field on
the current layer (Galeev and Zelenyi, 1975; Sagdeev, 1979).
This attempt led to the proposal of a scenario for the spon-
taneous onset of magnetospheric substorms. In the presence
of Bz 6= 0 the current sheet is in a metastable state that goes
spontaneously unstable. The main deficiency of this theory
was the lack of any reason for the appearance ofBz. Im-
posing it ad hoc is the equivalent of igniting reconnection
artificially.

What happens in the long wavelength regime? Here we
have λ & 300λe ≈ 1.5× 103 km. The growth time to ob-
servable/relevant amplitudes we found to be of the order of
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Fig. 6. Sketch of the electron-inertial region (width1z = 2λe) around the centre of the current layer, embedded into the ion-inertial region.
Hall-electrons carrying the Hall-current in the ion-inertial region enter the electron-inertial region (shown on one side of the current layer
only) with isotropic temperature distribution, experience the electric fieldE, accelerate into+ŷ direction. After being heated by the two-
stream instability they develop a temperature anisotropy and excite magnetic Weibel-vortices (blue) alongx̂ the vertexes of which serve as
seed-X points for reconnection. The condition thatBz = 0 atz = ±λe allows for two types of Weibel vortices:(a) a symmetric (magnetically
continuous) vortex-mode (same direction as the external fieldsB0x ), and a(b) anti-symmetric non-continuous vortex-mode (antiparallel to
the external field) which yields tail-current bifurcation.The anti-symmetric mode gives rise to multiple reconnection sites (shown in green
colour) and presumably leads to explosive reconnection.

τW ∼ 10 s, which is not unreasonable for the processes going
on there.

The short wavelength modes grow about ten times faster
than the long wavelength modes but may not be of sub-
stantial importance for reconnection until they cascade in-
versely down to longer wavelength structures. This could
be provided by the coalescence of magnetic islands which is
strongest at short wavelengths. The Weibel instability in this
case excites an entire spectrum of magnetic field structures
in the current layer. In the geomagnetic tail both the short
Weibel modes and the long wavelengths modes provide seed
X-points on geophysically reasonable spatial and temporal
scales.

5 Discussion and conclusions

The present approach has so far only implicitly taken into ac-
count the narrow width of the non-magnetic central current
region which imposes boundary conditions on the evolution
of the Weibel mode. Continuity ofB at z ∼ ±λe implies a
vanishingBz here. As demonstrated, this imposes limits on
wave number and propagation angles of the Weibel mode. In
addition the presence of a boundary implies thatBx is either
parallel or antiparallel. Clearly the parallel case is preferred
as the antiparallel case generates small-scale current bifur-
cation. On the other hand, this is possible because the evo-
lution of the Weibel mode is completely independent of the
presence of the external field.

One thus distinguishes between two types of Weibel
modes depending on their propagation directions±x̂. One
of them (Fig.6a) just causes seed-X points, the other (bi- or
trifurcated) mode may lead to multiple – probably explosive
– reconnection (see Fig.6b). The reason for an explosive
character lies in the fact that on the short scale across the
boundaryz ∼ ±λe between the inner (Weibel) current region
and the external (Hall) region the electrons are unmagnetised
such that the Weibel field can freely expand intoz until con-
tacting the lobe magnetic field. This causes spontaneous re-
connection between the contacting magnetic flux tubes and
will force the inner current sheet to decay into a chain of
highly dynamical magnetic islands (meso-scale plasmoids),
as is immediately realised from Fig.6b when imagining the
resulting magnetic field structure after multiple spontaneous
reconnection has set on. In this case, the inner part of the cur-
rent layer will become “turbulent” (multiply connected) on
meso-scales the order of the Weibel wavelength. The inner
current region decays into a “magnetic vortex street” consist-
ing of (electronic) plasmoids and seed-X points.

In principle, one may still worry why in both cases mag-
neticX points will at all form even in presence of the Weibel
mode. The reason for this is that the scale of theX points is
microscopic in the sense that neither electrons not ions are
magnetised and thus are not affected anymore by the mag-
netic field. Vice versa, the magnetic field is independent of
the presence of electrons on this scale; it behaves like a po-
tential field in vacuum whose sources are outside the small
box that contains theX point. This means that no electron
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currents flow here which are responsible for the anti-parallel
fields! Because of this reason the contacting anti-parallel
fields can like in vacuum freely rearrange their topology
without affecting the particle components on the microscopic
scale.

One may ask what structure of the field and current layer
is expected in the direction parallel to the current flow. This
question cannot be answered without detailed analysis. How-
ever, one may argue that the structure along the current is
determined by two facts: the mechanism of electron heat-
ing, and the dynamics of the ions. Electron heating occurs
in electron holes which have (short) longitudinal extension
of 1y ∼ 100λD, whereλD is the Debye length. The heat-
ing scale is orders of magnitude longer including several to
many phase space holes. However, though it is long, it is
still microscopic. In the magnetotail current layer this length
becomes the order of several∼100 km to few 1000 km only.
Hence, one suspects that the tail reconnection structure is in-
herently three-dimensional putting all two-dimensional mod-
els in question.

In addition, the present theory refers to stationary ions.
The ions that carry the tail current move into direction−ŷ.
Hence, the Weibel structures and the resulting reconnection
sites as a whole move in the direction of the combined speed
of the electron holes and current ions. Numerical simulations
suggest (cf., e.g.,Newman et al., 2001) that this direction
is opposite to the electron flow velocityV e, i.e. in the di-
rection of ion flow. As a result one expects that the whole
set of magnetotail-reconnection sites will displace slowly
– roughly at translational velocity of the ion-sound speed
cs '

√
Te/mi ∼ 200 km/s – into−ŷ-direction, the direction

of ion flow, which in the magnetotail is westward. This is
in accord with observation of the initial westward displace-
ment of substorm sources. Mapping along the stretched mag-
netic field lines into the ionosphere decreases this transla-
tional westward drift speed by about one order of magnitude.

In conclusion, it is the thermal-anisotropy driven Weibel
instability which provides the magnetic field to penetrate
the inner region of the current layer, generates a local nor-
mal field componentBz and, by producing short wavelength
magnetic vortices and vertexes, it may ignite reconnection
on a time scale of tens of seconds to few minutes in the
magnetotail. This is in rough agreement with observations,
e.g. in the magnetotail, and is sufficiently short for initiat-
ing magnetospheric substorms. On the other hand, any colli-
sionless reconnection theory based on generation of anoma-
lous diffusivity is, probably, quite unrealistic for reasons of
time-scales. Diffusion also has to overcome logical difficul-
ties which are not easily resolved (cf., e.g., the discussion in
Baumjohann et al., 2010).

From our considerations it can be concluded that initiating
reconnection in two and three-dimensional full particle sim-
ulations (any magnetohydrodynamic and multi-fluid simula-
tions completely miss the physics of reconnection and can
only be taken as a guidance for the macroscopically possi-

ble magnetic field topologies) resolving the electron scales
like those ofZeiler et al.(2002), Scholer et al.(2003) and
others by artificially imposing seed-X-points is physically
completely correct. Such simulations correctly mimic the ac-
tion of the microscopic Weibel mode by bridging the initial
phase of Weibel growth/saturation and replacing it by the fi-
nal Weibel state. This is physically correct and reasonable.
Such simulations can thus be used for investigating the fur-
ther evolution of reconnection in a thin current sheet once
seed-X-points have been generated by the Weibel instabil-
ity. They can also be taken as starting points for investigat-
ing the subsequent behaviour of the various involved parti-
cle distributions, acceleration of particles and so on. Since,
however, they can be performed only in rather small sim-
ulation boxes and with limited numbers of macro-particles
(each of them standing for very large numbers of real parti-
cles) future research should concentrate on resolving the dif-
ficult problem of combining many such simulation boxes to
build-up meso-scale models of reconnection which could be
compared with observations. One might speculate that some
kind of “renormalisation procedure” must be developed that
conserves the important surviving (in the language of renor-
malisation group theory “relevant”) effects in a small simu-
lation box when going to larger scales.

Here we have presented a logically consistent chain of pro-
cesses that provides a satisfactory mechanism for the spon-
taneous self-ignition of fast magnetic reconnection in thin
plane and homogeneous collisionless current layers. Its nu-
merical verification requires three-dimensional PIC simula-
tions, resolving the fully electromagnetic electron dynamics
in the current layer. A first step in this direction has been
gone byRicci et al.(2004) who initiated (collisionless) re-
connection without imposing any magnetic islands on the
current sheet. The reconnection starting in this case was
attributed to the action of the lower-hybrid drift instability
which naturally requires the presence of magnetised elec-
trons (and thus holds for the region outside the electron in-
ertial domain) respectively in the presence of a guide field,
as in this case of simulations referred to. Guide-field re-
connection is naturally quite different from the one consid-
ered in our model of non-guide field reconnection. However,
when the guide field is directed parallel/antiparallel to the
sheet current, electrons will be accelerated along the field
in the way described by our model. They constitute a par-
allel beam which excites the Buneman instability, heat the
electron component along the current and can indeed cause
Weibel modes to grow. The simulation ofRicci et al.(2004)
might have touched just this effect, in which case reconnec-
tion was caused by the action of the Weibel instability and
was not initiated by anomalous diffusivity in the wake of the
lower-hybrid instability.

We finally comment on the (real) observed reconnection in
the magnetospheric tail. In fact, our model cannot be applied
directly to the magnetospheric tail. It has been constructed
for plane homogeneous current sheets. As noted above, the
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tail current sheet contains a residual componentBz(x) 6= 0
which is the uncompensated component of the geomagnetic
quasi-dipole field. This component prevents complete de-
magnetisation of the tail electrons even in the centre of the
tail current sheet, forcing the central electrons to perform a
(slow) electric downtail drift. However, in this case a suffi-
ciently strong guide field|Bg| > Bz parallel to the tail cur-
rent would substantially help as the electrons in its presence
would become accelerated alongBg by the cross-tail elec-
tric field in just the way noted in the previous paragraph,
and the Weibel mechanism could set on. One might thus
expect that imposing a guide field on the tail by some ex-
ternal mechanism, say during magnetospheric storms, would
be crucial for initiating reconnection. One may also note that
this type of guide field reconnection would possibly be re-
sponsible for the observed reconnection at the magnetopause
where a guide field is naturally present.
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