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Abstract. A combination of an HF Doppler sounder, a net-
work of ground magnetometers, upstream solar wind moni-
tors and a numerical model is used to examine the temporal
evolution of an Ultra Low Frequency (ULF) wave. The event
occurred on 16 April 1998 and followed a solar wind den-
sity and pressure increase seen in the upstream ACE space-
craft data. The magnetometer and HF Doppler sounder data
show that the event develops into a low-m (−6) field line
resonance. HF signals that propagate via the ionosphere ex-
hibit Doppler shifts due to a number of processes that give
rise to a time-dependent phase path. The ULF electric and
magnetic fields are calculated by a one-dimensional model
which calculates the wave propagation from the magneto-
sphere, through the ionosphere to the ground with an oblique
magnetic field. These values are then used to determine a
model HF Doppler shift which is subsequently compared to
HF Doppler observations. The ULF magnetic field at the
ground and Doppler observations are then used to provide
model inputs at various points throughout the event. We find
evidence that the wave mode evolved from a mixture of fast
and Alfvén modes at the beginning of the event to an almost
purely shear Alfvénic mode after 6 wavecycles (33 min).

Keywords. Ionosphere (Ionosphere-magnetosphere interac-
tions; Wave propagation) – Magnetospheric physics (MHD
waves and instabilities)

1 Introduction

ULF plasma waves in the 1–100 mHz range are ubiquitous
in the Earth’s magnetosphere. These waves are an impor-
tant coupling mechanism between the magnetosphere and
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the ionosphere, since they transfer both momentum and en-
ergy. The coupling processes are most significant in the high-
latitude ionosphere, where the ULF wave amplitudes are the
largest. The waves also act as an important diagnostic of
magnetospheric dynamics and morphology.

When the frequency of the incoming wave matches
the local resonant frequency of a geomagnetic field line
then a Field Line Resonance (FLR) will occur (Chen and
Hasegawa, 1974a; Southwood, 1974). In this process an in-
coming compressional fast-mode wave couples to an Alfvén
mode oscillation on a geomagnetic field line of a matching
eigenfrequency. The source of the fast mode waves was as-
sumed to be Kelvin-Helmholtz (K-H) driven surface waves
on the magnetospheric flanks caused by solar wind flow
(Kivelson and Pu, 1984). FLRs have large spatial scale in
longitude, but develop small scale structures in the latitudi-
nal direction.

This paper investigates an impulsively excited pulsation.
Such phenomena have been studied over a considerable pe-
riod both experimentally (e.g.,Siebert, 1964; Matsushita and
Saito, 1967; Voelker, 1968) and theoretically (Tamao, 1965;
Chen and Hasegawa, 1974b). In the case of an impulsively
excited wave the source of the compressional mode lies in
the impulse, with this transient compressional mode then
coupling to the Alfvén mode oscillation on a geomagnetic
field line similarly to the more steady-state picture described
above. More recent observational, theoretical and modelling
studies (e.g.,Kivelson et al., 1984; Allan et al., 1986,b;
Kivelson and Southwood, 1986; Lee and Lysak, 1989; Sam-
son, 1991) have subsequently developed the idea that follow-
ing an impulse to, or solar wind buffeting of, the magneto-
sphere, it is the dimensions of the magnetospheric cavity that
determine the eigenfrequencies of cavity or waveguide mode
waves. These modes then couple to Alfvén modes, driving
FLRs at discrete, harmonically related frequencies.

The ionosphere determines the boundary conditions for
magnetospheric magnetohydrodynamic (MHD) wave modes
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Fig. 1. The locations of the ground based instrumentation used dur-
ing this study. The red crosses represent the locations of the DOPE
(Doppler Pulsation Experiment) sounder and the black crosses rep-
resent the locations of the ten IMAGE magnetometer stations used
in this study. The grey shaded square shows a zoomed in view of the
DOPE site highlighting both the location of the transmitter (Tx) and
Receiver (Rx) sites relative to the IMAGE magnetometer at Tromsø
(TRO).

(e.g.,Yeoman et al., 1990) and hence controls the transfer
of momentum and energy. It is well known that MHD waves
propagate through the magnetosphere, interact with the iono-
sphere and may be detected on the ground using magnetome-
ters. The ionosphere, atmosphere and ground introduce im-
portant effects that alter the amplitude and polarisation of
these waves leading to rotation and attenuation of the wave
magnetic signatures detected on the ground (Hughes and
Southwood, 1976b). Remote sensing of the magnetosphere
is, therefore, only possible if the effects of the ionosphere
and atmosphere are included. It is important therefore, to
develop the theoretical models explaining the interaction of
such atmospheric layers. The ionospheric signature of ULF
waves is thus an important research area.

Oscillations in radio waves reflected from the ionosphere
(Doppler frequency oscillations) are often correlated with os-
cillations recorded by ground-based magnetometers (Davies
et al., 1962). A theory to describe the relationship between
these oscillations was proposed byRishbeth and Garriott
(1964). The theory explained that the Doppler frequency os-
cillations were due to the ULF electric field, causing a verti-
cal bulk motion of electrons in the ionosphere. The vertical
motion is the vertical component of theE ∧B plasma drift
velocity. This is known as the advection mechanism.Poole

and Sutcliffe(1988) developed this idea explaining that there
were in fact three mechanisms which can contribute to the
observed Doppler shift. The first mechanism was the mag-
netic mechanism. This mechanism results from the changes
in refractive index due to changes in the ULF magnetic field
intensity. Hence, this mechanism requires no bodily move-
ment of electrons. The second mechanism was the advec-
tion mechanism already identified byRishbeth and Garriott
(1964). The third mechanism was the compression mech-
anism. This results from the changes in refractive index
brought about due to changes in the local plasma density.
This change is due to the redistribution of electrons caused
by the compression and/or rarefaction induced by the ULF
wave.

There have been a number of papers detailing aspects of
the Doppler oscillations of vertically incident radio waves
correlated with ULF geomagnetic pulsations (e.g.,Poole and
Sutcliffe, 1988; Wright et al., 1997). However, to fully
match a theoretical model to reality, observational inputs
are required. Ground based magnetometers and HF Doppler
sounders can provide this input. HF Doppler sounders pro-
vide measurements of the ionosphere at both a high spatial
and temporal resolution and can probe different heights of
the ionosphere by changing their sounding frequency. These
sounders can thus provide important diagnostic information
which can be used for comparison purposes with models of
ULF wave activity.

This paper presents the first observations of a ULF wave
mode evolving, from 09:45 UT to 10:45 UT, on 16 April
1998, from a mixture of fast and Alfvén modes at the be-
ginning of the event to an almost purely shear Alfvénic
mode after 6 wavecycles (33 min). The 1-D model ofSciffer
et al. (2005) is used to model the wave observed by the HF
Doppler sounder and ground based magnetometers.

2 Instrumentation

2.1 HF Doppler sounder

The Doppler Pulsation Experiment (DOPE) (e.g.,Wright
et al., 1997, 1998; Wright and Yeoman, 1999; Yeoman et al.,
2000) was deployed in May 1995 near Tromsø, Norway (ge-
ographic: 69.6◦ N 19.2◦ E; geomagnetic: 67.0◦ N 117.0◦ E;
L = 6.3). Figure1 presents the locations of the ground based
instrumentation used during this study. The red crosses rep-
resent the locations of the DOPE (Doppler Pulsation Ex-
periment) sounder and the black crosses represent the loca-
tions of the ten IMAGE magnetometer stations used in this
study. The grey shaded square shows a zoomed in view of
the DOPE site highlighting both the location of the transmit-
ter (Tx) and Receiver (Rx) sites relative to the IMAGE mag-
netometer at Tromsø (TRO). The Doppler technique utilises
the fact that small shifts in the received radio wave frequency
can be interpreted as signatures of ionospheric perturbations
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caused by changes in the phase path of the radio wave in the
ionosphere (Bennett, 1967).

DOPE used a fixed-frequency, 4.45 MHz, continuous
wave (CW) signal with a dual-channel receiver. The two
channels discriminate between the O- and the X-mode sig-
nals. These CW signals may be reflected from the ionosphere
and mixed with a reference signal to calculate a frequency
shift, 1f , along the ray path (Wright et al., 1997). The fre-
quency shift, in terms of the free space wavelength,λ, and
the phase path of the signal,P , may be expressed as

1f = −
1

λ

dP

dt
(1)

(Davies, 1962). If the change in phase path results purely
from the motion of the reflection point in the ionosphere with
a velocity,v, the frequency shift,1f , may be written as

1f = −
2vf

c
(2)

(Georges, 1967).

Sampling at the receiver, at 40 Hz, and processing through
a Fast Fourier Transform (FFT) algorithm (512 points per
FFT) provides a Doppler trace with a time resolution of
12.8 s. Here the Doppler trace is resampled from 12.8 s to
10.0 s. This resampling was conducted in order to make di-
rect phase and amplitude comparisons between the data from
DOPE and the IMAGE (International Monitor for Auroral
Geomagnetic Effects) magnetometer instruments.

2.2 IMAGE magnetometer array

The ULF variations in the magnetic field were detected
by the IMAGE network of triaxial fluxgate magnetometers
(Luhr, 1994). The locations of the ten IMAGE magnetome-
ters utilised during this study are presented in Fig.1. The
magnetometer data are sampled at 10 s intervals and are pre-
sented in geographic coordinates.

2.3 Upstream interplanetary data

Upstream solar wind and IMF conditions during the interval
discussed in this paper were measured using the SWEPAM
and MAG instruments, respectively, on the Advanced Com-
position Explorer (ACE) spacecraft (Stone et al., 1998) and
the IMP (Interplanetary Monitoring Platform)-8 spacecraft
magnetometer (Armstrong et al., 1978). During the rele-
vant interval on 16 April 1998, ACE was located in the solar
wind near the Sun-Earth L1 Lagrangian point, at GSM co-
ordinates (X, Y, Z) = (+233.69,−39.31,−4.52)RE. IMP-8
was located near the Earth-Sun line at GSM co-ordinates (X,
Y, Z) = (+33.1,+6.4,+10.3)RE. During the period of inter-
est the solar wind velocity was roughly 380 km s-1.

Fig. 2. ACE and IMP-8 spacecraft observations during the ULF
wave event on 16 April 1998 between 09:00 UT–11:00 UT. Mag-
netic field data are displayed in the GSM (Geocentric Solar Mag-
netic) coordinate system. Panels(a) to (d) show the three magnetic
field components recorded by the ACE and IMP-8 spacecraft, (Bx,
By, Bz) and the magnetic field magnitude,Btotal, respectively. Pan-
els (e), (f) and (g) show the solar wind velocity, the solar wind
proton number density, and the solar wind dynamic pressure as
recorded by ACE. The ACE data, with a 57 min lag are shown by
the solid black lines, whereas the IMP-8 data, lagged by 14 min, are
shown by the solid red lines. The dashed grey lines show a range of
lag times (50–61 min) for the IMF and solar wind data as observed
by ACE (see text for details).

3 Observations

This section presents data associated with a ULF wave,
which occurred on 16 April 1998 between the hours of
09:45 UT and 10:45 UT and was detected simultaneously in
the ionosphere by the DOPE sounder and on the ground by
the IMAGE magnetometer array. An impulsive increase in
solar wind dynamic pressure was detected by the ACE space-
craft preceding the onset of FLR activity and this upstream
data is presented first.
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3.1 IMF analysis

The origin of the ULF wave may be revealed by an ex-
amination of upstream IMF and solar wind data. Figure2
presents the lagged ACE and IMP-8 data sets for the ULF
wave event on 16 April 1998 between 09:00 UT–11:00 UT.
The ACE data, lagged by 57 min as predicted by the OMNI
dataset (King and Papitashvili, 2005) are shown by the solid
black lines and reveal a rise in dynamic pressure from 2 nPa
to 7 nPa occurring at approximately 10:03 UT. This increase
in dynamic pressure coincides with a rotation of the IMF,
and a drop in magnetic field magnitude (and hence pressure).
The plasma thermal pressure rises at this time (not shown),
although the total pressure drops slightly. The IMF and solar
wind data are thus consistent with the arrival of a tangen-
tial discontinuity at this time. In order to confirm the va-
lidity and accuracy of this applied lag, magnetic field data
from the IMP-8 spacecraft are also examined (no plasma data
are available from IMP-8). The solar wind propagation time
from IMP-8 was found using the method ofKhan and Cow-
ley (1999). This technique for determining the lag time com-
prises three parts: the solar wind advection time, the mag-
netosheath transit time, and the Alfvén transit time along the
geomagnetic field lines from the subsolar magnetopause to
the ionosphere. The subsolar bow shock location is found
using a model (Peredo et al., 1995). The transit time from
the subsolar magnetopause to the ionosphere was approxi-
mated as 2 min. The transit time from IMP-8 to the terrestrial
ionosphere, using the solar wind velocity recorded by ACE
as a guide, was determined to be 14.1±2 min. IMP-8 data
at this lag are shown in Fig.2 by the solid red lines. The
IMP-8 data have been used to compare structures within the
IMF at IMP-8 with those recorded by the ACE spacecraft.
Cross-correlating the ACE data with the IMP-8 data for the
total magnetic field and for each component of the IMF over
a variety of timeseries lengths centred between 09:00 UT and
11:00 UT provided a range of time delays for the ACE data
between 50 min and 61 min. The limits of these calculated
lags on the ACE upstream data are presented in Fig.2 as
dashed grey lines, and indicate that the effect of the increase
in solar wind dynamic pressure is expected to arrive in the
ionosphere between 09:56 UT and 10:07 UT. This time inter-
val is marked as a grey box on the time series of the ground-
based measurements of the wave activity under investigation
presented in Fig.3. The interval is consistent with the ar-
rival of the effects of the solar wind impulse being coinci-
dent with the start of the wave event recorded in the ground
magnetometer data, indicative of a wave source originating
from the solar wind dynamic pressure impulse. An alterna-
tive source of wave power on the ground is direct driving by
oscillatory activity at a suitable frequency within the IMF or
solar wind. An FFT analysis of the lagged ACE IMF and so-
lar wind data reveals that between 09:45 UT–10:45 UT (and
over the longer interval 07:00 UT–12:00 UT) the peak spec-
tral power occurs at a frequency of approximately 2.0 mHz.

There is a little spectral power close to 3 mHz (the domi-
nant frequency of the ground-based magnetometer data) at
a steady level from 09:20 UT–11:00 UT in the lagged solar
wind data which might result in weak steady state driving at
3 mHz, but the main wave source is consistent with the pres-
sure impulse.

3.2 Ionospheric and ground observations

The top panels in Fig.3 display HF Doppler data from
DOPE, bandpass filtered between 250 s to 500 s (2 mHz–
4 mHz), along with identically filtered X and Y compo-
nent magnetic field data from nine IMAGE magnetome-
ter stations, covering geomagnetic latitudes from 75.12◦

(Longyearbyen, LYR), to 60.99◦ (Oulujarvi, OUJ). The IM-
AGE data are presented with latitude decreasing from top to
bottom. A series of wave cycles are clearly visible in the
data, which started at 09:45 UT and continued until about
10:45 UT. A coherent wave packet can be seen across the
magnetometer chain, with maximum amplitude of 15 nT, at
10:08 UT, observed in the X component magnetic field be-
tween the latitudes of TRO, and Abisko, (ABK). The wave
signature in the magnetometer data was strongest in the in-
terval 09:55 UT–10:30 UT.

The time development of the amplitudes in the Doppler
and magnetometer traces is different, with peak amplitude
seen early on in the wave packet in the magnetometer data
(10:04 UT), but later in the Doppler trace (10:22 UT).

The grey shaded region on both panels of Fig.3 shows the
possible range of arrival times of the effects of the solar wind
dynamic pressure increase as measured by the ACE space-
craft, as determined in Fig.2.

Fourier power spectral analysis of the DOPE instrument
and the X and Y components of the data from the IMAGE
magnetometer array reveal a consistent wave period of 330 s
(3 mHz).

Figure 4 panels (a) and (b) show the latitudinal Fourier
power and phase profiles for the X component of the mag-
netic field, at a frequency of 3 mHz, for the IMAGE Magne-
tometer data displayed in Fig.3. The overlaid dot-dash line
shows the location of the DOPE instrument. A clear phase
change with latitude centered across the resonant peak can be
seen in panel (b) of Fig.4. These plots confirm that we have a
FLR close to the latitude of Andenes (AND). The azimuthal
phase variation was also examined for this wave, using the Y
component data from a number of longitudinally separated
IMAGE magnetometers. The azimuthal wave number was
found to be−6, where the negative sign indicates westward
propagation. The Ap and Kp indices were 6 and 2+ during
the event, respectively. The Ap index is used as an input to
the numerical model detailed in Sect. 4.1.
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Fig. 3. DOPE and IMAGE Magnetometer data for the ULF wave event on 16 April 1998. Panels(a) and(b) display data from the X and
Y components of nine stations of the IMAGE magnetometer array bandpass filtered between 250 and 500 s. The upper panel in both (a) and
(b) show the bandpass filtered DOPE data also excluding variations with time periods outside of the range 250 s to 500 s, resampled from
12.8 s to 10.0 s. The grey shaded region shows the possible range of arrival times of the effects of the solar wind dynamic pressure increase
as measured by the ACE spacecraft. The time series plots have been scaled individually to provide the highest clarity of the wave signature.

3.3 Wave evolution

As mentioned in Sect. 3.2, the different temporal develop-
ment observed in the amplitudes of the combined Doppler
sounder and magnetometer datasets indicate an evolution in
the wave mode, azimuthal or meridional scale-size of the
wave. This evolution is investigated further here, through
a dynamic Fourier analysis of the wave phase and ampli-

tude. Fourier amplitude rather than power is used in order
to provide a more direct relationship with the time-domain
variation of the wave amplitude presented in Fig.3. Here
a 100 point (1000 s) FFT with a slip of 30 points (5 min) is
used. Using this shorter FFT a frequency resolution of 1 mHz
is available, and the peak wave power occurs at 3 mHz.
Panel (a) of Fig.5 presents the HF Doppler amplitude vari-
ation calculated from an integrated Fourier amplitude over
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Fig. 4. IMAGE Magnetometer data for the ULF wave event on 16
April 1998. Panels(a) and(b) show the latitudinal Fourier power
and phase profiles for the X component of the magnetic field, re-
spectively. In both panels the overlaid dot-dash line shows the loca-
tion of the DOPE instrument.

a frequency range of 1.7–5.1 mHz. The HF Doppler ampli-
tude rises from 0.1 Hz at approximately 10:00 UT to a peak
of 0.4 Hz at roughly 10:20 UT. Panels (b) and (c) show the
TRO-X and TRO-Y amplitudes found using the same tech-
nique as panel (a). Panel (b) shows TRO-X peaks with an
amplitude of 15.0 nT at roughly 10:10 UT while panel (c)
shows TRO-Y attaining a peak amplitude of 16.0 nT at ap-
proximately 10:05 UT. Panel (d) of Fig.5 shows the cross
phase between the X component of IMAGE stations TRO
and Pello (PEL), at the peak frequency of 3 mHz.

This cross phase calculation allows an examination of the
time evolution of the relative phase between the wave signa-
tures measured at the two stations. At the beginning of the
wave event PEL leads TRO by approximately 60◦. As the
wave progresses, this phase lead increases, maximising at ap-
proximately 140◦ between 10:15 UT and 10:25 UT. After this
time the wave amplitudes start to decrease. The phase differ-
ence between the stations thus starts with a small phase lead
at the lower latitude station, evolving towards the 180◦ phase
lead expected between stations equatorward of and poleward
of a field line resonance. This suggests a wave with an im-
pulsive origin, which then exhibits a time dependent phase
evolution as an FLR develops.

Panel (e) of Fig.5 shows a comparable analysis of the Y
component of the magnetic field data from two azimuthally

Fig. 5. Panel(a) presents the HF Doppler amplitude variation cal-
culated from an integrated Fourier amplitude over a frequency range
of between 1.7 mHz–5.1 mHz using a slip of 5 min. Panels(b) and
(c) show the TRO-X and TRO-Y amplitudes found using the same
technique as for panel (a). Panel(d) shows the X component cross
phase between IMAGE stations TRO and PEL. Panel(e) shows the
Y component cross phase between the azimuthally separated IM-
AGE stations TRO and SOR. Panel(f) shows thekx time evolution
determined from the ratio of the amplitudes of TRO-X and TRO-Y.
The overplotted horizontal red dotted line shows the constant value
of kx assumed during the study. Panel(g) shows the implied ULF
wave mix evolution. The overplotted dot-dash lines show the 5 min
intervals when the wave mix is calculated. The grey shaded region
shows the possible range of arrival times of the effects of the solar
wind dynamic pressure increase as measured by the ACE space-
craft.

separated stations of TRO and Sørøya (SOR) and shows an
approximately constant phase difference, indicating a steady
value of effective azimuthal wavenumber,m. The value of
azimuthal wavenumber deduced from this phase difference
is consistent with that derived from a number of IMAGE sta-
tions in Sect. 3.2, namelym ≈ −6. The grey shaded region
shows the possible range of arrival times of the effects of
the solar wind dynamic pressure increase as measured by the
ACE spacecraft as shown in Figs.2 and3. Panels (f) and (g)
will be discussed in Sect. 5.1.
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4 The numerical model

4.1 Introduction

The 1-D numerical model used here is that described inScif-
fer et al.(2005) which develops the existing work ofHughes
(1974); Hughes and Southwood(1976b) andZhang and Cole
(1995). The new 1-D model formulates the altitude varia-
tion of the ULF wave electric and magnetic fields, allows for
an oblique geomagnetic background field,B0, and includes
both Alfvénic and fast mode waves incident from the mag-
netosphere.

As described inWaters et al.(2007), the ULF wave energy,
which is incident from the magnetosphere, is described as
an electromagnetic disturbance. The two required Maxwell
equations are

∇∧E = −
∂B

∂t
(3)

and

∇∧H = J +
∂D

∂t
, (4)

where the current density,J , and the magnetic flux density,
B may be expressed as

J =
⇒
σ E (5)

and

B = µH , (6)

where
⇒
σ is the conductivity tensor. The same Cartersian co-

ordinate system as described inSciffer and Waters(2002) is
used here, where X is northward, Y is westward and Z is
radially outward from the surface of the Earth.B0 lies in
the XZ plane at an angleI to the horizontal. If there is no
background electric field (E0 = 0) thenB andE may be ex-
pressed as

B = (B0cos(I ),0,B0sin(I ))+(bx,by,bz), (7)

and

E = (ex,ey,ez). (8)

If the ionospheric medium varies only in the vertical direc-
tion, then the horizontal spatial and temporal dependence is

expi(kxx+kyy−ωt) (9)

and the governing equations in their full component form
may be written as

i

[
k2
y

ω
−

ω

c2

(
ε11−

ε13ε31

ε33

)]
ex

−i

[
kxky

ω
+

ω

c2

(
ε12−

ε13ε32

ε33

)]
ey − iky

ε13

ε33
bx

+
∂by

∂z
+ i

kxε13

ε33
by = 0, (10)

i

[
kxky

ω
+

ω

c2

(
ε21−

ε23ε31

ε33

)]
ex

−i

[
k2
x

ω
−

ω

c2

(
ε22−

ε23ε32

ε33

)]
ey + iky

ε23

ε33
bx

+
∂bx

∂z
− i

kxε23

ε33
by = 0, (11)

iky

ε31

ε33
ex +

∂ey

∂z
+ iky

ε32

ε33
ey + i

(
ω−

c2k2
y

ωε33

)
bx

+ ikxky

c2

ωε33
by = 0, (12)

and

∂ex

∂z
+ ikx

ε31

ε33
ex + ikx

ε32

ε33
ey − ikxky

c2

ωε33
bx

− i

(
ω−

c2k2
x

ωε33

)
by = 0, (13)

whereεij are the elements of the dielectric tensor,ε (Wa-

ters, 2006). The conductivity tensor,
⇒
σ , may be expressed in

terms of the dielectric tensor,
⇒
ε , as

⇒
ε=

⇒

I −
i

ε0ω

⇒
σ , (14)

where
⇒

I is the identity tensor (Zhang and Cole, 1995). Equa-
tions (10), (11), (12) and (13) are four first order differential
equations that only consider derivatives in the vertical direc-
tion, Z. To complete the set, theez andbz ULF wave field
components are

ez = −
ε31

ε33
ex −

ε32

ε33
ey −ky

c2

ωε33
bx +kx

c2

ωε33
by (15)

and

bz = −
ky

ω
ex +

kx

ω
ey . (16)

A total of four boundary conditions are required to solve the
system. The ground specifies two of these. The Earth is as-
sumed to be a uniform, homogenous conductor of finite con-
ductivity. The ULF waves decay in amplitude in the medium
due to the small frequency and are described by

∂ex

∂z
−γ (σg,kx,ky,ω)ex = 0 (17)

and

∂ey

∂z
−γ (σg,kx,ky,ω)ey = 0, (18)

whereγ specifies the ground to be a uniform medium with a
conductivity ofσg = 10−2 Mho m-1.
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Fig. 6. Plasma frequency as a function of altitude for the ULF
wave event at 10:04 UT on 16 April 1998. The green dots represent
the O-mode ionogram trace and the red dots represent the X-Mode.
The curved black line presents the dual Chapman function fitting
to the POLAN inversion which is in blue. The red vertical line on
the panel shows the DOPE transmission frequency. The reflection
altitude for this event was 184 km. The vertical purple line shows
the approximate frequency corresponding to peakFoF2.

The top boundary is set at 1000 km where resistive MHD
plasma conditions are assumed. The model allows for the
existence of both the shear Alfvén and fast mode waves up to
the top boundary. For more information on the mathematical
foundation of the numerical model seeSciffer et al.(2005).

In the model the atmospheric composition is found from
a thermosphere model based on satellite mass spectrometer
and ground-based incoherent scatter data (MSISE90) (Hedin
et al., 1991). The ionospheric composition is found from
the IRI model with the exception of the electron density pro-
file, which is determined using the POLynomial ANalysis
(POLAN) algorithm (Titheridge, 1985) and will be detailed
in Sect. 4.2. The final step in the process is to calculate the
Doppler shift contributions for the three mechanisms out-
lined in the model ofPoole and Sutcliffe(1988) and the
Altar-Appleton-Hartree equation is used for this purpose.

4.2 Observational inputs

The characteristics of the observed ULF wave are used as
input parameters to theSciffer et al. (2005) model which
computes the propagation of ULF waves from the magne-
tosphere, through the ionosphere to the ground for oblique
magnetic fields.

Using themnumber determined from the IMAGE magne-
tometer data recorded on 16 April 1998, the east-west wave
number wasky = 2.4×10−6 m-1.

Since ∇ ∧ b = 0 in the atmosphere the north-south
wavenumber may be calculated from the ratio of the X to
Y components of the magnetic field recorded on the ground
(Hughes, 1974) and here was set at,kx = 2.1×10−6 m-1.

The computation of observed Doppler shifts from the ULF
wave model is highly sensitive to the electron density pro-
file, so care must be taken in accurately measuring this pa-
rameter. Here ionospheric electron density inputs for the
model were determined from local ionosonde measurements.
Figure 6 presents the Tromsø dynasonde data for 16 April
1998 recorded at 10:04 UT. The peakFoF2 was found for
the O-mode data (green circles) using the overplotted pur-
ple line as a guide and was determined to be 6.5 MHz. The
ionospheric inputs to the model were provided by inverting
the ionosonde trace with the POLAN algorithm (Titheridge,
1985). POLAN determines the real height by inverting the
virtual height as found from ionosonde measurements.

Finally, a dual chapman function profile is fitted to the out-
put from POLAN, which is shown by the blue line, to gener-
ate an electron density profile. The plasma frequency profile
is represented in Fig.6 by the black line. The vertical and
horizontal red lines on Fig.6 show the DOPE transmission
frequency and reflection altitude, respectively. The reflection
altitude for this event was approximately 184 km.

4.3 The model output

Observations are used to generate input parameters for
the ULF event recorded on the 16 April 1998 09:45 UT–
10:45 UT. The model magnetic amplitude on the ground was
matched to observed ground values using the IMAGE mag-
netometer array. At TRO typical magnetic field amplitudes,
in the centre of the wave event at 10:14 UT, were roughly
10.0 nT and 9.0 nT for the X and Y components, respectively,
yielding a total ground field of approximately 13.5 nT.

Panels (a) to (d) of Fig.7 present the results of one run of
the model for a purely shear Alfvénic incident wave mode.
The magnetic and electric fields are scaled such that the
total ground magnetic field matched that from observation
(roughly 13.5 nT). Panel (a) presents the variation of the three
magnetic field components with altitude. Panel (b) shows
the magnetic field phase variation for the same three compo-
nents. Panel (c) shows the electric field variation for the three
field components as a function of altitude. Panel (d) shows
the electric field phase for the same three components.

The effect that the ULF wave has upon the DOPE radio
waves can be calculated using a model (Poole and Sutcliffe,
1988), as described in subsequent work byWaters et al.
(2007). Panel (e) shows the Doppler shift mechanism ampli-
tude, as a function of altitude. Black is the magnetic mech-
anism contribution (VI ). Red is the advection mechanism
contribution (VII ), Green is the compression mechanism
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contribution (VIII ) and blue is the overall Doppler shift
(V ∗=VI +VII +VIII ). Panel (f) shows the phase variation for
the same mechanisms as in panel (e) and is colour coded
in an identical fashion. The overplotted black dotted line
highlights the DOPE reflection altitude, at roughly 184 km.
The overall Doppler shift for a purely shear Alfvénic inci-
dent wave is dominated by the advection mechanism (VII ) as
there are very small contributions from the other two mecha-
nisms. There are also very large E region values of Doppler
shift which is a characteristic of these calculations. The large
Doppler shift results from the “knee" in the electron density
profile corresponding to a transmission frequency of approx-
imately 3 MHz at 100 km, as seen in Fig.6.

As is clear from Figs.4 and5, the wave event under study
here has a complicated spatial and temporal structure in am-
plitude and phase. The 1-D model is too simplistic to repro-
duce accurately the details of the phase relationships between
the various magnetic and electric field components, butWa-
ters et al.(2007) demonstrated that Doppler amplitudes are
predicted well. Accordingly only model amplitude informa-
tion is considered in subsequent plots.

For magnetic field amplitudes recorded on the ground by
TRO of 10.0 nT and 9.0 nT, in the X and Y components of
the field respectively, the overall Doppler amplitude at the
DOPE reflection altitude for a purely shear Alfvénic inci-
dent wave determined by the model is roughly 0.5 Hz. This
is quite comparable with the typical Doppler Shift as found
by the DOPE instrument in the centre of the wave event, of
approximately 0.3 Hz at 10:14 UT. However, the ULF wave
does not show steady state behaviour throughout the event.
The amplitudes in DOPE appear to increase as the wave
evolves towards an FLR and the relative phase between mag-
netometer stations evolves also (see Fig.5). One factor which
strongly influences the predicted Doppler shift is the wave
mix of the incoming ULF wave between fast compressional
and Alfvénic wave power. Therefore, an investigation of the
effect of wave mix is required in order to determine the pre-
dicted Doppler shift that best matches observation through-
out the evolution of the wave. Figure8 presents the elec-
tric field, magnetic field and Doppler shift mechanism results
as functions of altitude for different wave mixes normalised
such that there is a total magnetic field magnitude of 1 nT on
the ground. A wave mix of 1.00 is a purely shear Alfvénic
incoming wave mode whereas a wave mix of 0.0 is a purely
fast/compressional incoming wave mode. Panels (a) and (b)
show the X and Y components of the electric field respec-
tively. Panels (c) and (d) show the X and Y components of
the magnetic field respectively. The electric field in the iono-
sphere is clearly a strong function of wave mode for a given
ground magnetic field signature, and hence so will be the
Doppler signature.

Figure8 also presents the corresponding Doppler shift am-
plitude variation as a function of incoming wave mix and
altitude. These plots show how a variation in the incom-
ing Alfvénic wave mix affects the Doppler Shift amplitude.

Fig. 7. Results of one run of the 1-D Numerical Model for a
purely shear Alfvénic incident wave mode for an altitude range
from the ground to 500 km. Panel(a) presents the variation of
the three magnetic field components with altitude. Panel(b) shows
the magnetic field phase variation for the same three components.
Panel(c) shows the Electric field variation for the three field com-
ponents as a function of altitude. Panel(d) shows the electric field
phase for the same three components. Panel(e) shows the Doppler
shift mechanism contributions as a function of altitude. Black is
the magnetic mechanism contribution (VI ), red is the advection
mechanism contribution (VII ), green is the compression mech-
anism contribution (VIII ) and blue is the overall Doppler shift
given by the vector addition of the three Doppler shift components
(V ∗=VI +VII +VIII ). Panel(f) shows the phase variation for the
same mechanisms as given in panel (e) and is colour coded in an
identical fashion. The overplotted black dotted line highlights the
DOPE reflection altitude, at roughly 184 km.

Panel (e) shows the magnetic mechanism. Panel (f) shows
the advection mechanism. Panel (g) shows the compressional
mechanism. Finally, panel (h) shows the overall Doppler
shift, (V ∗=VI +VII +VIII ). As the wave mix tends towards a
purely shear Alfvénic mode the Doppler shift amplitude in-
creases across all mechanisms. The advection mechanism is
the dominating mechanism at a purely shear Alfvénic inci-
dent wave mix. The phase contributions from the different
mechanisms, although not presented here, highlight that al-
though significant differences occur at lower altitudes, at the
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Fig. 8. Electric field, magnetic field and Doppler shift mechanism
results for the ULF wave event on 16 April 1998 between 09:45 UT–
10:45 UT as a function of altitude and wave mix scaled to make the
magnetic field magnitude 1 nT on the ground. Panel(a) Ex. (b) Ey.
(c) Bx. (d) By. (e)VI . (f) VII . (g) VIII . (h) V ∗.

DOPE reflection altitude of 184 km, the overall Doppler shift
phase looks similar to the “advective" phase.

Panel (a) of Fig.9 presents the overall Doppler shift vari-
ation as a function of wave mix at the DOPE reflection al-
titude (184 km), scaled such that we have 1 nT measured on
the ground. The scaling allows the determination of the pre-
dicted Doppler shift for a given wave mix at different times
throughout the event. Matching the observed magnitude of
the Doppler amplitudes at various times during the wave
event allows the actual wave mode mix to be determined as-
sumingky andkx are constant.

The values ofky , kx and the wave mode mix all affect
the overall Doppler magnitude. Eliminating these variables
one by one provides an explanation for the model Doppler
shifts presented in Fig.9. Section 3.3 presented a cross phase
analysis of the Y components of two azimuthally separated
IMAGE stations (TRO and SOR). A constant effective az-
imuthal wavenumber was determined, implying a constant
east-west wavenumber.ky , therefore, may be neglected as

Fig. 9. Panel(a) shows the overall Doppler shift model results of
the ULF wave event on 16 April 1998 between 09:45 UT–10:45 UT
for wave mixes ranging between zero and unity. The panel shows
the variation of total Doppler shift with wave mix at the DOPE re-
flection altitude of 184 km. Panel(b) presents the variation in the
total Doppler shift contributions as a function of altitude andkx The
overplotted white dashed line shows the DOPE reflection altitude at
approximately 184 km. The ground magnetic field in both panels
has been scaled to 1 nT.

the cause of variations in the Doppler signature. Thus, the
parameter responsible for the nature of Fig.5 must be either
a changing wave mode mix, or the north-south wavenum-
ber, kx , or a combination of the two. Panel (b) of Fig.9
presents the variation in the total Doppler shift contributions
similarly to Fig.8 but now as a function of altitude andkx

for a ground magnetic field magnitude scaled to 1 nT on
the ground. Larger Doppler shifts are expected at largerkx

(smaller-scale) values for a given ground magnetic field mag-
nitude due to attenuation effects (Hughes and Southwood,
1976a). One would expect an evolvingkx , and an increase
in the X component of the field, as the system tends towards
FLR, and this will also affect the total Doppler shift. An
analysis of the relative importance ofkx and incoming wave
mode mix will be discussed in the next section.
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5 Discussion

Employing the DOPE HF Doppler sounder in conjunction
with the IMAGE network of ground magnetometers, the
Tromsø dynasonde, the ACE and IMP-8 spacecraft, and a nu-
merical model, it is possible to fully characterise the nature of
a magnetospheric ULF wave both in the ionosphere and at the
ground. The event, which occurred on 16 April 1998, is the
result of a low-m (−6) FLR with a large characteristic scale-
size. Figure3 presented the filtered HF Doppler and TRO
magnetometer data for the event. The time development of
the amplitudes in the Doppler and magnetometer traces was
different, with the peak amplitude seen early on in the wave
packet in the magnetometer data (10:10 UT), but later in the
Doppler trace (10:20 UT). This implies some evolution of
the wave characteristics (wave mode, azimuthal or merid-
ional scale-size) during the wave. Panel (d) of Fig.5 showed
a phase difference of approximately−60◦ between stations
TRO and PEL at 10:00 UT evolving to approximately -140◦

at 10:15 UT. The increasing cross phase suggests we have a
more FLR-like perturbation as time progresses. Panel (g) of
Fig.2 showed an impulsive disturbance in the solar wind, the
effects of which are expected to arrive at the ionosphere be-
tween 09:56 UT and 10:07 UT. This impulse is interpreted as
the source of the observed wave event.

5.1 Wave evolution

Section 3.3 presented evidence of the model Doppler am-
plitude being a result of either variations inkx and/or the
incident wave mode mix sinceky remained approximately
constant throughout the event. To determine the relative
importance of the wave mode and/or the meridional scale-
size on the Doppler amplitude, ground magnetic field and
Doppler observations are used to find inputs to the numeri-
cal model at various times throughout the event. The north-
south wavenumber may be calculated from the east-west
wavenumber and the ratio of the X and Y components of
the magnetic field recorded on the ground (Hughes, 1974),
which are presented in panels (b) and (c) of Fig.5. Panel (f)
of Fig. 5 presents the north-south wavenumber variation cal-
culated from these data. The calculated range ofkx shows
a variation fromkx = 1.5×10−6 m-1 to kx = 3.0×10−6 m-1.
Referring to panel (b) of Fig.9 it can be seen that such a
range ofkx variation has a negligible effect on the derived
total Doppler shift. Therefore, the incoming wave mode mix
must be the dominant factor affecting the Doppler amplitude
and a constantkx value of 2.1×10−6 m-1 is used in subse-
quent calculations, indicated in panel (f) of Fig.5 by a hori-
zontal red dotted line.

The wave mix variation is calculated by matching the ob-
served Doppler shift to the model Doppler shift at 5 min in-
tervals throughout the event, which are marked by the verti-
cal dotted lines on Fig.5. At each 5 min interval, the time-
evolving Doppler shift,Bx and By are found by using the

DOPE, Bx, and By amplitudes presented in panels (a) to
(c) of Fig. 5, respectively. The magnetic field components,
therefore, are used to scale the predicted Doppler shift us-
ing a constant scale size. Panel (g) of Fig.5 presents the
wave mix evolution derived from such an analysis through-
out the event. The first point of the Alfvénic wave mix, at
09:55 UT, has a value of 0.86 (implying contributions from
both fast mode compressional and Alfvén modes) although at
this time the amplitudes of Doppler shift,Bx andBy are small
so this point is probably not significant. Once the event is es-
tablished, at roughly 10:00 UT, the wave mix becomes 0.63
and subsequently rises to unity (a purely shear Alfvén wave)
by approximately 10:25 UT. The implied wave mix value of
unity occurs just after the peak observed Doppler amplitude
as shown in panel (a) of Fig.5.

5.2 The advection mechanism

The early theory developed byRishbeth and Garriott(1964)
considered that the Doppler frequency oscillations were due
to the ULF electric field, causing a vertical bulk motion of
electrons in the ionosphere. The vertical motion is the verti-
cal component of the plasma drift velocity,

v =
(E∧B)Z

B2
. (19)

This vertical motion is now known as the advection mecha-
nism. FollowingSutcliffe and Poole(1989), the actual con-
tribution of this mechanism to the observed Doppler shift is
given by

VII
∼= −

zR∫
0

[
∂µ

∂z
Vz

]
dz, (20)

whereµ is the real part of the refractive index andzR = zR(t)

is the real height of reflection. BothVz and the vertical gradi-
ent of the refractive index contribute to the observed Doppler
shift. The contribution of these two mechanisms may be sep-
arated within the model employed here. IfVz is plotted as a
function of both wave mode mix and altitude, assuming the
constant value ofkx , and using a magnetic field magnitude
of 1 nT recorded on the ground, Fig.10 is the result. The
very high similarity with the Doppler variation illustrated in
panel (f) of Fig.8 establishes that theVz parameter contained
within the advection mechanism is contributing the most to
the overall Doppler shift at high-latitude for this impulse-
driven large spatial-scale ULF wave. This conclusion, that
the signature observed here is well described by a simple
advection mechanism as proposed byRishbeth and Garriott
(1964), agrees with the overall results of previous ULF wave
studies (e.g.,Wright et al., 1997, 1998; Waters et al., 2007)
that the advection mechanism dominates the overall Doppler
shift observed at high-latitudes.
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Fig. 10. The plot showsVz as a function of both altitude and wave
mode mix. The overplotted white dot-dashed line highlights the
DOPE reflection altitude at roughly 184 km.

6 Conclusions

In this paper we have employed a numerical one-dimensional
model developed bySciffer et al.(2005) to account for the
observed relationship between the Doppler velocity oscilla-
tions of reflected radio waves from the ionosphere and ge-
omagnetic pulsations. The event that occurred on 16 April
1998 is the result of a low-m (−6) FLR with a large char-
acteristic scale-size. An impulsive disturbance is seen in the
ACE upstream spacecraft data and the IMF dynamic pres-
sure increased at about the same time as the wave onset as
recorded on the ground by magnetometers. Here, the effect
of the modelled incident wave field on an HF radio path is
calculated, and compared to observation. Ground magnetic
field and Doppler observations are used to find model in-
puts at various points throughout the event. The model, on
average, correctly predicts the Doppler amplitudes for this
impulse-driven ULF wave event. Presented here, for the first
time, are measurements of the wave mode mix evolution.
The model demonstrates that the wave mode evolves from
a partially Alfvénic wave to a purely shear Alfvén wave. The
advection mechanism is contributing the most to the overall
Doppler shift at high-latitudes in this instance, agreeing with
previous statistical studies of large spatial-scale ULF waves
(e.g.,Wright et al., 1997, 1998; Waters et al., 2007). For this
event it is also confirmed that the vertical velocity dominates
the advection mechanism, rather than refractive index effects.
25 ULF wave events with measurements from a high-latitude
Doppler sounder and the IMAGE magnetometer array have
been analysed. A statistical analysis of large spatial-scale
ULF waves will follow this case study.
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