Ann. Geophys., 28, 1478481, 2010 ~ "*
www.ann-geophys.net/28/1475/2010/ G Ann_ales
doi:10.5194/angeo-28-1475-2010 Geophyswae
© Author(s) 2010. CC Attribution 3.0 License. -

Turbulence for different background conditions using fuzzy logic
and clustering

K. Satheesan and S. Kirkwood
Swedish Institute of Space Physics, Kiruna, Sweden

Received: 24 April 2010 — Revised: 16 July 2010 — Accepted: 19 July 2010 — Published: 3 August 2010

Abstract. Wind and turbulence estimated from MST radar MST radar is a useful tool for estimating turbulence. Ver-
observations in Kiruna, in Arctic Sweden are used to charactical eddy diffusivity (K;) is commonly used as a measure
terize turbulence in the free troposphere using data clusteref turbulence. There are various methods to estimate tur-
ing and fuzzy logic. The root mean square velocity,, a bulence using MST radar. Some commonly used methods
diagnostic of turbulence is clustered in terms of hourly wind are the the power method, doppler spectral width method,
speed, direction, vertical wind speed, and altitude of the radaand variance method. The assumptions involved and the
observations, which are the predictors. The predictors arestrengths and weaknesses of various methods are explained
graded over an interval of zero to one through an input mem-elsewhere \ilson, 2004 Satheesan and Krishna Murthy
bership function. Subtractive data clustering has been ap2002 2004. Turbulence in the atmosphere is affected by
plied to classifyvica depending on its homogeneity. Fuzzy the background conditions. For example, generation of tur-
rules are applied to the clustered dataset to establish a reldulence in the boundary layer is strongly influenced by the
tionship between predictors and the predictant. The accuracwind direction due to boundary layer heterogenelifp,

of the predicted turbulence shows that this method gives ver2007). Nastrom and Eato2005 found that there is sig-
good prediction of turbulence in the troposphere. Using thisnificant correlation between turbulent parameters and wind
method, the behaviour of., for different wind conditions at  speed whileKirkwood et al. (2010 have shown that turbu-
different altitudes is studied. lence in the free troposphere can be caused by the interplay
of synoptic wind shear and mountain waves. Long records
s'of radar observations can be used to study the climatology
of turbulence and its relation to the background wind con-
ditions. In the present work, using a nonlinear technique,
turbulence observed by radar is clustered for different back-
i ground conditions. Non linear system identification meth-
1 Introduction ods are used in many geophysical probleBasy et al.

Turbulence in the atmosphere is a phenomena affectin th2005ab). The nonlinear method used in this study is based
urb nthe a P ISap N9 K, the combination of fuzzy logic and data clustering tech-
transport and diffusion of trace gases. It also affects the avia-

tion safety. Modelling and prediction of turbulence is a chal niques. The goal of clustering is to determine the intrinsic
) s X o _grouping in a set of unlabeled data. Fuzzy logic is one of
lenge to the scientific community. This is due to the factg ping y 109

. o the major approaches towards nonlinear system identification
that turbulence cannot be measured directly and it is usually jorapp y

not possible to link occurrence of turbulence to any visible and has been applied successfully in the areas of communi-.
herrw)omena Moreover. the theorv and phvsical me)éhanismcation' control systems, signal processing, chemical process
P ' ' y pny %)ntrol, biological processes, and atmospheric parameter re-

that produce turbulence in the atmosphere are not understoq fevals Center and Vermal998 Sugeno 1985 Ajil et al

well. 2010. In the fuzzy based method, data clustering is applied
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to classify the predictants depending on their homogeneity. O
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Fig. 1. Location of the MST radar at ESRANGE is marked by a

dark circle. The colour shading show the height above mean se&fca=

level.

datasets (predictant). The predictor values are graded ov
an interval of zero to one through fuzzy membership func-
tions, as a prelude for a fuzzy based approach.

2 Data used

Wind and turbulence observed by ESRAD (ESrange RADar)
are used in the present study. ESRAD is a VHF radar Witthgo.l

an operating frequency of 52 MHz located at ESRANGE
(67°53' N, 21°06 E) in northern Sweden near Kiruna. The
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sponding to Signal-to-Noise Ratio (SNR) greater than —2 dB
being selected. Note that we used only the vertical wind
speed, i.e., magnitude of vertical velocity. The correlation
coefficient R) between the observed and the predicigd
improved by~10% when vertical wind speed is considered
instead of vertical velocity. Further, only wind speed in the
range 4-42 m/s and vertical wind speed higher than 0.1 m/s
are considered. When the data with vertical velocity less than
0.1 were also used® between the observed and predicted
vica Was deteriorated by20% compared to when they were
not used. The histogram of all the data used are displayed in
Fig. 2. There is less data available at the higher altitudes as
the SNR becomes very low in dry, neutrally stable air masses
which are common in the upper troposphere (see Ram.

and Kirkwood 2005.

3 Method

3.1 Estimation of turbulence

The turbulent root mean square (rms) velocity), usually
referred to as FCA turbulent velocity, is estimated from the
radar using the equation

/2102

4nTos

1)

whereTy s is FCA pattern life time, the corrected fading time
in the reference frame of the mean background wind. The

epfattern life time provides the means for estimating turbulent

velocities Holdsworth et al.2001). The advantage of us-
ing To5 for turbulent studies over traditional spectral width
methods is that the effects of horizontal winds on spectral
width (due to finite beam width) are removed. From, Kz

is estimated using the the relation,

2
ca

N
whereN is the Brunt-\aisala frequency. The vertical profile

i

()

peak transmitted power of ESRAD is 72 kW. The antenna ar-yf temperature is required to calcula¥e This information is
ray is made up of 284 five-element yagis, providing a beamnqt generally available and therefore we uggas a measure

width (two-way half-power-width) of about°5 The atmo-

of turbulence. We use horizontal wind speéd),(wind di-

spheric parameters are retrieved from the returned signglection ¢), magnitude of vertical velocityuf) obtained from
from 6 spaced antenna receivers using full correlation analihe radar, and altitudez) of the observations as the predic-

ysis (FCA) Briggs 1984 Holdsworth and Reid1995. A
complete description of the radar system is givenQhyl-

tants andiic as the predictor. Note that the vertical velocity
at this site is primarily an indicator of mountain-wave activity

son et al(1999. (Note that the antenna array was extended kirkwood et al, 2010.
in 2004 to twice the original area.) The radar operates con-

tinuously cycling between modes optimized for troposphere3.2  Fuzzy logic

and mesosphere. For the present study, hourly averaged data

of wind and turbulence from ESRAD for for the year 2007

Fuzzy set theoryZ4adeh 1969 was born out of the real-

between the altitudes 2 and 12 kms were used. In the tropoization that the world that surrounds us is defined by non-
sphere and lower stratosphere, the vertical resolution of thelistinct boundaries. It is a mathematical tool to deal with

data is about 150 m and the time resolution-@min. The

linguistic variables (i.e., the concept described in natural lan-

data are first subjected to a quality check with data corre-guage). A fuzzy set is defined as a set without a crisp, clearly
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Fig. 2. Histograms ofa) wind speed(b) wind direction,(c) vertical wind speed, an@) altitude of observations of data used.

defined boundary and is an extension of the classical sets. [The complement of fuzzy set A is defined as
X is a universal set and its elements are denoted, lgen

fuzzy set A inX is defined as the set of ordered pairs. pa(x)=1—pa(x) (6)

Fuzzy sets and fuzzy operators are the basic building
blocks of fuzzy logic. The IF-THEN rule statements are used
) ) ] to formulate the conditional statements that comprise fuzzy
where uua (x) is called the membership function and maps |o4ic. Linguistic rules describing a system consist of two
universal sekK to the real interval [0 1]. The closgfa(x) IS narts: an antecedent part (between the IF and THEN) and a
to 1, the more: belongs to A. We may, therefore, vigwa (x)  consequent part (following THEN). The approach to a prob-
as the degree of membership .ofin A. It must be noted e ysing fuzzy logic is facilitated through a fuzzy inference
that the membership function is different from the Proba- g stem (FIS). The first step in FIS is to take the inputs and
bility measure. Fuzzy membership function is based on thejetermine the degree to which they belong to each of the ap-
set theory, while the probability measure is based on meapgpriate fuzzy sets via membership functions. The input
sure theory. Fuzzy sets are based on vague definitions qf 4\vays a crisp numerical value limited to the universe of
sets, not randomness. Fuzzy logic is specifically designed t@jiscourse of the input variable. These crisp values must be
deal with imprecision of facts (fuzzy logic statements), whilé {ansformed into linguistic terms (fuzzy sets). This is called
probability deals with chances of that happening still consid-f,z5jfication. The fuzzification layer in FIS generates mem-
ering_the_result to_ be precise. The set-theoretic operationgership values for all the inputs through membership func-
of union, intersection and complement for fuzzy sets are desjons which lie in the premise part. The fuzzy logic controller
fined through membership functions. Let A and B denotej, k|5 combines all the membership values in the premise
the pair of fuzzy sets iX with membership functionsa(x)  part to get a weight called “firing strength”. The next step is
andpg(x) respectively. The membership functignue(x)  the generation of qualified consequents for each rule depend-
of union AUB and the membership functiqnans (x) of in- ing on the firing strength. In our casg ¢, w, andZ are the
tersection AB are defined as inputs andvica is the output. The inputs are classified based
on the its dynamic range (low, medium and high). IF-THEN
rules are used to combine these inputs for mapping with the
output. For example, we illustrate a simple case of only two

A={x,ua(x)|x eX} (3)

mauB () = max(ua (x), ug(x)) 4)
uanB(x) =min(ua (x), up(x)) )

www.ann-geophys.net/28/1475/2010/ Ann. Geophys., 28, 1W@&L-2010
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inputs with theU and¢ as the inputs andics as the output.

Further, assume that we have two fuzzy IF-THEN rules off

Takagi and Sugen@.985 type.

Rulel: ifU is C1 and¢ is D1, thenvica = p1U +q1¢ +r1.
Rule2: ifU is C2 and¢ is Dy, thenvica = p2U +q2¢ + 1.
whereC; andD; are the linguistic labels (low, medium, high

etc.) associated with the inputsand¢ coded in the form of

Kirkwood: Turbulence under different background conditions

on the boundaries between several classes are not forced to
ully belong to one of the classes, but rather are assigned
membership degrees between 0 and 1 indicating their par-
tial membership. FCM allow the objects to belong to several
clusters simultaneously, with different degrees of member-
ship.

FCM is a supervised algorithm because a priori knowl-

membership functions through fuzzification. The parametersedge of the number of clusters is required. If the number is

pi» qi, andr; will be referred to as consequent parameters.

not known beforehand, it is necessary to apply unsupervised

The consequents (outputs) are aggregated to produce a crisiigorithms. Subtractive clustering belongs to the category of

output. This step is called defuzzification.
3.3 Data clustering

Data clustering by definition is grouping of data into similar
categories and it is one of the major approaches to unsupe
vised learning. In an unsupervised learning algorithm pro-
vided with just data points and no labels, the task is to find
out a suitable representation of the underlying distribution

of the data. Many data clustering algorithms are available.

The hard-c means algorithm (HCM) tries to locate clusters

unsupervised algorithms and is based on the density of data
points in the feature spacdang et al.1997). The aim is
to find regions in the feature space with a high density of
data points. The point with highest number of neighbors is
selected as the center for a cluster. The data points within
the selected cluster are removed (subtracted) to ensure its ab-
sence in the next cluster. The algorithm looks for a new point
with the highest number of neighbors. This is continued until
all the data points are evaluated.

The modeling is realized through data clustering and fuzzy
logic. As a first step, a subtractive clustering algorithm, as

in multid_imgnsional feature space. The objective is to aSSigrhescribed above, is applied to cluster the predictaatinto
each point in the feature space to a particular cluster. Thjitterent clusters. Each cluster contains values of almost sim-

HCM algorithm tries to minimize the objective functign

j=;ji DS ||uk—ci||2)

C

i=1 (k,ukec,-
whereu; € R™, the set of real numbers having dimension
k is the total number of data points ands the total number
of clusters. The partitioned clusters are typically defined by
a binary characteristic matrM, called the membership ma-
trix where eachn; is 1 if kth data point; belongs to clus-
teri and O otherwise. The fuzzified c-means algorittdang
et al, 1997 allows each data point to belong to a cluster to a
degree specified by a membership grade, and thus each poi
may belong to several clusters. The fuzzy c-mean (FCM) i
different from HCM, mainly because it employs fuzzy parti-
tioning, where each point can belong to several clusters wit
varying degree of membership. To incorporate fuzzy parti-
tioning the membership function matti# is allowed to have
all values between 0 and 1. The objective functjomhich is
to be minimized is the generalization of E@) énd is given

by

c K
j= sz?kdzzk

i=1k=1

@)

8)

wherem;; is a membership between 0 and-1is the center

of the fuzzy clustet, d;x =|| ux —c; || is the Euclidean dis-
tance betweerth cluster point andth data point,K is the
total number of data points angle (0, co) is a weighting ex-
ponent. FCM starts with an initial guess for the cluster cen-

S

ilar magnitude ofusca. More precisely it categorizes the en-
tire vicq into different clusters depending on the characteris-
tic variability of vica which are observed at different altitude
regions and for different wind conditions. The clustering al-
gorithm takes into account this variability. The number of
clusters generated using subtractive clustering depends on
the search radius which is the Euclidean distance between
the cluster center and the data points. If the search radius is
small we will have a larger number of clusters. We set 0.2 as
the search radius for clustering. Decreasing the radius may
improve the mapping for the training set, but it may not yield
gpod results for the validation using independent data sets.
This problem is due to over fitting. So, there must be a trade
off between search radius and the desired model accuracy.

hThis radius is determined depending on the characteristics of

the variability of the dataset under consideration.

In the present case, the premise part of the fuzzy rule in-
cludesU, ¢, w, andZ whereas the consequent part has the
clusteredvica. The advantage of data clustering prior to the
application of fuzzy rules is that rules can be applied for dif-
ferent altitude regions and for different wind conditions sepa-
rately. As explained earlier, input values are graded between
the values 0 and 1 and are coded in the form of fuzzy a mem-
bership function. In the present algorithm we have used bell
shaped membership functions to represent the input. Takagi
and Sugeno’'sTakagi and Sugend 985 IF-THEN rules are
used, the output of each rule being a linear combination of
input variables plus a constant term. The final output is the
weighted average of each rule’s output. The weight is the

ter location and iteratively updates the cluster center and théiring strength which is obtained by combining the member-

membership grades by minimizing)( In many situations,
FCM is more natural than hard clustering. In FCM, objects

Ann. Geophys., 28, 1473481, 2010

ship values on the premise part of each rule through a specific
T-norm operator, usually multiplication or minimum.
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4 Results L L 1 1 1 1 1 L L 1 1 L

The hourly averaged data contains 42 781 points for the al- 15 1 - SRR St
titude range considered. Only valuesfin the range 4— - : A
42 m/s andw in the range 0.1-3.5m/s were used. Values of :
w<0.1m/s are also important, b& between the observed
and predictedica was improved by about 20% when they :
were not used. So we are not considering those cases. Wi °° 4
used data with values of greater than 1.0 m/s also for train- 00 5 — 0 T
. . . . 0.0 0.3 06 09 1.2 1.5 1.8 0.0 0.3 0.6 0.9 1.2 15 1.8
ing, but the number of data points with such values is small Observed Obssived
and therefore we do not discuss these cases. In order to have
representation from all the ranges in the data, every fifth datdrig. 3. RMS turbulence observed and predicted for the training
point was selected for training to generate the fuzzy memberdata(left panel) and validation data set (right panel).
ship functions. This will help in representing all the variabil-
ities of the data within the whole dynamic range. There were
8557 data points used for the training which is 20% of theabove 30 m/s, the turbulence is stronger for wind from all
total data points. The remaining data are used for the validirections. Similar behaviour is observed for all #heval-
dation. Fuzzy rules were generated using the training datasetes, with the turbulence becoming stronger for higher values.
as explained in the previous section. Using a search radiuét 2 km altitude, the effect of complex surface heterogene-
of 0.2 there were 413 fuzzy rules. These rules represent thidy may be generating turbulence for wind coming from any
data for the altitude range 2—12 km, and fori@|l¢, andw. side. The Scandinavian mountains are situated on the west-
Figure3a shows the scatter plot of thg, for the training  ern side of the radar location as seen from HigThis leads
data. TheRr for training data is 0.742 with a root mean square often to wave generation. Turbulence is generally expected
error (RMSE) of 0.1 and a bias close to 0. Fig@keshows  associated with these wavdsitkwood et al, 2010. At the
the same for the validation data. It hasRuof 0.695, RMSE  nextlevel at 4 km (second row, Fid), turbulence is stronger
of 0.012 with no bias. In fact, the data shows a small posi-for wind speed higher tharv30 m/s and wind direction be-
tive bias for low values and a small negative bias for highertween 200 and 360 This strong turbulence is observed for
values. There is not much variation fBrwith altitude in the  wider range of wind conditions with increased valuesvwof
lower and middle troposphere. BRtis high (~0.8) near the At 6 km (Fig. 4, third row), the turbulence is low when
tropopause for both training and validation data sets. The valt/ is below 20 m/s. Same pattern is seen foralvith vica
idation with independent data sets, with very ggddhows increasing and spreading to more wind conditionsvais-
that the turbulence in the region is represented very well bycreases. An important observation is that, compared to lower
the fuzzy membership functions. We use these to study turaltitudes, lower turbulence is observed for wind direction 90—
bulence under different conditions of wind in different alti- 180> and wind speed25m/s . Turbulence is always high
tude ranges. when the wind direction is from north and west sides of the
The training data set consisted@fin the range 4-42m/s, radar and speed is above 25m/s. Figdréourth row, dis-
direction in the range 5-385w in the range 0.1-1.0m/s, playsvicz; at 8 km. This shows the same structure as that at
andZ in the range 2-12 km. We generatagh for the same 6 km. But the transition from low to higfcz is sharpervica
ranges using the fuzzy membership functions and the resulti the regions from 8 to 12 km shown in the Figyshows
of the outputs are discussed in this section. We use the notaguite similar behaviour. Strong turbulence is observed for
tion vrca for the generatedsc, hereinafter. wind speed above 30 m/s. An interesting point observed here
Figure4 shows thevre; values generated using the fuzzy is that the strong turbulence observed for wind from the north
membership function. The columns in the figure show theis only from the western side (270-3§&nd not from the
Vica for different w ranging from 0.1 to 0.9 m/s with steps eastern side (0-99 showing total absence of periodicity in
of 0.2m/s. It can be observed that turbulence is low foraccording to wind directions (for the 33030 This may
low vertical and horizontal wind conditions. Further, weak look like an artefact. But, most of the time, the wind direc-
turbulence is observed for a wide range of horizontal windtion at the radar location is in the range 200-36&6 can be
conditions at the lower altitudes while strong turbulence isseen from Fig2. Fuzzy rules are applied to the clustered
observed at higher altitudes but only for higher wind speedsdata ofvicg. The cyclic nature of wind direction is not con-
and for wind from north and west directions. Turbulence is sidered in the data which may cause to have clusters of dif-
comparatively weaker for the rest of the wind speeds and diferent dynamic ranges in the data ranges (33023&0d (0—
rections at higher altitudes. The first row in Figshows the  30°). The high turbulence observed for the range (270<860
Vfca at 2 km forw from 0.1 to 0.9 m/svic, is low with max- ~ may be associated with jet streams in the upper troposphere.
imum values less than 0.7;c increases gradually with the  Strong turbulence is usually observed associated with jet
wind speed from 15m/s upwards. For higher wind speedstreams which are characterized by wind speed in excess

Predicted
°
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T
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Fig. 4. The vic4 for different wind conditions. Each column representsiifag for w ranging from 0.1 to 0.9 with steps of 0.2, while each
row is for the altitude regions in the range 2—12 km with steps of 2 km. X-axis is the horizontal wind speed and Y-axis, the wind direction.

of 30m/s. Strong vertical shears of horizontal wind asso-5 Conclusions

ciated with jet streams give rise to Kelvin-Helmholtz insta-

bilities(KHI) which are important sources for the generation In the present study, radar observed turbulence has been stud-
of turbulence. Strong turbulence is observed bordering jet€d for different background conditions using fuzzy cluster-
streams over both tropicaR@o et al.200Z; Das et al.2010 ing. The clustering is done for different horizontal wind
and high latitudeRao and Kirkwood2005 sites whilePe- ~ speed, direction, magnitude of vertical velocity, and the
pler et al.(1998 found that there is widespread turbulence height. The valuessc, are clustered for different values of
throughout the jet. Turbulence generated in the lower tropothe above parameters. The clustering is then checked with
sphere is either due to static instability or dynamic instability. independent data sets. It is observed that this technique re-
Breaking of gravity waves generated due to mountains is als@®roduces thesca very well with anR of 0.695. Using this

a source of turbulence in the atmosphere. Generally, the turmethod, turbulence in the troposphere is studied. FCA tur-
bulence observed in the lower troposphere will be due to abulence velocities were characterized for wind Speed in the
combination of some or all of these processes. On the othef@nge of 4 to 42m/sy in the range of 0.1 to 1.0 m/s for all
hand, turbulence in the upper troposphere and lower stratodirections, in the altitude regions 2-12km. The following
sphere is generally associated with wind shear created KHIPOInts were observed:

The differing characteristics of turbulence for different back- 1. Strong turbulence is observed when the wind direction

ground_ observat|or'15, obtq|ned here with the help of fuzzy is from north and west and the horizontal wind speed is
clustering are consistent with these mechanisms. high

2. Turbulence increases with the magnitude of vertical ve-
locity.
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