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Abstract. We have developed a new high resolution two-
dimensional model of the high latitude ionosphere in which
nonlinear advection terms are closely coupled with the elec-
trodynamics. The model provides a self-consistent descrip-
tion of the ionospheric feedback on the electrodynamical per-
turbations produced by auroral arc-related particle precipita-
tion in regions with strong ambient electric fields. We find in
particular that a heretofore neglected ion Pedersen advection
term can introduce considerable changes in the electron den-
sity profile, the current density distribution, the conductivi-
ties and the electron temperatures. We find that the convec-
tive effects can carry the ionisation more than 150 km outside
the precipitation region in a few minutes, with attendant large
changes in the current distribution and E-region densities that
become enhanced outside the region of particle precipitation.
The production of a tongue of ionisation that slowly decays
outside the auroral boundaries contrasts with the sharp geo-
metric cut-off and associated stronger current densities found
in previous studies.

Keywords. Ionosphere (Auroral ionosphere; Electric fields
and currents; Modeling and forecasting)

1 Introduction

A numerical investigation has been made into the dynamics
of mesoscale auroral structures, using a new numerical tool
that has been developed to study transport and electrodynam-
ics in the upper atmosphere. The ultimate goal of the model
is to provide a high resolution self-consistent description of
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the coupling between the thermosphere and the ionosphere
in the auroral region. The model, for this reason, also in-
cludes a neutral atmospheric component. However, for the
study at hand, neutral atmospheric feedback effects need not
be considered: for the time scale of a few minutes which is
of interest for the present publication, the neutral response
is simply minimal. We therefore leave the description of the
neutral part of our code to a future publication.

Our model uses a two-dimensional (2-D) domain in the
meridional plane, and assumes a dipole magnetic field. The
model also couples the electric potential to ensuing changes
in the ionospheric conductivity through temperature and den-
sity changes. The 2-D grid allows for latitudinal resolutions
as small as 400 m in size. This provides a much more detailed
spatial resolution than what a 3-D or global model can. For
example, the TIME-GCM model (Roble and Ridley, 1994)
has a latitudinal resolution of 5◦ (≈570 km). The CTIM
(Fuller-Rowell et al., 1996) and the CTIPE (Fuller-Rowell
et al., 2002), which is based on the CTIM, have a resolution
of 2◦ of latitude (≈230 km). The GITM (Ridley et al., 2006)
has a variable latitudinal resolution, with a minimum of 1.25◦

(≈140 km) in the auroral ovals. Even though these models all
offer self-consistent treatments of the coupled thermosphere
and ionosphere we show here that some important smaller-
scale physics (in time and space) is missing from the large
scale treatment. This being stated, no direct comparison be-
tween the global models and the present study is intended,
given that we are really looking here at the different physics
that takes place on smaller scales.

The use of 2-D models for the study of auroral electrody-
namics is not new. SeeFuller-Rowell(1984, 1985), Chang
and St.-Maurice(1991), St.-Maurice et al.(1996), Noël et al.
(2000, 2005), Zhu et al.(2001) and Russell et al.(2007).
This approach is justified when the auroral arc is an elongated

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


1346 J. D. de Boer et al.: Effects of precipitation on ionospheric dynamics

east-west structure, such that gradients normal to the plane of
the domain (east-west gradients) are unimportant compared
to gradients in the plane (north-south and vertical).

The geometry of our mesh reflects a dipole magnetic field
geometry. Our ionospheric model is thus inherently 2-D,
rather than an array of 1-D models as was done in some of
the earlier work. In the process of developing a more robust
and realistic model that handles nonlinear terms more eas-
ily for an improved geometry, we have been able to uncover
some aspects of the dynamics of auroral arcs which were not
revealed by previous studies. Specifically, the convection of
ions across magnetic field lines (as they carry the Pedersen
currents) and the inclination of the magnetic field from verti-
cal are essential features of the model that introduce impor-
tant differences with earlier results.

The backbone of the physical processes that we discuss
here have been described inNoël et al.(2000). Briefly stated,
when an increase in conductivity is introduced after the onset
of an elongated east-west precipitation event and an ambient
north-south electric field is present, charges accumulate at
the edge of the precipitation region in an attempt to maintain
uniform Pedersen currents. However, the charge accumula-
tion immediately sets up parallel electric fields and strong en-
suing current densities. In that sense, parallel currents arise
from horizontal gradients in the Pedersen conductivity,σP,
in the E-region: the Pedersen current density is proportional
to the product ofσP and the perpendicular component of the
electric field,E⊥, so that wherever a horizontal gradient of
the conductivity is present there must also be a parallel cur-
rent to conserve charge. These parallel currents are carried
almost entirely by electrons, and they are closed within the
magnetospheric dynamo, which is beyond our consideration
here. The parallel currents enjoy a much lower resistance
than the Pedersen currents, so thatE‖ is always much weaker
thanE⊥.

An important element of the physics to be discussed here
is the magnetisation parameter for each ion species,κi , de-
fined as the ratio of the cyclotron frequency to the momen-
tum transfer collision frequency. The Pedersen mobility of
the species can be expressed as

µP,i =
κi

B(1+κ2
i )

, (1)

whereB is the magnetic field strength. The Pedersen mo-
bility is at a maximum value of 1/(2B) at the same altitude
as that at whichκi is equal to unity. Under the conditions
studied here, theµP,i for O+, NO+ and O+

2 all reach that
maximum between 119 and 120 km. At that height and with
the 100 mV/m field chosen for this study, the ions have a
Pedersen-component drift velocity ofvx=900 m/s. The ef-
fects of this drift will be examined in this article.

2 Description of the model

A brief description of the important characteristics of the nu-
merical model is given in this section.

2.1 The computational domain

The model operates within a 2-D domain which is a merid-
ional slice through an east-west oriented arc of precipitation.
The upper and lower boundaries are curves of constant alti-
tude. The latitudinal bounds of the domain can be adjusted,
but are typically centred on 70◦ N. The scenarios presented
used a domain spanning only about 2.5◦ of latitude. The ex-
act boundaries follow magnetic field lines through latitudes
set at the lower boundary.

The earth is assumed to be spherical and the magnetic field
is a centred, non-tilted dipole. Since there is no tilt the model
does not represent any real terrestrial meridian accurately.
However this is not a problem as long as the present model
is to be run for short (less than an hour or so) simulations of
representative auroral activity.

2.2 Structure of the computational grid

The computational nodes are arranged on a discrete number
of magnetic field lines. The spacing between the lines can
be smoothly reduced in an area of interest, as it has been for
some of the results presented here. The default spacing was
set at 1.6 km, but it was reduced to as small as 400 m along
the northern edge of the arc to obtain better resolution.

The population of computational nodes on each field line
is related to the separation between the field lines. At the
bottom of the domain, the vertical spacing is equal to the
spacing between field lines, and it gradually increases, start-
ing at 120 km altitude, to 1.5 times the spacing between field
lines.

The model takes its name from this mesh scheme which
is structured in one direction but not in the other: “Quoit”
stands for Quasi-Unstructured treatment of the Oval’s Iono-
sphere and Thermosphere. Some detail of the mesh connec-
tivity is shown in Fig.1.

The neighbours for each node are determined according
to the Delaunay triangulation (Delaunay, 1934). Some itera-
tions are then performed to smoothen the mesh by allowing
each node to slide incrementally towards the mean position
of its neighbours. Each node is constrained to slide only
along its field line. The triangulation is re-computed after
each iteration.

Spatial gradients of the velocity moments (the bulk trans-
port properties) of the neutral species are determined using
the neighbours of the Delaunay triangulation, while spatial
gradients of the velocity moments of the charged species are
determined in two ways: for the parallel gradients, each in-
terior node has two unique neighbours on the same field line
which can be used for central or forward differences. For
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Fig. 1. Detail of the mesh at the lower boundary. This example
shows a resolution of 600 m along a field line in an area of interest,
gradually coarsening to 1.9 km in the rest of the domain.

Fig. 2. The construction of a virtual neighbour C used to calculate
a perpendicular gradient at the nodex0. A is the nearest real node
to C, and it is always a Delaunay neighbour ofx0. B is the upper or
lower parallel neighbour of A, chosen such that C is interpolated.

the perpendicular gradients, a virtual neighbour is created on
the field line on each side of a node, north and south. The
values of a quantity at a virtual neighbour are computed by
interpolation between the nearest node on that field line and
its upper or lower neighbour. This scheme is illustrated in
Fig. 2.

This interpolation scheme for perpendicular gradients in-
troduces numerical diffusion into computations of perpendic-
ular transport, since forward (upwind) differences are calcu-

Fig. 3. Detail of the alternate mesh used to assess numerical diffu-
sion of perpendicular transport.

lated using interpolation. In order to quantify this numerical
artefact, an alternate discretisation was created in which the
nodes are arranged in a quasi-rectangular array, using dis-
crete values of both the shell valueL and a coordinate or-
thogonal toL. The equations for this dipole coordinate sys-
tem can be found in Sect. 2 ofHuba et al.(2000). Some
detail of the grid is shown in Fig.3.

The first type of mesh (Fig.1) is desirable for several rea-
sons (mostly related to modelling the neutrals) and was used
for the results presented in Sect. 4. Nevertheless, the results
were compared to results obtained with the alternate mesh
(Fig. 3). The differences were small, and they did not affect
the qualitative conclusions.

2.3 Ionospheric species and their moments

Six ion species (H+, N+, O+, N+

2 , NO+ and O+

2 ) are treated
with a subset of the 8-moment approximation: the standard
5-moment set plus the parallel component of heat flow. The
parallel heat flow is calculated with the Fourier approxima-
tion. Each of the ion species has a number density and a
unique velocity vector, but the ions are assumed to have a
common temperature and heat flow, which is adequate for
E-region studies.

Electrons are treated with a similar subset of the 8-moment
approximation. However, in the case of the electrons the par-
allel heat flow is modelled in a time-dependent manner in-
cluding the thermo-electric term, rather than via the Fourier
law. Charge quasi-neutrality is imposed on the electron num-
ber density.

The partial differential equations governing the transport
of the ions and electrons may be found inBlelly and Schunk
(1993) andBlelly et al. (1996). These papers also give the
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closed expressions for parallel electron drift and the parallel
polarisation field associated with quasi-neutrality.

The model also uses the Navier-Stokes (N-S) approxima-
tion for the neutral species. The number densities of eight
neutral species (H, He, N, O, N2, NO, O2 and Ar) are mod-
elled. The neutral species are assumed to have a common
drift velocity vn and temperatureTn. The transport equations
for the neutral moments were obtained fromPrölss(2004).

2.4 Coupling and source terms

The moment equations for the various species, both charged
and neutral, are coupled through collision frequencies. Ex-
pressions for the ion-neutral, electron-neutral and electron-
ion momentum transfer collision frequencies were obtained
from Schunk and Nagy(1980, 2000). Besides the homoge-
neous transport terms and the terms describing transfers of
momentum and energy between species through elastic col-
lisions, the following source terms or coupling effects were
included when the rates of change of the modelled moments
were computed:

1. Continuity equations:

– ionisation, dissociation, excitation and electron
heating due to precipitating energetic electrons

– ionisation due to solar EUV and night-time EUV

– ion chemistry, including recombination

2. Energy equations:

– Joule heating including wave heating (Farley-
Buneman instability)

– inelastic electron-neutral energy transfer

– the thermo-electric effect

The chemistry model uses the reaction rates for O+ given by
St.-Maurice and Laneville(1998) and the NO+ dissociative
recombination rate given byNoël et al.(2000). The quantita-
tive results depend to some degree on these particular expres-
sions, since they are very important reactions for the condi-
tions studied. Beside those rates, the model also includes a
number of other reaction rates obtained fromRees(1989),
Blelly et al. (1996), Swaminathan et al.(1998), Huba et al.
(2000) andPrölss(2004). But the precise values of those rate
coefficients are not expected to be very important for repro-
ducing or testing the results presented here.

The night-time photoionisation model was adopted from
the one described byHuba et al.(2000) and the algorithms
in their Sami2 release 0.98. This parameterisation describes
re-emission from the geocorona and EUV in starlight. A day-
time solar EUV ionisation model was also adopted from the
same sources, but for this study it was switched off.

The expressions for the Farley-Buneman instability
(threshold field and electron heating) are due toDimant and
Milikh (2003). The expressions developed byRobinson

(1986) which are quoted byNoël et al.(2005) were also used
for comparison, but were found to give results fairly similar
to those ofDimant and Milikh. Electron cooling rates due to
inelastic collisions with neutrals were obtained fromSchunk
and Nagy(2000).

2.5 Computing the electric potential

The cyclotron and collision frequencies of the charge carriers
correspond to time scales that are very much shorter than any
of the dynamics under study. It is true that the current density
in aurorae can vary significantly over periods of a second or
less when the effects of Alfv́en waves are considered, asZhu
et al.(2001) have done. However on time scales longer than
about one second, obtaining the current density is essentially
a D.C. problem since the time-rate-of-change of the magnetic
and electric fields becomes negligible. A polarisation field
arising from space charge density is implicit in the electric
field perturbation obtained as described below, but the im-
balance betweenne and

∑
ni is negligible when calculating

the velocity moments of the electron gas. The magnetic field
perturbation arising from the current density (e.g. from Hall
currents) may also be ignored, to a first approximation, as a
correction to the geomagnetic field itself.

Given these reasonable approximations, the current den-
sity distribution may be computed at any instant from the
2-D network of Birkeland and Pedersen conductivities. Un-
der this assumption of D.C. currents, the electric potential
field 8 is constrained by the charge-conservation condition
∇ ·J = 0, which may be expanded to

σP
∂28

∂x2
+σB

∂28

∂z2
= E⊥

∂σP

∂x
+E‖

∂σB

∂z
− ρ̇deg, (2)

whereρ̇deg is the rate of charge deposition from degraded pri-
mary electrons; this is a very small term, but we include it for
consistency. This has a form similar to the Poisson equation,
except for the different length scales between the perpendic-
ular and parallel directions implied by the markedly different
values of Pedersen and Birkeland conductivity,σP andσB.
This form suggests that the electric potential can be solved
for by successive numerical relaxation.

To obtain a numerical expression corresponding to∇ ·J =

0, we consider a quasi-rectangular cell around each node,
aligned with the field lines. The four neighbours are the same
as those used for calculating spatial gradients of the charged
species’ moments: one each above and below on the same
field line, and an interpolated neighbour on each neighbour-
ing field line. We may write a first-order expression for the
current flowing into the cell through each of the four sides:

Inet= Aρ̇deg+

4∑
i=1

Ci(8i −8), (3)

where the conductancesCi are the product of eitherσP or σB,
as appropriate, and the width of the cell face, divided by the
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neighbour’s distance.A is the area of the cell. SettingInet
equal to zero and re-arranging for8 we get

8 =
Aρ̇deg+

∑4
i=1Ci8i∑4

i=1Ci

. (4)

Obviously the net current will be zero for some value of
8 which is an appropriately-weighted average of the neigh-
bours’ potentials, offset very slightly by the degraded precip-
itating charges.

Before each time step, the conductivities are computed.
Then a number of iterations are performed to relax each
node’s potential to a value which contributes to a consistent
field for the whole domain. Those values of potential are
also used as the initial values for the next time step. The
potentials of the upper, northern and southern edges are set
to Dirichlet conditions which correspond to a perpendicular
field strength of 100 mV/m. The lower boundary has a Neu-
mann (∂8/∂z = 0, or J‖ = 0) boundary condition.E‖ and
E⊥ are computed from the potential field using first-order
central differences.

As mentioned, the upper boundary has a Dirichlet con-
dition on 8, although this is not 100% appropriate. Even
though the parallel conductivityσB is very high above the E-
region, some resistance to parallel currents remains above the
upper boundary, wherever the boundary is set. However we
have made runs with the upper boundary set at both 300 and
600 km, and we find no significant change to the E-region
currents.

2.6 Coordinates

For the computation of mobility and conductivity, our code
uses a coordinate system whose x-, y- and z-axes are defined
by B, E⊥ andB ×E, respectively. Thus ambipolar drift is
inherently in the sense of negativez while Hall current is in
the positive z-direction,in this coordinate system. But the
physical orientation of this system varies with the direction
of E⊥, and therefore a geographically-tied coordinate system
is required in which to representE itself.

The components of the vectorE are stored in a sys-
tem whose x-component is parallel toB (quasi-downward),
whose y-coordinate is perpendicular toB and in the plane
of the domain (chosen as quasi-northward), and whose z-
component is defined to make a right-handed system (east-
ward). For the results presented in this paper,E always lies
in the meridional plane. Vector quantities related to charged
constituents (vi , ve andJ ) are also stored in this second sys-
tem.

In Sect.2.5above, and in the discussions below, however,
the coordinatesx, y andz are used in a sense which is typi-
cal for 2-D studies of the auroral oval, namelyx to the right
(southward),y into the page (eastward) andz vertical. Since
we are treating a dipole field with approximately 80◦ inclina-
tion in the area of interest, there is a potential for ambiguity
in this definition, and indeed byx we really mean the sense

Fig. 4. The energy spectrum of the precipitating electrons used for
the runs shown. Reproduced fromNoël et al.(2000).

perpendicular toB (quasi-south), and by positivez we mean
anti-parallel to theB field (quasi-upward). (The reader need
only keep this last definition ofx andz in mind to follow all
of the discussion.)

Therefore upward current is always shown as positive. But
since southward has become the positive sense forE, we are
left with westward Hall current as positive. In any event, fig-
ure captions always include the senses of vector components
drawn as scalar values.

Lastly, let us note that the words “vertical” and “horizon-
tal” are used only in respect to the effective geopotential, and
not the magnetic field topology.

3 Conditions studied

The conditions under investigation in this paper were largely
the same as those studied byNoël et al. (2000, 2005). A
discrete arc of energetic electron precipitation was imposed
at the top boundary, centred on a shell whose footpoint is
70.0◦ latitude. The expression for the latitudinal pattern is
the same as Eq. (35) inNoël et al.(2000) and is

f (x) =
arctan[a(x +1)]−arctan[a(x −1)]

2 arctan(a1)
, (5)

wherex is the distance north or south of the centre of the
arc. For the results presented here, the half-width was set at
1 = 10 km, and the sharpness of the cut-off was set ata =

5 km−1.
The spectral flux of the energetic electrons was the same

as that used byNoël et al.(2000, 2005). It is shown in Fig.4,
and had an isotropic pitch-angle distribution. The precipita-
tion is “switched on” att = 0 and left on.
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Table 1. A key to the scenarios and cases for which results are
presented. All scenarios used a 100 mV/m field and the same pre-
cipitation pattern and spectrum.

Scenario E field B field Case #

A southwards dipole-model
inclination

1: no Pedersen
convection
2: with Pedersen
convection

B northwards dipole-model
inclination

C southwards vertical

The modelled height range covers from 90 to 300 km for
the results presented in this paper. The meridional bound-
aries follow magnetic field lines through 67.9◦ and 70.5◦ N
at the lower boundary for the scenarios with a southwardsE,
and through 69.3◦ and 72.0◦ N for the scenario with north-
wardsE, the domain being biased in each case towards the
direction of Pedersen advection out of the arc.

The neutral number densities (except for NO; see below)
and the temperature are initialised using NRLMSISE-00 (Pi-
cone et al., 2002), specifically Beta Release 2.0 in C. The
neutral winds were initialised using HWM-93 (Hedin et al.,
1996) which was ported into C for this purpose. The so-
lar conditions passed to both packages were F10.7A=81,
F10.7=100, and a daily AP index of 4. The local time was set
at 6 a.m. on 1 January. This choice of conditions for the neu-
tral parameters is arbitrary, and it does not situate the iono-
spheric study at any particular value of MLT.

The solar zenith angle used in the night-time photoioni-
sation model was set to a constant 100◦ for this study. Al-
though the region under study would not actually be out of
direct sunlight until the sun were more than about 108◦ from
the zenith, the fluxes from the night-time EUV model yielded
initial electron densities comparable to those used in the ear-
lier study, and they were used as a proxy for all EUV and soft
precipitation fluxes. The ionosphere was initialised by apply-
ing the night-time EUV model fluxes to the thermosphere for
20 min without precipitation. A column of this ionosphere
was parameterised to use as a default starting point. For each
of the three scenarios presented in the results, this param-
eterisation was then used to initialise a further 20 min run
with night-time EUV and the particular electric field applied,
but still no precipitation. A column with all of the species
not in MSIS (ions, electrons and NO) was saved and used
to initialise the runs presented. Therefore there is a “back-
ground” night-time ionosphere outside of the arc, whose E-
region profile is in steady state until precipitation ionisation
intrudes due to advection. The initial electron density pro-
files are shown in Fig.16.

3.1 Cases studied

In Table1 we present the three scenarios that were studied.
The first two use a dipole magnetic field and therefore have
a B field inclination of about 80◦ in the auroral zone. Thus
scenario A with southward electric field also has a downward
component ofE. Similarly, scenario B with a northward
electric field has an upwardly tiltedE. Scenario A could
be representative of either 06:00 MLT with a dawn-to-dusk
oriented convection field, or 18:00 MLT with the opposite
magnetospheric convection; scenario B represents the com-
plementary possibilities. Scenario C uses a strictly vertical
B field, which permits us to separate the effects of advection
and divergence.

Table1 also shows the two distinctcasesfor which results
are presented for scenario A. In case 1 we have removed the
Pedersen drift term in order to compare the results with pre-
vious work. Case 2, as well as scenarios B and C, include the
effect of Pedersen drift.

4 Results

4.1 Effect of Pedersen drift att=30 s (scenario A)

The most significant feature obtained with this model is in the
E-region ionisation. We observe that it is spread out away
from the arc of precipitation, in the same direction as the
applied electric field, rather than being concentrated within
the arc where it is produced. This means that the gradients of
σP which cause parallel currents become steady ramps rather
than sharp steps, in contrast with earlier results.

To demonstrate the importance of the convection of ioni-
sation on the current distribution, the results of two runs are
shown in Figs.5 through7. The only difference between
these two cases is that in the left-hand frame of each fig-
ure (case 1) the physical effect of ion convection across field
lines has been neglected.

Figure5 shows the electron density after 30 s for the two
different runs. The results in the left-hand panel are compara-
ble to those obtained byNoël et al.(2005), with the electron
density found to be fairly uniform throughout the arc. The re-
sults in the right-hand panel are those obtained by including
the effect of ion advection. The production rate of electrons
(and ions) is essentially identical to the first case. However,
the ions are subjected to an equatorward (and slightly down-
wards) drift due to their Pedersen mobility in the background
southward pointing electric field. This mobility reaches a
peak at about 120 km altitude. This effect breaks the north-
south symmetry of the results obtained in earlier studies.

There is also an accumulation of ionisation below the high-
mobility layer due to the inclination of the magnetic field
lines away from vertical. As the Pedersen drift carries the
ions to lower altitudes, the drift slows down due to more
frequent collisions with neutrals, which have a scale height
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Fig. 5. Electron density after 30 s. Case 1 (left) suppresses ion advection. Case 2 (right) shows the results with the correct transport terms
included.

of about 7 km. The net effect is to reduce the ion density
above 120 km, most markedly within one neutral scale height
of 120 km, as observed in the results from our calculations.
Furthermore, after maintaining a relatively strong downward
drift until about one neutral scale height below 120 km, the
ions begin to slow down, so that below about 113 km they
“pile up” as a result of the converging motion.

After 30 s, the effect of the ion Pedersen convergence can
be seen in the height of the E-region peak. The peak ionisa-
tion rates found with the model for O, N2 and O2 occurred
at 120, 115 and 113 km altitude, respectively. (Total electron
production was at a maximum at 115 km.) Without Peder-
sen drift the peak concentrations of NO+ and O+

2 would be
at 115 and 111 km, respectively (case 1). With the inclusion
of the advection terms, the peaks appear at 113 and 109 km,
respectively.

The effect of the ion Pedersen drift can also be seen above
120 km. In case 1, the electron number densityne has only
one maximum at 114 km altitude, seen as a bright yellow
band in the left-hand panel of Fig.5. But in case 2 there is
a local minimum in electron density at about 123 km along
all of the field lines within the arc, and a secondary maxi-
mum between 140 and 160 km. In case 2 the minimum at
123 km ranges fromne= 2.0×1010 m−3 at the northern edge
of the arc to 1.3×1011 m−3 at the southern edge, compared to
1.5×1011 m−3 at 123 km throughout the interior of the arc in
case 1. As scenario C will show, the minimum is attributable

mainly to advection outside the arc, which is greatest near
this height. However divergence of the drift also contributes
to forming the minimum at 123 km.

The differences in the results between cases 1 and 2 are
just as significant for current density as they are for elec-
tron (and ion) density. Figure6 shows the current density
J as quiver plots for the two cases, att = 30 s. Again, the
left-hand panel shows case 1 with Pedersen drift being ne-
glected and the right-hand panel (case 2) has the drift in-
cluded. In case 1, there are two sharp horizontal gradients in
σP which must generate concentrated parallel currents, one
upwards and one downwards, with current densities related
to the sharpness of the latitudinal cut-off of the precipitation.
Case 2 had two broad horizontal gradients inσP: the quantity
∂σP/∂x is positive throughout the interior of the arc and neg-
ative over a broad area to the south of the arc. However, the
gradients ofσP are much weaker than in case 1, although they
exist over a much wider area. As a result, there is a down-
wards current throughout the precipitation arc, and a wider
region of upwards current spread out over nearly 30 km on
the southward side of the precipitation region.

Figure7 shows the parallel component of the current den-
sity J‖ at 30 s. The left and right panels correspond to the
respective panels in the previous figure. Note the different
colour scales used for each panel. Case 1 had two very nar-
row channels of current, comparable to earlier studies. The
parallel current density is high at the edges of the arc, and
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Fig. 6. Quiver plots of current densityJ after 30 s without (case 1, left) and with (case 2, right) ion advection. The vector scale is the same
on both sides, however on the left the field intensity on the edges of the arc is so strong that the arrows coalesce. (The arrow heads scale with
the length of the arrows, and they appear foreshortened near 110 km because they have a component out of the page.)

Fig. 7. Parallel current densityJ‖ after 30 s without (case 1, left) and with (case 2, right) ion advection. The two panels have a common
geometric scale but different function value scales. Positive values indicate upward current (anti-parallel toB).

low everywhere else. In case 2 we obtain considerably lower
peak parallel current densities than in the past, with dis-
tributed currents throughout the interior of the arc and on its
south side. The peak magnitude of parallel current density is
about 10 times lower when advection through Pedersen drift
is included (case 2) than without it (case 1).

Figure8 shows the latitudinal profile ofJ‖ in case 2 at an
altitude of 140 km. This figure provides a better appreciation
of the shape of the current profile than the colour scale in
the previous figure, and shows the asymmetry of the current
distribution.

4.2 Evolution from t=30 s to 2 min (case 2)

The results presented henceforth all include the effect of
Pedersen advection (case 2). In the scenarios under study,
a steady state was reached within about 5 min. The elec-
tron density within the arc below 150 km reached 80% of its
steady-state value within about one minute. At higher alti-
tudes the recombination time scale is longer so it took longer
to reach equilibrium. However the electron density there
does not significantly affect the E-region current distribution.
Outside the arc, 50 km to the south, electron density takes
approximately two minutes to reach 80% of its steady-state
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Fig. 8. Parallel current densityJ‖ (black curve) after 30 swith ion
advection (case 2). This is the same data as the right-hand side of
Fig. 7, but it showsJ‖ across a section through 140 km altitude. A
positive current is upwards. The conductances6P (red) and6H

(blue) are integrated along field lines and shown in units of siemens
on the right-hand axis.

value: there is very little change during the first minute while
the ions are advancing southwards, and then during the sec-
ond minute the electron (and ion) densities increase steadily
towards equilibrium.

The evolution during the first several minutes can be de-
scribed as a steadily growing tongue of ionisation moving
equatorward of and slightly below the area of ion produc-
tion. The leading edge of this tongue is determined by the
peak Pedersen drift, which for NO+ occurs at a height of
119 km and was about 900 m/s at that height, for the imposed
100 mV/m field. The resulting steady state solution is shown
in the next section.

One curious aspect of the approach to equilibrium was un-
expected and deserves mention, namely, a region of elevated
electron temperatures protruding above the advancing tongue
of ionisation, roughly between 140 and 180 km altitude. Fig-
ure 9 shows a time series of electron temperature from 15 s
(top panel) to 120 s (bottom panel), in which one can see
this transient feature. The reason for this phenomenon is that
the growing region of ionisation extends underneath a region
with very low electron density. Yet the advancing incursion
of ionisation has a strong latitudinal gradient ofσP, so there
must be upward parallel currents to close the circuit. These
parallel currents are carried by electrons which, despite their
relative scarcity, still offer a much lower resistance along
field lines than the abundant ions at 120 km offer across field
lines. Nevertheless, the electrons must move downwards at
up to 40 km/s to provide the required current density, hence
the high temperature which results from friction. The elec-
tron temperature reaches a peak of 5500 K about 25 s after

Fig. 9. Electron temperature at 15, 30, 60 and 120 s. The spatial
scales and colour scales are the same in all four panels. The pre-
cipitating region lies between the inner edges of the two enhanced
electron temperature regions seen in the top panel. The pale yellow
area in the first panel is off scale; the maximum value ofTe in that
panel is just under 5500 K. The scale was chosen to make the next
three panels more readable.
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Fig. 10. Electron concentration after 5 min.

the start of precipitation at 160 km altitude, 10 km south of
the arc. The peak flattens out rapidly after that, while it also
moves downwards and farther equatorwards. As the tongue
extends to its steady-state configuration, the Pedersen con-
ductivity gradients soften and the parallel current is spread
over a very wide area, with an accompanying reduction in
the required electron velocity. In comparison, the narrow
electron temperature enhancement on the northern edge of
the arc maintains a steady and stationary shape with a maxi-
mum value of 3300 K near 140 km altitude.

4.3 Steady statewith ion advection (case 2)

As mentioned earlier, the ionospheric and electrodynamic
features of the system essentially reach an equilibrium within
about two minutes of simulation time. The results presented
in this section are for five minutes elapsed time, but are also
fairly representative of any time after two minutes.

Figure10 illustrates how the E-region ionisation created
by the arc of precipitation becomes smeared out over more
than 150 km to the south of the precipitation region. The E-
region peak tapers off fromne= 3.0×1011 m−3 at the south-
ern edge of the arc, to 1.4×1011 m−3 at 50 km to the south,
to 9×1010 m−3 at 100 km south, and to 4.5×1010 m−3 at
150 km south. Compared to the southern edge of the precip-
itating region, the peak has fallen off by 1/e about 80 km to
the south. Within this tail of ionisation, the peak concentra-
tions of NO+ and O+

2 are found at about 108 and 107 km,
respectively. These heights are even lower than the altitudes
of 113 and 109 km found within the arc, since they are not
biased upwards by the ion production terms.

Figure 9 shows a stationary region of elevated electron
temperature just poleward of the arc. This feature reaches
a steady state quickly. It occurs because the electron density
drops off to a very low value outside the precipitation arc on

Fig. 11. Hall current densityJH after 5 min. The Hall current is
westward here, and is shown as a positive value.

its north side, whereas the area of downward current density
extends slightly outside the arc. The reason for this is that
σP is elevated right up to the edge, so a downward current
must close the circuit just outside the arc. The intensity of
theJ‖ on this edge, and the accompanying rise inTe, are not
as large as those found byNoël et al.(2005), since the Ped-
ersen drift carries most of the ionisation away from the edge
of the arc as soon as it is produced. We find thatTe reaches
a peak of 3300 K near 140 km altitude, and that the width of
the peak (between half-maxima) was about 4 km.

In order to confirm that the hot and narrow electron layer
poleward of the arc was adequately resolved, we increased
the spatial resolution of the mesh on the northern edge of
the arc. The latitudinal profile ofTe at 140 km altitude is
shown in Fig.12for four different mesh spacings: 1 km, 800,
600 and 400 m. The peak temperature of about 3300 K was
consistent, and the position of the maximum at about 500 m
outside the arc was consistent to within the grid spacing of
each mesh.

Figure9 also shows a layer of elevatedTe around 110 km
due to the Farley-Buneman instability (wave heating). The
threshold fieldEThr (notation ofDimant and Milikh, 2003)
for the instability was about 19 mV/m at its lowest point near
105 km altitude under the initial conditions withTe = Tn.
With Te elevated as a result of the instability occurring, the
parameterEThr rises in such a way that its minimum is ap-
proximately 36 mV/m at 101 km.

The perpendicular polarisation field set up by the changes
in Pedersen conductivity modifies the perpendicular elec-
tric field. The field strength rises to 109 mV/m just out-
side the arc and drops to 94 mV/m just inside. The effect
of this perturbation is visible at the lower-left of each panel
in Fig. 9 because of the sensitivity ofTe to E⊥ in the areas
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Fig. 12. Electron temperature profile at 140 km altitude on the
northern edge of the arc, att = 5 min, for a series of mesh res-
olutions from 1 km to 400 m. The horizontal axis is lateral posi-
tion, positive toward the south (into the arc). The peak value ofTe
changed by less than 50 K, and the location of the peak was consis-
tent within the resolution of the mesh.

of occurrence of the wave heating. Incidentally, this change
in field strength over a distance of about 2 km can be used
to estimate the space charge density using Gauss’ law. It is
roughly 4×102 m−3, or about one part in 108 of the electron
density, which supports our earlier assertion that the space
charge density can be neglected in the ionospheric transport
equations.

The Hall current density for case 2 is shown in Fig.11.
One can see that its spatial distribution is very similar to that
of the electron density below 120 km. We now show that
the Hall current density is quite different for a northward, or
poleward, pointing electric field.

4.4 Northward E field (scenario B)

Scenario B has an electric field oriented northwards, opposite
in direction to the previous scenario. The precipitation ion-
isation pattern is the same as in the southwardE scenario,
but now the ions advect northwards from their point of cre-
ation. Because of the inclination of theB field, they also
move upwards. Therefore the results in this scenario cannot
be described as being approximately a mirror image of those
in scenario A. We only present results att = 5 min, which
effectively represents steady state.

The most profound effect of the reversal of the electric
field is the upward component of Pedersen drift, which at-

Fig. 13. Electron density att = 5 min with a northwardE field
(scenario B).

Fig. 14. The Hall current densityJH at t = 5 min with a northward
E field (scenario B). Note that its direction has changed compared
to Fig.11. The Hall current is eastward here (into the page), which
happens to be negative in our computational sign convention.

tempts to empty out the band of altitudes whereµP,i is high
and piles the ionisation up above 130 km where this drift be-
gins to wane. Figure13shows the electron density as a func-
tion of position att = 5 min for a northward electric field. We
observe a gradual slope in the altitude of the peak electron
density: 50 km to the north of the arc the peak is at 125 km
altitude; 100 km to the north it is at 131 km; and 150 km to
the north it is at 134 km.

Within the precipitation region, there are two E-region
maxima, one at 112 km and the other at 135 km, with a subtle
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Fig. 15. Electron density att = 5 min with verticalB field lines
(scenario C).

minimum at 122 km. The minimum is comparable to those
found in scenarios A (case 2) and C, and is therefore mostly
attributable to transport out of the arc, rather than to di-
vergence of the drift. That is, the minimum is due to the
−vx(∂ni/∂x) term in the ion continuity equation rather than
−ni(∂vx/∂x).

The effect of the divergence of Pedersen drift can be de-
tected in the “background” ionisation outside of the arc. The
background is too weak to be visible in Fig.13, but it is
shown in Fig.16. There is a peakne = 1.4× 1010 m−3 at
98 km altitude, a minimum of 3.5×109 m−3 at 119 km, and
a second peak of 1.2×1010 m−3 at 146 km. The background
had no latitudinal variation, so that the double peak must
have been generated by the divergence term in the ion conti-
nuity equation.

The Hall current densityJH is shown in Fig.14. Note that
the Hall current has changed sign from scenario A (Fig.11),
and is now eastward due to the northwardE. It has a peak
magnitude comparable to the previous case, but is much
more localised in spatial extent.

4.5 Horizontal E field (scenario C)

Figure15 shows the steady-state profile of electron density
as a function of position with a geometry of verticalB field
lines. This scenario is intended to separate the effects ofB

field tilt and vertical Pedersen drift from those of advection.
As one might expect, the plume of ionisation stays at a con-
stant altitude in this geometry.

Just inside the right side of the arc, there is a maximum
ne = 3.0×1011 m−3 at 112 km, and a second maximum of
1.5× 1011 m−3 at 139 km, separated by a subtle minimum
of 1.4×1011 m−3 at 123 km. Since there is no vertical drift
here, the minimum at 123 km is attributable only to deple-
tion caused by advection out of the arc, which is strongest at

Fig. 16. These profiles of steady-state electron density were ob-
tained with the background EUV ionisation only, and the electric
field specific to each scenario.

119 km, and to the slower NO+ and O+

2 recombination below
116 km due toTe elevated by wave heating.

Outside the arc, there is a singlene peak at 115 km, which
is quite sharp on the upper side due to the sharp cut-off in
wave heating. This abrupt vertical gradient inne is an artefact
of the verticalB field geometry.

4.6 Electron density in the absence of the precipitation
arc

Figure16 shows the “background” profiles of electron den-
sity used to initialise each scenario. As mentioned in Sect. 3,
these data were obtained by running the model with the
scenario-specific electric field and the EUV model applied,
but without precipitation, until steady-state was reached.
These profiles are also the condition in which the ionosphere
remained “upstream” of the Pedersen-advected precipitation
ionisation.

These profiles on their own provide some interesting re-
sults, although we have preferred to focus on investigating
the effects of discrete precipitation arcs. Yet one can see in
them how just the vertical component of the Pedersen drift,
due to the inclination of the field lines, influences the height
and strength of the E-region maxima.
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5 Discussion

The effect of ion drift-velocity divergence on the height and
thickness of the E-region and of sporadic E-layers has been
anticipated and modelled byNygrén (1990), Kirkwood and
Nilsson (2000) and MacDougall and Jayachandran(2005),
although the latter two studies were focused only on the con-
text of metallic ions in sporadic E. We find in our ‘back-
ground’ ionisation a confirmation of the vertical-drift phe-
nomenon with general application to all E-region ion species.
Moreover, these studies were 1-D, so they looked only at ver-
tical convergence with the assumption of planar uniformity,
i.e. (∂/∂z) � (∂/∂x), which is not the case when examining
precipitation arcs.Nygrén et al.(2008) have noted the impor-
tance of horizontal transport in forming sporadic E-layers.
For precipitation ionisation, we find that all terms in the vec-
tor drift have an important influence on the E-region electron
density profile and on the coupling of the ionospheric dy-
namics with the electrodynamics.

5.1 Extent of meridional ion transport

The length scale of the southward plume of ionisation can
be seen to be limited by the diagonal trajectory an ion takes
through the region of fast Pedersen drift. Let the neutral scale
height beHn, which is about 7 km at 120 km altitude. If we
consider the band of altitudes fromHn above 120 km toHn
below it, this rapid part of the trajectory whereµP,i is high
has a length of about 2HntanI , whereI is the inclination
of the magnetic field lines, which is about 80◦ at 70◦ MLat.
Therefore, the ions can convect a distance of order 80 km
before reaching the bottom of their layer of highest mobil-
ity and beginning to decelerate due to a higher collision fre-
quency. Such a trajectory takes about 110 s to complete with
theE⊥ that we applied, and at either end of itvx is 65% of
its maximum value. Travelling from 2Hn above 120 km to
2 Hn below it requires 330 s, andvx is 26% of its maximum
value at the beginning and end.

The size of the southward plume might also be thought to
be limited by the chemical lifetime of the ion species. The
trajectory described in the previous paragraph takes about
110 s to complete, whereas at 108 km altitude NO+ has a
lifetime of about 80 to 120 s, getting longer the farther south
one looks in the plume. The recombination rate of the ma-
jor ion species is effectively proportional to the square of its
concentration. Therefore, the lifetime does affect the merid-
ional profile of the plume, but it does not limit how far south
the ionisation can extend.

One implication of this advection is that, while auroral
emissions are directly related to local production of ion-
electron pairs, they would appear to be difficult to relate di-
rectly to electron concentration and conductivity.

5.2 Effect of the electric field polarity

The scenarios with northward and southwardE are not sym-
metrical, but they nearly have a rotational symmetry. Note
that if we assumeνin ≈ ν0exp(−z/Hn), then we can write
κi ≈ exp((z−zm)/Hn), wherezm is the altitude at whichκi is
equal to unity (the “magnetisation boundary”). Using Eq. (1)
and substituting this form forκi , we can say

µP≈
sech((z−zm)/Hn)

2 B
. (6)

From this relationship we can appreciate that the magnitude
of the Pedersen drift does not change when the polarity ofE

changes, and that its vertical profile is more or less symmetri-
cal in the vertical axis about the ion magnetisation boundary,
to the extent thatHn is comparable over several scale heights.
There is therefore a modest degree of rotational symmetry
between scenarios A and B, although it is not complete since
ion-neutral chemistry is height dependent andTe andHn are
not constant.

The other significant asymmetry is that in the southward
E scenario, the ions are driven lower towards altitudes where
they are progressively demagnetised and theirE×B motion
ceases. But in the northwardE scenario, the ions become
steadily more magnetised, and the magnitude of theirE×B

motion approachesE⊥/B. Therefore, the former scenario
has very little zonal advection of ions, and therefore signif-
icant Hall current density over the whole area of the plume,
whereas the latter scenario has strong zonal advection of E-
region ions, but significant Hall currents only within or near
the arc. This asymmetry is obvious when comparing the Hall
current distributions in Figs.11and14.

5.3 Assumption of zonal symmetry

The distribution of Hall current density in the southwardE

scenario is shown in Fig.11. The electrons, having a mag-
netisationκe much greater than unity, are nearly unimpeded
in their eastwardE×B drift, whereas a reduction in the ions’
E×B drift due to collisions is the source of the Hall current
density. The peak speed of this drift is about 1.9 km/s under
the conditions studied. Under the assumption of negligible
zonal gradients, theE ×B drift does not affect the plasma
number density in the 2-D domain, since the drift is at right
angles to the domain. However a zonal gradient in either the
spatial distribution or the energy spectrum of the precipita-
tion will lead to effects which cannot be elucidated with a
2-D model.

5.4 Ionosphere-magnetosphere coupling considerations

A standard view of the magnetosphere-ionosphere (M-I) sys-
temin numerical models of the ionosphereconsists of a mag-
netosphere that provides an ideal D.C. voltage source at the
upper boundary, while the ionosphere acts as a resistive load.
An alternate view of the magnetosphere is one that provides
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charges to the ionosphere through Birkeland currents typi-
cally carried by energetic electrons, in which case the iono-
sphere provides a cross-field potential drop that is consistent
with its integrated conductivity; that is, the magnetosphere
acts as an ideal current source. The former idealisation is
more common among ionospheric models, but the latter has
also been used, e.g. byRichmond and Matsushita(1975).
In both cases some magnetosphere inputs (energetic particle
precipitation, and either electric field or current density) are
predicated without regard to the response of the ionosphere,
i.e. the M-I system is uncoupled.

In the problem considered here, however, either idealised
view appears to be quite inadequate. When we consider a re-
gion of hard precipitation where a strong ambient perpendic-
ular electric field already exists, the precipitating current den-
sities become considerably smaller than the Birkeland cur-
rents triggered by the ionosphere itself, i.e. by the E-region
Pedersen conductivity gradients.

In the context of the electrodynamical calculations of the
type carried out in the present paper, the ionospheric paral-
lel electric fields and associated Birkeland currents can have
two distinct origins. One source of ionospheric Birkeland
currents lies at the centre of the precipitation region, where
the perpendicular electric field set up by the decelerated pre-
cipitating particles is very small, but conversely, the parallel
field cannot vanish. For the case studied in the present pa-
per, this contribution is not any more important than the al-
ready small parallel current densities carried by the precipi-
tating electrons. The second source of ionospheric currents is
caused by the change in Pedersen conductivities introduced
by the precipitating particles as they ionise the E-region. It
is associated with the couplet of upward and downward par-
allel electron currents which must accompany perpendicular
ion motion. This strong source of parallel currents has been
shown here to be much more strongly antisymmetric than
anticipated by earlier work, e.g.Noël et al.(2005), and to ex-
tend to considerable distances from the precipitating region,
owing to the advection of plasma in response to E-region
Pedersen drifts. Irrespective of this antisymmetry, we are
looking here at the ionosphere as a source of parallel (Birke-
land) currents which is not in phase with the precipitating
currents and not even centred on the precipitating currents.
This suggests that coupling of the M-I system may be essen-
tial to a complete understanding of the electrodynamics of
precipitation arcs.

It is also possible that the sudden onset of Birkeland cur-
rents resulting from ionospheric dynamics could be a source
of Alfv én waves launched from the ionosphere. That is,
transients in the 2-D meridional current system might arise
from temporal changes in the resistive load, as well as from
changes in the voltage source. A study of this mechanism
would, however, require a different temporal resolution than
what we have used here.

5.5 The Cowling effect

A partial Cowling effect is associated with the enhancement
of auroral electrojet currents. SeeYasuhara et al.(1985) for
an explanation of the application of the Cowling effect to
auroral geometry and observational evidence. However this
effect is operative when a dynamo of atmospheric origin is
generating a westward electric field, and the ionosphere acts
as a generator, rather than a load, in the 2-D (meridional) cur-
rent pattern. In this situation, those investigators find a par-
tially effective Cowling mechanism, where there is enough
resistance to field aligned currents that a southward polari-
sation field partially blocks the northward Hall current. The
electric field is of order 10 mV m−1.

The situation we are studying is one in which the mag-
netosphere is driving a field aligned current pattern in the
meridional plane. AsYasuhara et al.note, the Cowling effect
would not be dominant in such a situation. But it has been
suggested, for example byAmm et al. (2008), that intense
horizontal currents associated with aurorae could be the re-
sult of a Cowling mechanism.

Now, the magnetospheric dynamo in our geometry pro-
duces a zonal Hall current. This Hall current would have to
be closed via field aligned currents into the magnetosphere
at each end of the east-west arc. If there is resistance to this
current closure, then the possibility of a partial Cowling ef-
fect with a different geometry is created. However the extra
current which the magnetosphere is required to close in this
case is of measureW/L compared to the currents which it is
driving, whereW is the north-south width of the arc andL is
its east-west length, compared to a measureL/W when the
zonal electrojet is driven by an atmospheric dynamo. There-
fore we do not think such a Cowling-type effect will be im-
portant in cases where the magnetospheric dynamo generates
a strong electric field at right angles to an arc of precipitation.

We hope to extend our study to include a zonal component
of the electric field. In an extreme case, its value could be
implicitly coupled so as to eliminate the zonal current inte-
grated over the meridional plane. This would simulate the
effect of an east-west polarisation field resulting from Hall
currents parallel to the arc that cannot be closed within the
magnetosphere. A smaller value of the zonal field is proba-
bly more realistic.Amm et al.(2008) note that a 3-D model
should be required in order to study the Cowling effect at
high latitudes, so there may be a limit to what we can obtain
with a simple extension of the present 2-D study. However
a zonal electric field component remains a priority for our
future work.

6 Conclusions

As a result of the present investigation we conclude that E-
region ionospheric conductivities in the auroral zone cannot
be derived directly from a local production-loss equilibrium
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or even from local time histories of the same; advection of
charge carriers plays an essential role on any scale less than
about 150 km. Besides passing electric current, the conduc-
tivity also convects itself. The conductivity of the E-region is
typically described by the three unique elements of its con-
ductivity matrix. However, the full story is much more com-
plex, requiring an appreciation of the trajectory the ions take
after their production.

Two minutes constitutes a long time scale for some auroral
activity; therefore the steady state may not necessarily con-
stitute a realistic way to study the electrodynamics of arcs.
However, we must stress that, even over a time period less
than 30 s, the advection of charge carriers has a strong effect
on the parallel currents and electron temperature associated
with an arc of precipitation. In particular, the parallel cur-
rents are more distributed than expected from a simple con-
sideration of the precipitation boundaries, as they spread out
in the direction of theE field over a characteristic distance
of about 80 km.
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