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Abstract. Strong gradients in plasma flows play a major role
in space and astrophysical plasmas. A typical situation is that
a static plasma equilibrium is surrounded by a plasma flow,
which can lead to strong plasma flow gradients at the separa-
trices between field lines with different magnetic topologies,
e.g., planetary magnetospheres, helmet streamers in the solar
corona, or at the boundary between the heliosphere and inter-
stellar medium. Within this work we make a first step to un-
derstand the influence of these flows towards the occurrence
of current sheets in a stationary state situation. We concen-
trate here on incompressible plasma flows and 2-D equilib-
ria, which allow us to find analytic solutions of the stationary
magnetohydrodynamics equations (SMHD). First we solve
the magnetohydrostatic (MHS) equations with the help of a
Grad-Shafranov equation and then we transform these static
equilibria into a stationary state with plasma flow. We are in
particular interested to study SMHD-equilibria with strong
plasma flow gradients perpendicular to separatrices. We find
that induced thin current sheets occur naturally in such situ-
ations. The strength of the induced currents depend on the
Alfv én Mach number and its gradient, and on the magnetic
field.
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1 Introduction

Plasma flows around separatrices play an important role in
many astrophysical and space plasmas. Significant flows oc-
cur thereby mainly on open field lines, while the plasma on
closed field lines is approximately at rest. One example is
the magnetosphere surrounded by the solar wind flow, where
both regions are separated by the magnetopause. Another ex-
ample are coronal helmet streamers, where the closed arcade
type magnetic structures are surrounded by open magnetic
field lines on which the stationary solar wind is streaming.

A third example, but with different constraints, is the re-
gion far away from a star, which is embedded in the counter-
flowing interstellar medium. Due to the interaction between
the stellar wind, e.g., the solar wind, and the counterflow-
ing interstellar medium, a separatrix forms, separating the
“inner” stellar wind from the “outer” interstellar medium:
the domain inside is called an astrosphere (heliosphere for
the sun), the corresponding separatrix is called an astropause
(heliopause). This is a similar situation as described for the
helmet streamers in the paragraph before, namely different
flow regimes inside and outside of some boundary layer (“in-
ner” and “outer” field lines). In the case of astrospheres/of
the heliosphere, however, the scenario implies a structure
with almost completely open field lines. Additionally, the
flow is non-zero also on the “inner” field lines, but shows a
strong gradient (see, e.g.,Baranov et al., 1970; Baranov and
Krasnobaev, 1971; Nickeler et al., 2006, for details).

These situations where regions with and without plasma
flow are separated by rather thin boundary layers necessarily
lead to strong flow gradients in these layers. Within this work
we aim to study the relation of these flow gradients to current
sheets. Thin current sheets are important, because due to cur-
rent driven micro-instabilities a fine resistivity occurs in these
regions and the usual assumption of an ideal conducting
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space plasma breaks down. Consequently resistive plasma
instabilities like magnetic reconnection can occur as a con-
sequence of current sheets and when additional sufficient free
energy for eruptions is available in the configuration (see
for exampleSchindler and Birn, 1993). Such processes oc-
cur, e.g., as substorms in magnetospheres and flares in the
solar corona (seeBirn and Hesse, 2009, for a recent study
of similarities and difference between substorms and flares).
Wiegelmann and Schindler(1995), andBecker et al.(2001)
studied the formation of thin current sheets as a sequence of
quasi-static magnetotail equilibria. Quasi-static means that
dynamical effects and the influence of plasma flow can be ne-
glected compared to magnetic forces and pressure gradients.
This assumption is well fulfilled in the magnetosphere during
quiet times (Schindler and Birn, 1982) and the strongest cur-
rents form in the center of the magnetospheric plasma sheet.
The influence of a field-aligned parallel plasma flow in mag-
netospheres has been studied for example inBirn (1991) and
for solar MHD-equilibria inWiegelmann et al.(1998), Petrie
and Neukirch(1999), Petrie et al.(2002), andPetrie et al.
(2005). A significant influence of asmoothplasma flow itself
onto the magnetic field and plasma configuration is rather
low for flow speed well below the Alfv́en speedv � vA . Far
less studied has been the influence of significant small scale
gradients in the plasma flow, which is the topic of this paper.
We are in particular interested to investigate to which extend
thin current sheets at boundary layers can be associated with
corresponding gradients in the plasma flow. We outline the
paper as follows. In Sect.2 we present the basic equations,
outline how static equilibria can be transformed into station-
ary ones, and discuss the relation between sharp flow gradi-
ents and the occurrence of thin current sheets. Sections3 and
4 contain applications to solar coronal and magnetospheric
structures, respectively. Finally we summarize our results in
Sect.5.

2 Basic assumptions and equations

We apply the theory of ideal MHD. This is justified, be-
cause of the high conductivity in many space and astrophys-
ical plasmas. For simplicity and to concentrate on essen-
tial “flow” effects, we restrict our research to configurations
with an incompressible plasma flow. We are interested in the
physical effects that occur for large gradients of the Alfvén
Mach number perpendicular to the field lines. We are aware
that compressible effects might become important for some
space plasma applications, in particular for stratified plasmas
like the solar corona and chromosphere, especially on large
scales, see, e.g.Petrie et al.(2002) or Petrie et al.(2005).

For stationary, ideal and incompressible MHD we have
to solve the following equations: mass continuity Eq. (1),
the Euler or momentum equation with isotropic pressureP

(Eq.2), the stationary induction equation including the ideal
Ohm’s law (Eq.3), Ampère’s law (Eq.4), the solenoidal con-

dition for the magnetic field (Eq.5), and the condition for
incompressibility (Eq.6):

∇ ·(ρv) = 0, (1)

ρ(v ·∇)v = j ×B −∇P , (2)

∇×(v×B) = 0, (3)

∇×B = µ0j , (4)

∇ ·B = 0, (5)

∇ ·v = 0, (6)

whereρ is the mass density,v the plasma velocity,B the
magnetic field,j the current density vector, andP the ther-
mal or plasma pressure.

Due to the incompressibility, the mass continuity equation
can be written asv ·∇ρ = 0, so that the density is constant on
streamlines. We now introduce the auxilliary flow vector or
streaming vectorw :=

√
ρv. With the Bernoulli pressure, de-

fined by5 := P +
1
2w2, we can rewrite the above equations

as

∇ ·w = 0, (7)
1

µ0
(∇×B)×B −(∇×w)×w = ∇5, (8)

∇×

(
1

√
ρ

w×B

)
= 0, (9)

∇ ·B = 0. (10)

The momentum equation Eq. (8) is written such that the anal-
ogy with magnetohydrostatic equilibria (MHS), given by

µ−1
0 (∇×B)×B = ∇P , (11)

is obvious.
The assumption of a field-aligned flow enhances the prob-

ability that the flow is stable in the frame of ideal MHD, (see
the discussion inHameiri, 1998). The assumption ofv×B =

0 leads to a vanishing electric field in ideal MHD. This can
be seen with the help of the uncurled induction equation,
Eq. (3), which is basically ideal Ohm’s lawE +v ×B = 0
(E = electric field). Therefore the stationary ideal Ohm’s law
(Eq. 9) is fulfilled identically. Under these assumptions the
set of equations reduces to:

B ·∇MA = 0, (12)

∇5 =

(
1−M2

A

)
(∇×B)×B

µ0
−

|B|
2

2µ0
∇

(
1−M2

A

)
, (13)

∇ ·B = 0, (14)

whereMA is the Alfvén Mach number, defined via

w ≡ ±MAB/
√

µ0 , (15)

and where the± indicates that if the pair(w,B) is a solu-
tion of the Eqs. (8) and (13), then(−w,B) is also a solution,
and basically also(w,−B) and(−w,−B). We will mainly
parameterize this behaviour byMA and byB, starting from
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the viewpoint of MHS theory, as the form (13) of the in-
compressible SMHD equations allows to derive transforma-
tion equations which transform MHS equilibria into station-
ary ones (seeGebhardt and Kiessling, 1992; Nickeler et al.,
2006, for the mathematical details).

2.1 2-D stationary states

The theory explained so far is general. In the following we
concentrate on configurations with one axis of symmetry, e.g.
the z-axis in a cartesian coordinate systemx,y,z. Conse-
quently all quantities are functions ofx andy only and we
can solve the solenoidal Eq. (14) by introducing a flux func-
tion α(x,y) of the formB = ∇α×ez. This reduces the sta-
tionary incompressible equations in 2-D to

MA = MA(α), (16)

∇5 = −

(
1−M2

A

)
1α∇α

µ0
−

|∇α|
2

2µ0
∇

(
1−M2

A

)
. (17)

Now we perform a transformation by assuming thatα(x,y) is
a function of another “flux function”A(x,y), i.e.α = α(A),
such that thestationary equation, Eq. (17), reduces to a
form of the equation mathematically similar to the Grad-
Shafranov equation

dPMHS

dA
= −

1

µ0
1A, (18)

describing MHS equilibria.
Then the equivalence between the MHS equation and the

momentum equation of ideal, stationary but non-static MHD
with incompressible, field-aligned flow is shown. Asα is a
function ofA, MA is also a function of the “new” flux func-
tion A. Derivatives with respect toA will now and in the
following be expressed by a prime, e.g.,dα/dA = α′. With
the help of the relationMA = MA(A) we can rewrite the Eu-
ler equation Eq. (17)

∇5 = −

(
1−M2

A

)(
α′′ (∇A)2

+α′1A
)
α′∇A

µ0

−
α′2

|∇A|
2

2µ0
∇

(
1−M2

A

)
= −

(
1−M2

A

)
µ0

α′21A∇A

−
(∇A)2

∇A

2µ0

[(
1−M2

A

)
α′2

]′

. (19)

Let us remark that the Alfv́en Mach numberMA can be ex-
pressed as a function ofα or A, but is not restricted further.
We have therefore the freedom to choose this function ar-
bitrary without loss of generality. A reasonable choice to
eliminate the term(∇A)2 in Eq. (19) is

(1−M2
A)α′2

≡ 1, (20)

and therefore the Euler Eq. (19) simplifies to a single partial
differential equation for the new flux functionA(x,y)

∇5 = −
1

µ0
1A∇A ⇒

d5

dA
= −

1

µ0
1A. (21)

In any case, Eq. (21) is mathematically identical with
Eq. (18), but contains plasma flow. Physically this equation
reduces to the static Grad-Shafranov equation only for the
limit MA → 0, implying5(A) → P(A). Consequently, any
solutionA(x,y) of the “MHS” Eq. (21) (or equivalently the
MHS Eq.18) can be used to derive a solution of the station-
ary, incompressible MHD by integrating Eq. (20)

α = ±

∫
dA√

1−MA(A)2
. (22)

With this form we can specify a plasma flow via the Alfvén
Mach numberMA(A). BecauseA is constant on magnetic
field lines this is also true forMA and α. Physically this
means that we can specify on which field lines plasma is
flowing with a certain Mach number. It is in particular pos-
sible to calculate separatrix field lines in the static case and
specify plasma flow only on one side of this separatrix, e.g.
to model plasma flow around a static magnetosphere or hel-
met streamer configuration.

Equation (22) is also equivalent to

A = ±

∫ √
1−MA(α)2dα. (23)

Some care has to be taken for multi-valued functionsMA(A)

orMA(α), where one has to distinguish between the different
branches of solutions. This is, however, not a major problem
and similar to the problem of multi-valued functions5(A) in
the static Grad-Shafranov theory, which has been addressed
in Wiegelmann et al.(1998) to model triple coronal helmet
streamer configurations.

2.1.1 Influence on the electric current density

Inserting the ansatzB = ∇α×ez into Eq. (4) and by comput-
ing the Laplacian ofα with Eq. (22) we find the connection
between the Alfv́en Mach number and current density

−µ0jz = 1α

= ±
MAM ′

A(
1−M2

A

) 3
2

(∇A)2
±

1√
1−M2

A

1A. (24)

The± sign again reflects the freedom of the transformation
relations Eqs. (22) and (23) with respect to the direction of
the magnetic field and the symmetry of the Lorentz force.
The first term in Eq. (24) corresponds to a current induced
by the plasma flow and the second part modifies (enhances)
the static equilibrium current−µ0jz,static= −1A.

For static potential fields this part of the current vanishes
also in the stationary state with flow, i.e. as1A = 0 only
the first term on the right side of Eq. (24) contributes to the
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Fig. 1. Transformation from a one-dimensional homogenous
current-free potential fieldA = B0y. Top panel:MA(A) as defined
in (29), with M1 = 0.4, M2 = 0.8, d = 2, Ac = 3 Bottom panel:
MA(y) in dashed line,w(y) in thick dotted line and the resulting
electric current densityjz(y) in solid line.

electric current density. We expand Eq. (24) for small Alfvén
Mach numbersMA � 1 which leads to

−µ0jz = ±(MA +
3

2
M3

A)M ′

A (∇A)2
±(1+

1

2
M2

A)1A, (25)

and if we neglect all quadratic and higher terms inMA , we
find:

−µ0jz = ±MAM ′

A (∇A)2
±1A. (26)

Inserting the definitions of the magnetic field and equilibrium
current and using the definitionM ′

A ∇A =
dMA
dA

∇A = ∇MA
(this can be done also already in Eq. (24) and does not de-
pend on the assumption of small Mach numbers), we get
from Eq. (26)

−µ0jz = ±(MA∇MA ·∇A+jz,static). (27)

Consequently for small Alfv́en Mach numbers the equilib-
rium currents are basically unmodified by the plasma flow
and the induced currents depend linearly on the magnetic
field strength, the Alfv́en Mach number and the gradient of
the Alfvén Mach number. For further approximations on the

relative strength of the equilibrium currents and the flow in-
duced currents we assume that the magnetic field equilibrium
does change on a length scalelstatic and the plasma flow on a
scalelflow, which allows us to roughly approximate the gra-
dient and Laplacian:

−µ0jz ≈ ±

(
MA

MA

lflow
B +

B

lstatic

)
. (28)

So to compare the relative strength of the two contributions

we have to compare
M2

A
lflow

and 1
lstatic

and get as the ratio of in-

duced and equilibrium currentM2
A

lstatic
lflow

. Consequently we
get (for slow plasma flows withMA � 1) only a significantly
large induced current if the plasma flow changes on a much
smaller length scale as the typical scale of the configuration
lflow � lstatic. Such a situation is typically fulfilled at bound-
ary layers, e.g., the magnetopause or the separatrix between
open and closed field lines in coronal helmet streamers.

3 Application to coronal helmet streamers and
plasmoids

In the following we provide some example solutions for
MHD-equilibria with plasma flow. We construct these con-
figurations by first solving the MHS problem (Eq.21) and
then by transforming the resulting static flux functionA(x,y)

into the solution of the stationary problemα(x,y) with the
help of Eq. (22). We prescribe the Alfv́en Mach number as a
function ofA in the useful form

MA(A) = M1+(M2−M1) tanh(d(A−Ac)), (29)

whereM1, M2, d, andAc are free parameters1, the scale on
which the flow changes (d ∝ 1/lflow is an inverse length), and
the value of the separatrix field lineAc. The functional form
of MA in Eq. (29) has been chosen in order to provide the
strongest flow gradient at the separatrix field lineAc. Fig-
ure1 top panel showsMA as a function ofA for M1 = 0.4,
M2 = 0.8, d = 2, andAc = 3.

As an example we apply the transformation (22) with MA
in the form of Eq. (29) to a homogeneous potential magnetic
field B = B0ex with B0 = 1. This is a simple 1-D equilib-
rium with the static flux functionA = B0y and all quantities
(both in the static and stationary case) are only a function of
y. Figure1 bottom panel shows the Alfvén Mach number
MA(y) (dashed line), the streaming vectorw(y) (dotted line)
and the corresponding formation of a current sheetjz(y) at
the separatrix field lineAc = 3 (solid line).

In the following we study more sophisticated static equi-
libria and their transformation to stationary incompressible
MHD-equilibria. For a better visualization we will present
examples of MHS equilibria that do not show the extremely
small scale flows compared to the equilibrium current scales.
We therefore have to use larger Alfvén Mach numbers.

1Please note that the Alfvén Mach number can become negative
for plasma flows antiparallel to the field lines.
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3.1 Linear MHS equilibria

To derive 2-D static equilibria we solve the Grad-Shafranov
Eq. (21) for a linear current. Such configurations have been
studied for triple coronal helmet streamer configurations in
Wiegelmann(1998), but here we limit our research to sin-
gle helmet streamers and concentrate on the effect of plasma
flow on open field lines. A linear current means that the func-

tion5(A) in Eq. (21) has the form5(A) =
c2

2 A2. In this case
the Grad-Shafranov equation reduces to a linear Helmholtz
equation

−1A = c2A (30)

and can be solved by separation of variables. Let us re-
mark that in general the static Grad-Shafranov equation has

the form 5(A) = p(A) +
B2

z

2 , with the plasma pressurep
and a magnetic shear fieldBz in the invariant direction. In
the case ofp(A) = 0 one obtains linear force-free configura-
tions and else static equilibria. In both cases the electric cur-
rent jz(A) =

∂5
∂A

is linear inA. The particular choicec = 0
corresponds to current-free potential fields. As solution of
Eq. (30) one gets by separation of variables

A(x,y) = B0exp
(
−

νπy

L

)
cos

(
kπx

L

)
for c < k, (31)

A(x,y) = B0cos
(ωπy

L

)
cos

(
kπx

L

)
for c > k, (32)

with ν =
√

k2−c2 andω =
√

c2−k2. Linear combinations
of these particular solutions are also solutions of the lin-
ear Helmholtz-equation (Eq.30). These solutions were also
studied byHood and Anzer(1990) modeling prominence ar-
cades andPetrie(2006) modeling coronal loops. Here we
consider only three particular cases withB0 = k = L = 1 and
different values ofc. The top panels of Figs.2, 3, and4 show
magnetic field lines (equi-contour plots of the flux function
A(x,y) for c = 0, c = 0.9, andc = 1.2, respectively). The
casec = 0 in Fig. 2 corresponds to a current-free potential
field. Introducing a moderate linear current withc < k leads
to a stretching of the configuration (top panel in Fig.3) and
a smooth electric current density distribution (second panel
in Fig. 3). For the casec > k, as shown in the top panel of
Fig. 4, the magnetic topology changes and wet get plasmoid-
like configurations, which, however, also have a smooth cur-
rent density distribution in equilibrium (second panel).

3.1.1 Transformation to stationary states

We transform these static equilibria into stationary ones us-
ing Eq. (22) andMA in the form (29) with d = 5, M1 = 0.0,
M2 = 0.8, Ac = 0. We chooseM2 > M1, in order to pre-
scribe a plasma flow on the outside (x = ±0.5) of the con-
figuration, where the flux function becomes negative. Inside
the streamer and plasmoid (−0.5 < x < 0.5) the flux func-
tion is positive. The plasma flow is chosen in order to be

Fig. 2. 2-D potential field configurations in the formA(x,y) =

B0exp(−kπy/L)cos(−
√

k2−c2πx/L), with B0 = k = L = 1, c =

0.0 and the Alfv́en Mach number profile function (29) with d = 5,
M1 = 0.4, M2 = 0.0, Ac = 0. This profile has a steep gradient
at the boundary between open and closed field lines. Top panel:
magnetic field lines (contour lines ofA(x,y)), center: formation of
flow driven current sheetsJz(x,y), Bottom: Alfvén Mach number
MA(x,y).

maximal at the open separatrix field line and the plasma is
basically at rest inside the configuration, where the magnetic
field lines are closed (bottom panels in Figs.2, 3, 4). With
the current transformation Eq. (24) we compute the total cur-
rent density: In the case of the static potential field currents
only occur from the first term in Eq. (24) and are driven by

www.ann-geophys.net/28/1523/2010/ Ann. Geophys., 28, 1523–1532, 2010



1528 D. H. Nickeler and T. Wiegelmann: MHD with plasma flow

Fig. 3. Same transformation as in Fig.2, including a linear MHS
currentJz(A) = c ·A, c = 0.9. Second and third panel show the split
of linear (MHS, without flow) and the full current (with flow).

Fig. 4. Same transformation as in Fig.2, but including a linear MHS
current in the formJz(A) = c ·A with c = 1.2. Herec > k.

Ann. Geophys., 28, 1523–1532, 2010 www.ann-geophys.net/28/1523/2010/
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the gradient of the plasma flow (center panel in Fig.2). As a
consequence of the sharp gradient in the flow, a thin current
sheet forms at the separatrix (x = ±0.5). Such a thin current
sheet forms also additional to the smooth equilibrium cur-
rents for the linear current cases (third panels in Figs.3 and
4). In regions with weak or no plasma flow the equilibrium
current does basically not change, whereas a current sheet
forms at the separatrix field line. Due to the strong gradient
in the plasma flow this induced current sheet is much thinner
and the current density is higher than in the equilibrium cur-
rent. The equilibrium currents are strongest in the center of
the configuration.

4 Application to magnetospheres

4.1 Non-linear Grad-Shafranov equation, Liouville
equation

In the static case without magnetic shear field the Grad-
Shafranov-equation (21) reduces to

1A = −µ0
∂

∂A
(p(A)), (33)

wherep(A) is the plasma pressure. Under the assumption
of a local thermodynamical equilibrium the plasma pressure
function can be derived from kinetic theory in the form (see
Schindler, 2006, for details)

p(A) =
1

2
p̂exp(−2A/Â), (34)

whereÂ andp̂ are normalization constants. This leads to an
equation in the form

1A = λexp(−cA), (35)

with constants

λ = µ0
p̂

Â
, (36)

c =
2

Â
, (37)

and the typical lengthscalêl, and the typical magnetic field
B̂, defined by

λc =

 2p̂

Â2/
(
l̂2µ0

)
 ≡

2

l̂2
, (38)

B̂ =
Â

l̂
. (39)

Before we continue to compute analytical and exact 2-D so-
lutions, we first present a well-known case in 1-D, namely the
Harris-sheet, to explain how the transformation from MHS to
incompressible SMHD works.

4.2 1-D Harris-sheet

A well known, 1-D equilibrium current sheet solution of
the Liouville’s Eq. (35) is the Harris-sheet (Harris, 1962).
A Harris-sheet like force-free equilibrium has recently been
found byHarrison and Neukirch(2009). The Harris sheet
is a 1-D-solution, where all quantities depend only on they

coordinate, and is given by

A(y) = Â lncosh(y/l̂). (40)

The static equilibrium quantities for the Harris-sheet are
shown with solid lines in Fig.5. The top panel shows the
flux-functionA(y), the second panel the corresponding mag-
netic fieldBx and the bottom panel the equilibrium electric
current density.

4.2.1 Transformation to stationary states

We use the transformation Eq. (22) with the Mach number
profile (29) andMmax= 0.5, Mmin = 0, Ac = 2, andd = 5 to
derive a stationary equilibrium with plasma flow. The sta-
tionary solutions are shown with dashed lines in Fig.5. The
top panel shows the flux functionα(y), the second panel the
magnetic fieldBx and the bottom panel the electric current
densityjz(y) as computed with Eq. (24). Additionally we
present the current approximation forMA � 1, as computed
with Eq. (26) with dotted lines in the bottom panel of Fig.5.
By comparing the static (solid lines) and stationary (dashed)
quantities, one can see that both quantities only differ in the
region were the flow gradient is high (see third panel). In
these regions, where the static equilibrium is separated from
the stationary flowing plasma in a thin layer, current sheets
form. The spatial scale of these layers is significantly smaller
than the typical length scale of the equilibrium current. The
electric current density approximation for small Mach num-
ber (dotted in bottom panel) shows reasonable agreement
with the exact (dashed) solution, even for the not very small
maximum Mach numberMA = 0.5 used here.

4.3 Exact 2-D magnetospheric equilibrium

As shown byLiouville (1853), Bandle(1975), Birn et al.
(1978) Eq. (35) can be written as:

4
∂2A

∂u∂ū
= λexp(−cA), (41)

with u = x + iy and ū = x − iy, and this equation has the
general solution

A(u,ū) =
2

c
ln

1+
cλ
8 |9(u)2

|

|
∂9
∂u

|
≡ Âln

1+
1

4l̂2

∣∣∣9(u)2
∣∣∣∣∣∣∣∂9

∂u

∣∣∣∣ . (42)

Every analytic function9(u) generates a solution of
Eq. (35). The Liouville equation has also its applications out-
side plasma physics and solutions in the form of (42) have
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Fig. 5. From top to bottom we show the flux-functionsA(y),α(y),
the magnetic fieldBx(y), the Alfvén Mach numberMA(y) and the
electric current densityjz(y). Solid lines correspond to the mag-
netostatic case and dashed lines to stationary MHD with the pro-
file (29) andM1 = 0, M2 = 0.5, Ac = 2 andd = 5. In the bottom
panel we show additional dotted the approximation forMA � 1 as
computed with Eq. (27).

been used, e.g., bySchmid-Burgk(1967) to investigate a
self-gravitating gas layer.

Schindler and Birn(2004) found magnetospheric solutions
with the Ansatz

9(u) = 2l̂ exp

i

u/l̂+

√
u/l̂

ε

 , (43)

which leads to the solution class of Eq. (42) of the form (see
Schindler and Birn, 2004, for details and discussion of the
static equilibrium).

A(x,y)/Â = ln

 cosh
(

y
√

2ε
√

r+x
+y

)
√

1
r

(
1
4ε

+

√
r+x
2ε

)
+1

 (44)

with r =

√
x2+y2, where the coordinates here are normal-

ized onl̂. Forε → ∞ the Ansatz for9 produces the Harris-
sheet solution. The top panel of Fig.6 shows the correspond-
ing magnetic field lines as equi-contour plots ofA(x,y)

for ε = 1. For the transformation we used the parameters
M1 = 0.0, M2 = 0.95 andd = 2 for the Mach number pro-
file in Eq. (29). The second panel contains the equilibrium
current density−jz(x,y).

4.3.1 Transformation to stationary states

We use the transformation Eq. (22) with the Mach number
profile (29) andMmax= 0.95,Mmin = 0,Ac = 0, andd = 2 to
derive a stationary equilibrium with plasma flow. The chosen
profile for the flow is smoother, as in previous examples and
the maximum Mach number is higher. As a consequence we
observe two additional current sheets in the stationary current
distribution as computed with Eq. (26) and shown in the third
panel of Fig.6. The thickness of the two current sheets are
located in the region with the plasma flow gradient, shown
in the bottom panel. The smoother profile ofMA(A) results
also in smoother induced current sheets.

5 Conclusions

Within this work we studied the relation between plasma
flow gradients and current sheets in space plasma. To high-
light the influence of stationary flows on static MHD equi-
libria, we neglected compressibility effects and used the as-
sumption of field-aligned, incompressible stationary flows.
These assumptions imply an analogy between magnetic field
and velocity field as well as an analogy between MHS and
incompressible SMHD: The assumption of incompressibility
allows us to transform magnetostatic equilibria into station-
ary ones by using a non-canonical transformation. We find
that the occurrence of flow driven current sheets is closely
related to the gradient of the plasma flow or, to be precise, to
the gradient of the Alfv́en Mach number perpendicular to the
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Fig. 6. Same transformation formula as Fig.2, but for a nonlinear
current in the formJz(A) ∝ exp(−cA). For the transformation we
usedM1 = 0.0, M2 = 0.95 andd = 2. For a better visualization we
show the negative current−jz(x,y) in the second and third panel.

magnetic field lines. Along the field lines the Mach number
is always constant for incompressible stationary flows. As
the gradients in the Alfv́en Mach number can be very large,
because the typical length scale of the flow is smaller than
the length scale of the magnetic field, the occurence of cur-
rent sheets is correlated with the appearance of vortex sheets.
Such configurations can be closely connected to local break-
downs of the frozen-in-flux theorem, or shortly to magnetic
reconnection (Eyink and Aluie, 2006). Magnetic reconnec-
tion in turn plays a major role in eruptive space plasma pro-
cesses like magnetospheric substorms or solar flares.

In principle it is possible to compare our theoretical in-
vestigations on the relation between plasma flows and cur-
rent sheets with observations, in particular in the magneto-
sphere where in-situ measurements are available. One pos-
sibility is using magnetic field and particle data from the
CLUSTER-mission, which are carried out simultaneously
with four spacecraft. Such multi-spacecraft measurements
(with distances between the spacecraft in the range of about
50–10 000 km) of the magnetic field allow also the estima-
tion of electric currents. By taking moments of the particle
data it is possible to compute plasma quantities like density,
pressure and the plasma flow velocity. These combined mea-
surements allow at least to estimate gradients in the plasma
flow and the thickness of current sheets. A limitation is that
structures smaller than the distance of the Cluster-spacecraft
cannot be spatially resolved, which implies that flow gradi-
ents could be steeper and the current sheets thinner as com-
puted from the measurements. A comparison of data with
our model, which relates flows and flow gradients to current
sheets, will allow to investigate how consistent different ar-
eas in the magnetosphere can be described under the assump-
tion of stationary incompressible MHD.
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