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Abstract. Strong gradients in plasma flows play a major role 1  Introduction

in space and astrophysical plasmas. A typical situation is that

a static plasma equilibrium is surrounded by a plasma flow,Plasma flows around separatrices play an important role in
which can lead to strong plasma flow gradients at the separanany astrophysical and space plasmas. Significant flows oc-
trices between field lines with different magnetic topologies, cur thereby mainly on open field lines, while the plasma on
e.g., planetary magnetospheres, helmet streamers in the solglesed field lines is approximately at rest. One example is
corona, or at the boundary between the heliosphere and intefhe magnetosphere surrounded by the solar wind flow, where
stellar medium. Within this work we make a first step to un- both regions are separated by the magnetopause. Another ex-
derstand the influence of these flows towards the occurrenc@mple are coronal helmet streamers, where the closed arcade
of current sheets in a stationary state situation. We concentype magnetic structures are surrounded by open magnetic
trate here on incompressible plasma flows and 2-D equi|ib_ﬁe|d lines on which the stationary solar wind is streaming.

ria, which allow us to find analytic solutions of the stationary A third example, but with different constraints, is the re-
magnetohydrodynamics equations (SMHD). First we solvegion far away from a star, which is embedded in the counter-
the magnetohydrostatic (MHS) equations with the help of aflowing interstellar medium. Due to the interaction between
Grad-Shafranov equation and then we transform these statihe stellar wind, e.g., the solar wind, and the counterflow-
equilibria into a stationary state with plasma flow. We are ining interstellar medium, a separatrix forms, separating the
particular interested to study SMHD-equilibria with strong “inner” stellar wind from the “outer” interstellar medium:
plasma flow gradients perpendicular to separatrices. We findhe domain inside is called an astrosphere (heliosphere for
that induced thin current sheets occur naturally in such situthe sun), the corresponding separatrix is called an astropause
ations. The strength of the induced currents depend on théheliopause). This is a similar situation as described for the

Alfv én Mach number and its gradient, and on the magnetid€lmet streamers in the paragraph before, namely different
field. flow regimes inside and outside of some boundary layer (“in-

ner” and “outer” field lines). In the case of astrospheres/of

Keywords. Magnetospheric physics (Magnetopause, Cuspthe heliosphere, however, the scenario implies a structure

and boundary layers) — Solar physics, astrophysics, anﬁmh almost completely open field lines. Additionally, the

- ; ow is non-zero also on the “inner” field lines, but shows a
astronomy (Corona and transition region) — Space plasm%trong gradient (see, e.@aranov et al.197q Baranov and
physics (Kinetic and MHD theory) o |

Krasnobaey1971; Nickeler et al, 200§ for details).

These situations where regions with and without plasma
flow are separated by rather thin boundary layers necessarily
lead to strong flow gradients in these layers. Within this work
we aim to study the relation of these flow gradients to current
sheets. Thin current sheets are important, because due to cur-

Correspondence tD. H. Nickeler rent driven micro-instabilities a fine resistivity occurs in these
BY (nickeler@asu.cas.cz) regions and the usual assumption of an ideal conducting
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space plasma breaks down. Consequently resistive plasmdition for the magnetic field (Ecp), and the condition for
instabilities like magnetic reconnection can occur as a conincompressibility (Eq6):
sequence of current sheets and when additional sufficient free

energy for eruptions is available in the configuration (see V- (pv) =0, @)
for exampleSchindler and Birn1993. Such processes oc- p(V-V)V=jxB-VP, (2)
cur, e.g., as substorms in magnetospheres and flares in thg x (vx B) = 0, )
solar corona (seBirn and Hessg2009 for a recent study V x B = joj )
of similarities and difference between substorms and flares). ’

Wiegelmann and Schindl€t995, andBecker et al(2001) VB =0, ®)
studied the formation of thin current sheets as a sequence of V.v=0, (6)

quasi-static magnetotail equilibria. Quasi-static means tha\t/vhere is the mass density the plasma velocityB the
dynamical effects and the influence of plasma flow can be ne- a nefzic field.7 the currentyéensitp vector. aml thye ther-
glected compared to magnetic forces and pressure gradientgalgOr IasmaJ ressure y '

This assumption is well fulfilled in the magnetosphere during b ap o - .
quiet times Schindler and Birn1982 and the strongest cur- Due to t_he incompressibility, the mass continuity equation
rents form in the center of the magnetospheric plasma sheef@" be ertten as-Vp - 0, sothat the de_n_S|ty IS constant on
The influence of a field-aligned parallel plasma flow in mag- stream!mes. We now mtrodupe the auxnllar_y flow vector or
netospheres has been studied for exampkRirim (1991 and §tream|ng vectow :1: Zﬁ"' With the !Sernoulll pressure, Qe-
for solar MHD-equilibria inWiegelmann et a(1998, Petrie  ined byIl:= P +5w?, we can rewrite the above equations

and Neukirch(1999, Petrie et al(2002, andPetrie et al. @S

(2009. A significant influence of amootiplasma flow itself V.w=0, @)
onto the magnetic field and plasma configuration is rather

low for flow speed well below the Alfen speed « va. Far —(VxB)xB—(Vxw)xw = VII, 8
less studied has been the influence of significant small scalé'®

gradients in the plasma flow, which is the topic of this paper. V x (iw x B) =0, (9)
We are in particular interested to investigate to which extend

thin current sheets at boundary layers can be associated with V-B =0. (10)

corresponding gradients in the plasma flow. We outline the h . ) hthat th |
paper as follows. In Sec? we present the basic equations, The momentum equation Egi)s written such that the anal-

outline how static equilibria can be transformed into station-°9Y With magnetohydrostatic equilibria (MHS), given by

ary ones, and discuss the rel_ation between sharp flpw gradillal(v xB)xB=VP, (11)
ents and the occurrence of thin current sheets. Secdiand
4 contain applications to solar coronal and magnetospherids obvious.
structures, respectively. Finally we summarize our results in  The assumption of a field-aligned flow enhances the prob-
Sect.5. ability that the flow is stable in the frame of ideal MHD, (see
the discussion iameiri 1998. The assumption af x B =
0 leads to a vanishing electric field in ideal MHD. This can
2 Basic assumptions and equations be seen with the help of the uncurled induction equation,
Eq. @), which is basically ideal Ohm’s lavE +v x B =0
We apply the theory of ideal MHD. This is justified, be- (E = electricfield). Therefore the stationary ideal Ohm’s law
cause of the high conductivity in many space and astrophys¢Eqg. 9) is fulfilled identically. Under these assumptions the
ical plasmas. For simplicity and to concentrate on essenset of equations reduces to:
tial “flow” effects, we restrict our research to configurations
with an incompressible plasma flow. We are interested in the B-VMaA=0, (12)
physical effects that occur for large gradients of the &ffv (1-M3)(VxB)xB |BJ? 2
Mach number perpendicular to the field lines. We are aware = 2 v (1_ MA)’ (13)
o L0
that compressible effects might become important for some v. B =0, (14)
space plasma applications, in particular for stratified plasmas
like the solar corona and chromosphere, especially on largé/hereMa is the Alfven Mach number, defined via
scales, seg, e.@.etrie et aI(20.03 or Petrig et al(2005. w=-+MaB//Iio, (15)
For stationary, ideal and incompressible MHD we have
to solve the following equations: mass continuity Et), ( and where thet indicates that if the paitw, B) is a solu-
the Euler or momentum equation with isotropic pressBre tion of the Egs. §) and (3), then(—w, B) is also a solution,
(Eq.2), the stationary induction equation including the ideal and basically alséw, —B) and(—w, —B). We will mainly
Ohm’s law (Eq.3), Ampere’s law (Eg4), the solenoidal con-  parameterize this behaviour Bf, and by B, starting from
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the viewpoint of MHS theory, as the formid) of the in-

1525

and therefore the Euler EdLY) simplifies to a single partial

compressible SMHD equations allows to derive transforma-differential equation for the new flux functiofi(x, y)

tion equations which transform MHS equilibria into station-

ary ones (se&ebhardt and Kiesslind 992 Nickeler et al,
2006 for the mathematical details).

2.1 2-D stationary states

1 drl
VII=——AAVA = —=

2%} dA
In any case, Eq.2Q) is mathematically identical with
Eqg. (18), but contains plasma flow. Physically this equation
reduces to the static Grad-Shafranov equation only for the

(21)

The theory explaine_d S0 far is general. Ip the following we [imit A7 — 0, implying IT1(A) — P(A). Consequently, any
concentrate on configurations with one axis of symmetry, e.gsolution A (x, y) of the “MHS” Eq. 1) (or equivalently the

the z-axis in a cartesian coordinate system,z. Conse-
quently all quantities are functions efandy only and we
can solve the solenoidal EdL4) by introducing a flux func-
tion a(x,y) of the formB = Va x e,. This reduces the sta-
tionary incompressible equations in 2-D to

Mpa = Ma(a),
(1-M2)AaVa  |Val?
Ko 2100

(16)

VII=— a7)

V(l—ME\).

Now we perform a transformation by assuming thét, y) is
a function of another “flux function’A(x, y), i.e.a = a(A),
such that thestationary equation, Eq. 17), reduces to a

form of the equation mathematically similar to the Grad-

Shafranov equation

dP 1
MHs _ 1\,
dA

(18)

describing MHS equilibria.

MHS Eq.18) can be used to derive a solution of the station-
ary, incompressible MHD by integrating EQQ)

o=+ / S (22)
V1= Ma(A)?

With this form we can specify a plasma flow via the Adfv
Mach numberMa (A). BecauseA is constant on magnetic
field lines this is also true foMa and«. Physically this
means that we can specify on which field lines plasma is
flowing with a certain Mach number. It is in particular pos-
sible to calculate separatrix field lines in the static case and
specify plasma flow only on one side of this separatrix, e.g.
to model plasma flow around a static magnetosphere or hel-
met streamer configuration.

Equation R2) is also equivalent to

A::I:/\/l—MA(a)Zda.

Some care has to be taken for multi-valued functibhng A)

(23)

Then the equivalence between the MHS equation and th@r Ma («), where one has to distinguish between the different
momentum equation of ideal, stationary but non-static MHD branches of solutions. This is, however, not a major problem

with incompressible, field-aligned flow is shown. Ads a
function of A, Mp is also a function of the “new” flux func-
tion A. Derivatives with respect ta will now and in the
following be expressed by a prime, e.dg/dA =«’. With
the help of the relatioda = Ma (A) we can rewrite the Eu-
ler equation Eq.X7)

(1-M2) (" (VA +a' AA) &' VA
10

v(1-m3)

VII = —

()[/2|VA|2
210

1- M?
= —Ma’ZAAVA
o

_M[(l_ wg)a?]

20 (29)

Let us remark that the Alen Mach numbeM can be ex-
pressed as a function afor A, but is not restricted further.

and similar to the problem of multi-valued functioligA) in

the static Grad-Shafranov theory, which has been addressed
in Wiegelmann et al(1998 to model triple coronal helmet
streamer configurations.

2.1.1 Influence on the electric current density

Inserting the ansatB = Va x e, into Eq. @) and by comput-
ing the Laplacian of with Eq. (22) we find the connection
between the Alfén Mach number and current density

—Mhojz = Aa
MAMA 2 1
= :I:—g(VA) :I:—ZAA. (24)
i i

The + sign again reflects the freedom of the transformation
relations Eqs.42) and @3) with respect to the direction of
the magnetic field and the symmetry of the Lorentz force.
The first term in Eq. Z4) corresponds to a current induced

We have therefore the freedom to choose this function arby the plasma flow and the second part modifies (enhances)
bitrary without loss of generality. A reasonable choice to the static equilibrium current .o j; static= — A A.

eliminate the terniV A)2 in Eq. (19) is

A-M3)a?=1, (20)

www.ann-geophys.net/28/1523/2010/

For static potential fields this part of the current vanishes
also in the stationary state with flow, i.e. &A =0 only
the first term on the right side of ER4) contributes to the
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ha relative strength of the equilibrium currents and the flow in-
08 duced currents we assume that the magnetic field equilibrium
does change on a length scajgiic and the plasma flow on a
scalelfiow, Which allows us to roughly approximate the gra-
dient and Laplacian:

06

M B
0.4l —uojzw(MA—Am ) . (28)

Ifiow Istatic

0.2 So to compare the relative strength of the two contributions

we have to compar?— and—— and get as the ratio of in-

l static
: ; : il duced and equilibrium currenﬂzlsﬂta"". Consequently we
-2 Z 4 6 8 get (for slow plasma flows witiMa < 1) only a significantly
large induced current if the plasma flow changes on a much
Jz . Ma W smaller length scale as the typical scale of the configuration
eerr e Iow < Istatic Such a situation is typically fulfilled at bound-
] ary layers, e.g., the magnetopause or the separatrix between
open and closed field lines in coronal helmet streamers.

i i i i e T T

r,; 3 Application to coronal helmet streamers and
s plasmoids

In the following we provide some example solutions for
05| MHD-equilibria with plasma flow. We construct these con-
figurations by first solving the MHS problem (E81) and
then by transforming the resulting static flux functidtx, y)
into the solution of the stationary problewix, y) with the

Fig. 1. Transformation from a one-dimensional homogenous help of Eq. @2). We prescribe the Alfén Mach number as a
current-free potential fieldh = Bgy. Top panelMa (A) as defined  fynction of A in the useful form

in (29), with M1 =0.4, M, =0.8, d =2, A, = 3 Bottom panel:
Ma(y) in dashed linew(y) in thick dotted line and the resulting MA(A) = M1+ (M2 — M1)tanh(d(A — A,)), (29)
electric current density (y) in solid line. whereM1, M», d, and A, are free parametérsthe scale on
which the flow changesi(c 1/ liow is an inverse length), and
the value of the separatrix field line.. The functional form
of Ma in Eg. 29) has been chosen in order to provide the
strongest flow gradient at the separatrix field lihg Fig-

. 3 3., 2 1, ure 1 top panel showd/, as a function ofA for M1 = 0.4,
—Hoje=+(Ma+SMOMp (VA £ (1+5MO)AA, (25) 1. _ 08 g—2 andA, = 3.

. . . As an example we apply the transformati@2)(with Ma
a_nd. if we neglect all quadratic and higher termsifa, we in the form of Eq. 29) to a homogeneous potential magnetic
find: field B = Boe, with Bo—= 1. This is a simple 1-D equilib-

— ptoj. = £MAM) (VAP +AA. (26) rium vyith the stgtic flux functiom = Bpy and all quantitigs

(both in the static and stationary case) are only a function of
Inserting the definitions of the magnetic field and equilibrium y. Figure1 bottom panel shows the Alen Mach number
current and using the definitioll, VA = %VA =VMa Ma(y) (dashed line), the streaming vecto¢y) (dotted line)
(this can be done also already in Eg4) and does not de- and the corresponding formation of a current sheét) at
pend on the assumption of small Mach numbers), we gethe separatrix field linel, = 3 (solid line).

electric current density. We expand E&4) for small Alfvén
Mach numbersia <« 1 which leads to

from Eq. £6) In the following we study more sophisticated static equi-
. ] libria and their transformation to stationary incompressible
—1oj: =EMAVMa -V A+ ] static)- 27) MHD-equilibria. For a better visualization we will present

Consequently for small Alfdn Mach numbers the equilib- examples of MHS equilibria that do nc.)t. Show the extremely
fium currents are basically unmodified by the plasma fIOWsmaII scale flows compared to the equilibrium current scales.

and the induced currents depend linearly on the magnetk\,Ne therefore have to use larger Aéfv Mach numbers.

field strength, the Alfén Mach number and the gradient of  1please note that the An Mach number can become negative
the Alfvén Mach number. For further approximations on the for plasma flows antiparallel to the field lines.

Ann. Geophys., 28, 1523532 2010 www.ann-geophys.net/28/1523/2010/
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3.1 Linear MHS equilibria AQLY)

To derive 2-D static equilibria we solve the Grad-Shafranov
Eq. 1) for a linear current. Such configurations have been i
studied for triple coronal helmet streamer configurations in
Wiegelmann(1998, but here we limit our research to sin- 08
gle helmet streamers and concentrate on the effect of plasma b
flow on open field lines. A linear current means that the func- 24
tionTI(A) in Eq. 1) has the fornTI(A) = §A2. In this case

the Grad-Shafranov equation reduces to a linear Helmholtz

equation : N

—AA= C2A (30) -0.6 -04-02 g 02 04 06

0.z

and can be solved by separation of variables. Let us re- Js
mark that in general the static Grad-Shafranov equation has

the form IT(A) = p(A) + BTZ with the plasma pressure

and a magnetic shear fiel, in the invariant direction. In
the case op(A) =0 one obtains linear force-free configura-
tions and else static equilibria. In both cases the electric cur-
rent j,(A) = % is linear inA. The particular choice =0
corresponds to current-free potential fields. As solution of
Eq. 30) one gets by separation of variables

k
Ax,y) = Boexp<—vﬂTy> cos(%) forc <k, (31)
k
Ax,y) = Bwos(?)cos(%) forc >k, (32)

with v =+k2—c2 andw = +/c2—k2. Linear combinations

of these particular solutions are also solutions of the lin-
ear Helmholtz-equation (E@Q). These solutions were also
studied byHood and Anze(1990 modeling prominence ar-
cades andPetrie (2006 modeling coronal loops. Here we
consider only three particular cases wih=k =L =1 and
different values ot. The top panels of Fig&, 3, and4 show
magnetic field lines (equi-contour plots of the flux function
A(x,y) for c=0, ¢=0.9, andc = 1.2, respectively). The
casec =0 in Fig. 2 corresponds to a current-free potential
field. Introducing a moderate linear current with: k leads

to a stretching of the configuration (top panel in Byand  Fig. 2. 2-D potential field configurations in the form(x,y) =

a smooth electric current density distribution (second panelpyexp(—kzy/L)cos—v/k2 —c2rx /L), with By=k=L =1, c=

in Fig. 3). For the case > k, as shown in the top panel of 0.0 and the Alfien Mach number profile functior2®) with d =5,

Fig. 4, the magnetic topology changes and wet get plasmoid#/; = 0.4, M> =0.0, A, =0. This profile has a steep gradient
like configurations, which, however, also have a smooth cur-at the boundary between open and closed field lines. Top panel:

rent density distribution in equilibrium (second panel). magnetic field lines (contour lines af(x, y)), center: formation of
flow driven current sheetg; (x,y), Bottom: Alfvén Mach number
3.1.1 Transformation to stationary states Mp(x,).

We transform these static equilibria into stationary ones us-

ing Eg. 2) andMp in the form @Q9) with d =5, M1 =0.0, maximal at the open separatrix field line and the plasma is
M>=0.8, A, =0. We chooseM, > Mj, in order to pre- basically at rest inside the configuration, where the magnetic
scribe a plasma flow on the outside=£ +0.5) of the con-  field lines are closed (bottom panels in Fig@s3, 4). With
figuration, where the flux function becomes negative. Insidethe current transformation E®24) we compute the total cur-
the streamer and plasmoid-Q.5 < x < 0.5) the flux func-  rent density: In the case of the static potential field currents
tion is positive. The plasma flow is chosen in order to beonly occur from the first term in Eq26@) and are driven by

www.ann-geophys.net/28/1523/2010/ Ann. Geophys., 28, 1823%-2010
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AGLY)

0.8
0.5
0.4

LA

—06-04-02 0 02 04 08
X

Jz static

Jz stationary

Fig. 3. Same transformation as in Fig, including a linear MHS

D. H. Nickeler and T. Wiegelmann: MHD with plasma flow

Aly)

-06-04-02 0 02 04 056
X

Jz static

0.5

Jz stationary

Fig. 4. Same transformation as in F@.but including a linear MHS

current/; (A) = c- A, c=0.9. Second and third panel show the split currentin the form/; (A) =c- A with ¢ =1.2. Herec > k.

of linear (MHS, without flow) and the full current (with flow).

Ann. Geophys., 28, 1523532 2010
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the gradient of the plasma flow (center panel in RBigAsa 4.2 1-D Harris-sheet

consequence of the sharp gradient in the flow, a thin current

sheet forms at the separatrix£ +0.5). Such a thin current A well known, 1-D equilibrium current sheet solution of
sheet forms also additional to the smooth equilibrium cur-the Liouville’s Eq. 85) is the Harris-sheetHarris 1962.
rents for the linear current cases (th|rd pane|5 in F:@;nd A Harris-sheet like force-free equilibrium has recently been
4). In regions with weak or no plasma flow the equilibrium found byHarrison and Neukircf2009. The Harris sheet
current does basically not change, whereas a current sheé a 1-D-solution, where all quantities depend only on ghe
forms at the separatrix field line. Due to the strong gradientcoordinate, and is given by

in the plasma flow thi; iqduged current sheetis much thinnerA(y) — Alncoshy/f). (40)
and the current density is higher than in the equilibrium cur-

rent. The equilibrium currents are strongest in the center offhe static equilibrium quantities for the Harris-sheet are
the configuration. shown with solid lines in Fig5. The top panel shows the

flux-function A(y), the second panel the corresponding mag-
netic field B, and the bottom panel the equilibrium electric

4 Application to magnetospheres current density.
4.1 Non-linear Grad-Shafranov equation, Liouville 4.2.1 Transformation to stationary states
equation

We use the transformation ER3) with the Mach number
In the static case without magnetic shear field the Grad-rofile (29) and Mmax=0.5, Mmin=0, Ac =2, andd =5 to

Shafranov-equatior2(l) reduces to derive a stationary equilibrium with plasma flow. The sta-
tionary solutions are shown with dashed lines in BigThe
AA= —Moi (p(A)) (33) top panel shows the flux functian(y), the second panel the
dA ’

magnetic fieldB, and the bottom panel the electric current
where p(A) is the plasma pressure. Under the assumptiordensity j-(y) as computed with Eq2¢). Additionally we
of a local thermodynamical equilibrium the plasma pressurePresent the current approximation féfa <1, as computed
function can be derived from kinetic theory in the form (see With Eq. (26) with dotted lines in the bottom panel of Fig.

Schindler 2006 for details) By comparing the static (solid lines) and stationary (dashed)
guantities, one can see that both quantities only differ in the
1 . A . . . . .
p(A) == pexp(—24/A) (34) region were the flow gradient is high (see third panel). In
2 ' these regions, where the static equilibrium is separated from

the stationary flowing plasma in a thin layer, current sheets
form. The spatial scale of these layers is significantly smaller
than the typical length scale of the equilibrium current. The

whereA and p are normalization constants. This leads to an
equation in the form

AA = rexp(—cA), (35)  electric current density approximation for small Mach num-
ber (dotted in bottom panel) shows reasonable agreement
with constants with the exact (dashed) solution, even for the not very small
N maximum Mach numbed/a = 0.5 used here.
p
A= 0>, (36) . e
A 4.3 Exact 2-D magnetospheric equilibrium
2
c=7 (37) " As shown byLiouville (1853, Bandle (1975, Birn et al.

. (1978 Eq. (35) can be written as:
and the typical lengthscale and the typical magnetic field 2

B, defined by 47 = hexp(—cA), (41)
uou
2p 2 with u =x +iy andi = x — iy, and this equation has the
re=|—""<|=% (38)  general solution
A /(l ,uo) ! 1
A , 1+ = |W@)?
. A 2 14+Zww? . 4j2
B=. (39  A@w,i)=-In—2 =Aln (42)
! ¢ | v
ou

Before we continue to compute analytical and exact 2-D so-
lutions, we first present a well-known case in 1-D, namely theEvery analytic function ¥ (xz) generates a solution of
Harris-sheet, to explain how the transformation from MHS to Eq. (35). The Liouville equation has also its applications out-
incompressible SMHD works. side plasma physics and solutions in the form 4f) (have

www.ann-geophys.net/28/1523/2010/ Ann. Geophys., 28, 1B23%-2010
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“q —2

Fig. 5. From top to bottom we show the flux-functiodgy), «(y),

the magnetic fieldy (y), the Alfven Mach numbeMa (y) and the
electric current density;(y). Solid lines correspond to the mag-
netostatic case and dashed lines to stationary MHD with the pro
file (29) and M1 =0, Mo =0.5, A, =2 andd =5. In the bottom
panel we show additional dotted the approximationty <« 1 as

computed with Eq.Z7).

Ann. Geophys., 28, 1523532 2010
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been used, e.g., bchmid-Burgk(1967) to investigate a
self-gravitating gas layer.

Schindler and Bir§2004 found magnetospheric solutions
with the Ansatz

Ww)y=2exp|i|u/i+ u . (43)
€

which leads to the solution class of E42] of the form (see
Schindler and Birn2004 for details and discussion of the
static equilibrium).

cost{ s +)
)+

with r = /x2+y2, where the coordinates here are normal-
ized oni. Fore — oo the Ansatz for produces the Harris-
sheet solution. The top panel of Figyshows the correspond-
ing magnetic field lines as equi-contour plots Afx,y)

for e = 1. For the transformation we used the parameters
M1 =0.0, M> =0.95 andd = 2 for the Mach number pro-
file in Eg. 29). The second panel contains the equilibrium
current density-j, (x, y).

A(x,y)/A=1In

(44)

4.3.1 Transformation to stationary states

We use the transformation EqRQ) with the Mach number
profile 29) andMmax=0.95, Mnin=0,A. =0, andd =2to
derive a stationary equilibrium with plasma flow. The chosen
profile for the flow is smoother, as in previous examples and
the maximum Mach number is higher. As a consequence we
observe two additional current sheets in the stationary current
distribution as computed with EQR€) and shown in the third
panel of Fig.6. The thickness of the two current sheets are
located in the region with the plasma flow gradient, shown
in the bottom panel. The smoother profileMf (A) results
also in smoother induced current sheets.

5 Conclusions

Within this work we studied the relation between plasma
flow gradients and current sheets in space plasma. To high-
light the influence of stationary flows on static MHD equi-
libria, we neglected compressibility effects and used the as-
sumption of field-aligned, incompressible stationary flows.
These assumptions imply an analogy between magnetic field
and velocity field as well as an analogy between MHS and
incompressible SMHD: The assumption of incompressibility

allows us to transform magnetostatic equilibria into station-
ary ones by using a non-canonical transformation. We find
that the occurrence of flow driven current sheets is closely
related to the gradient of the plasma flow or, to be precise, to
the gradient of the Alfén Mach number perpendicular to the
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magnetic field lines. Along the field lines the Mach number
is always constant for incompressible stationary flows. As

Aoy the gradients in the Alf&n Mach number can be very large,
] because the typical length scale of the flow is smaller than

the length scale of the magnetic field, the occurence of cur-
rent sheets is correlated with the appearance of vortex sheets.

K Such configurations can be closely connected to local break-
)

0.5

downs of the frozen-in-flux theorem, or shortly to magnetic
reconnectionEyink and Aluie 2006. Magnetic reconnec-
tion in turn plays a major role in eruptive space plasma pro-
cesses like magnetospheric substorms or solar flares.

In principle it is possible to compare our theoretical in-

<t e vestigations on the relation between plasma flows and cur-
x rent sheets with observations, in particular in the magneto-
R sphere where in-situ measurements are available. One pos-
Zz

sibility is using magnetic field and particle data from the
CLUSTER-mission, which are carried out simultaneously
with four spacecraft. Such multi-spacecraft measurements
(with distances between the spacecraft in the range of about
50-10 000 km) of the magnetic field allow also the estima-
tion of electric currents. By taking moments of the particle
data it is possible to compute plasma quantities like density,
pressure and the plasma flow velocity. These combined mea-
surements allow at least to estimate gradients in the plasma
flow and the thickness of current sheets. A limitation is that
structures smaller than the distance of the Cluster-spacecraft
cannot be spatially resolved, which implies that flow gradi-
ents could be steeper and the current sheets thinner as com-
puted from the measurements. A comparison of data with
our model, which relates flows and flow gradients to current
sheets, will allow to investigate how consistent different ar-
eas in the magnetosphere can be described under the assump-
tion of stationary incompressible MHD.
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