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Abstract. Isotropic electron beams are considered to ex-
plain the excitation of whistler waves which have been ob-
served by the STEREO satellite in the Earth’s radiation belt.
Aside from their large amplitudes (∼240 mV/m), another
main signature is the strongly inclined propagation direction
relative to the ambient magnetic field. Electron temperature
anisotropy withTe⊥ > Te‖, which preferentially generates
parallel propagating whistler waves, can be excluded as a free
energy source. The instability arises due to the interaction
of the Doppler-shifted cyclotron modeω = −�e+kVbcosθ
with the whistler mode in the wave number range ofkc/ωe≤

1 (θ is the propagation angle with respect to the background
magnetic field direction,ωe is the electron plasma frequency
and�e the electron cyclotron frequency). Fluid and kinetic
dispersion analysis have been used to calculate the growth
rate of the beam-excited whistlers including the most im-
portant parameter dependencies. One is the beam velocity
(Vb) which, for instability, has to be larger than about 2VAe,
whereVAe is the electron Alfv́en speed. With increasing
VAe the propagation angle (θ ) of the fastest growing whistler
waves shifts fromθ ∼ 20◦ for Vb = 2VAe to θ ∼ 80◦ for
Vb = 5VAe. The growth rate is reduced by finite electron tem-
peratures and disappears if the electron plasma beta (βe) ex-
ceedsβe ∼ 0.2. In addition, Gendrin modes (kc/ωe ≈ 1) are
analyzed to determine the conditions under which stationary
nonlinear waves (whistler oscillitons) can exist. The corre-
sponding spatial wave profiles are calculated using the full
nonlinear fluid approach. The results are compared with the
STEREO satellite observations.
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1 Introduction

The measurements of large-amplitude whistler waves by
the electric field instruments aboard the STEREO satel-
lite in the Earth’s radiation belt (Catell et al., 2008) and
THEMIS (Cully et al., 2008) has stimulated the investigation
of mechanisms by which large amplitude obliquely propa-
gating whistler waves can be generated. Electron tempera-
ture anisotropy withTe⊥ > Te‖ can be excluded as a free en-
ergy source since the growth rate always has its maximum for
parallel propagation. Nevertheless, the simultaneous obser-
vation of parallel and obliquely propagating whistler waves
has already been described in earlier papers on chorus emis-
sion (e.g. Goldstein and Tsurutani, 1984). In the present
paper, another possible source of free energy is considered
consisting of electron beams which may couple to whistler
waves if an electrostatic component arises at oblique wave
propagation. For instability analysis, fluid and kinetic mod-
els have been developed. The main results are the follow-
ing; depending on the beam velocity (Vb) with respect to
the Alfvén velocity (VAe = Bo/(µonpome)

1/2), two differ-
ent mechanisms of beam-plasma interaction may occur. In
the regime ofVb < 0.5VAe, interaction of the beam mode
ω ∼ kVb with the whistler wave takes place (Cerenkov in-
stability). For higher beam velocitiesVb > 1.5VAe the in-
stability is caused by the Doppler-shifted modeω = −�e+

kVbcosθ (cyclotron-type instability,�e = eBo/me) and has
its maximum growth rate atkc/ωe ∼ 1. With increasing
beam velocityVb, the propagation angle which belongs to
the maximum increment shifts from nearly zero, at about
Vb ∼ 1.6VAe, up to values close to 90 degrees ifVb/VAe be-
comes larger than about 3–4. Modifications of the electro-
magnetic fluid dispersion theory due to finite temperature ef-
fects (Vlasov kinetic theory) are small as long as the electron
plasma beta, the ratio between electron thermal and mag-
netic pressure defined byβe = neokTe/(B

2
o/2µo), is below

βe∼ 0.2.
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Fig. 1. Fluid dispersion of beam-excited whistlers at oblique prop-
agation (θ = 60◦); the beam density isnb = 0.01npo, the beam
velocity is Vb = 2.5VAe. From top to bottom: real part ofω nor-
malized to�e, phase velocity normalized toVAe and imaginary
part ofω in normalized units versus the normalized wave number
kc/ωe (ωe is the electron plasma frequency). The thick solid lines
in the upper two panels represent the whistler mode, the thin lines
mark the Doppler-shifted cyclotron modeω = −�e+ kVbcos(θ).
The instability occurs where both modes intersect.

The paper is organized as follows. In Sect. 2 the main
steps are described in the derivation of the dispersion rela-
tion of beam-excited whistlers using a fluid approach. The
resultant polynomial of sixth orderω = ω(k) easily allows
for the analysis of instability by calculating the growth rate
as a function of the main parameters such as beam density,
beam velocity and propagation angle. Gendrin mode waves
(kc/ωe ≈ 1) are of special relevance since analytical rela-
tions for optimum conditions can be obtained. Vlasov dis-
persion theory is used as well in order to determine the in-
fluence of finite electron temperature. It is shown that the
instability disappears if the electron plasma beta (βe) ex-
ceeds a value of about 0.2. In Sect. 3 the theory of station-
ary nonlinear whistlers (whistler oscillitons) is applied to the
obliquely propagating modes. Linear theory in the moving
frame is used to predict the region of periodic and stationary
waves. To compute the spatial profiles of whistler oscilli-
tons, a formalism based on the two fluid approach is pre-
sented along with inter-relationships between various elec-
tric field components that can be used as a test for the pres-

Fig. 2. The same as in Fig. 1, but for different propagation an-
gles. The growth rate has a maximum atθ = 60◦ which appears at
kc/ωe≈ 1.

ence of these nonlinear structures. Finally, in Sect. 4 the re-
sults are discussed in relation to the recent observations of
large-amplitude waves made by the STEREO satellite in the
Earth’s radiation belt.

2 Dispersion of beam-excited whistlers

2.1 Fluid approach

To derive the dispersion relation of beam-excited whistlers,
first a simple plasma model is used assuming that all plasma
populations; protons, main and beam electrons, are cold.
Protons are taken into account in order to prevent the limita-
tions for wave propagation near 90◦ (lower-hybrid frequency
range). The beam propagates parallel to the ambient mag-
netic field. The cold plasma model is a good approxima-
tion as long as the electron cyclotron damping of whistlers is
negligible, which is the case (as shown later) when the elec-
tron temperature is small enough. Expressed by the electron
plasma beta (βe), this requires a value ofβe≤ 0.2. Compared
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with the kinetic description (Vlasov approach in Sect. 2.2),
the fluid model has the advantage that the dispersion relation
ω(k) can be expressed in an algebraic form as a polynomial
which easily allows analysis of the parameter dependence of
the unstable solutions.

As a starting point, the fluid equations of protons, main
and beam electrons (marked byp, e andb, respectively) are
solved together with the Maxwell equations. The procedure
to derive the dispersion relation follows the common steps.
After linearization and Fourier transform, the fluid equations
can be written in the following form

Lp ·vp = cpE, Le·ve= ceE, Lb ·vb = Wb ·E (1)

F ·E = cj (−neove−nboNb ·vb+npovp) (2)

wherenpo, neo andnbo are the background densities of pro-
tons, main and beam electrons, which, under the assump-
tion of quasi-neutrality, are related asnpo = neo+nbo. vp,e,b
are the corresponding velocity disturbances under the ac-
tion of the electric fieldE. cp,e,j are simple constants.
Lp,e(ω,k,θ), Lb(ω,k,ω,Vb), Wb(ω,k,θ,Vb), F(ω,k,θ), and
Nb(ω,k,θ,Vb) are square 3×3 matrices which can easily be
calculated and are not given here.θ is the propagation an-
gle with respect to the ambient magnetic field andVb is the
velocity of the electron beam. Expressingvp, ve andvb from
Eq. (1) by means of matrix inversion through the electric field
E, one gets the relationM ·E = 0, where the dispersion ma-
trix M is given by

M = F+cj ceneoL−1
e +cj cenboNb ·L−1

b ·Wb

−cj cpnpoL−1
p (3)

Finally, the dispersion relationω = ω(k) follows from
D(ω,k) = Det(M) = 0 which represents a polynomial of
sixth order inω and can be solved numerically by standard
routines.

In the following, only super-Alfv́enic beams, that means
Vb > VAe, are considered. Then, the instability arises from
the interaction of the Doppler-shifted cyclotron mode (ω =

−�e + kVbcosθ ) with the whistler mode. This is clearly
seen in Fig. 1, showing the dispersion relation for the case
of a beam withnb/npo= 0.01,Vb = 2.5VAe and propagation
angleθ = 60◦ is taken. The thin straight line in the upper
panel of Fig. 1 represents the “beam mode” (marked byb),
and the plasma becomes unstable where this mode intersects
the whistler mode (thick line). How the growth rate and the
related wave number vary with the propagation angleθ is
shown in Fig. 2 where (using the same beam parameters as
in Fig. 1) the dispersion curves are plotted forθ = 50◦,60◦,

and 70◦. Clearly, the maximum growth rate is reached near
θ = 60◦ and the corresponding wave number is atkc/ωe∼ 1.
This is a more general signature as seen in the next figure.
In Fig. 3 the growth rate of beam-excited whistlers is plotted
as a function of the propagation angle taking different beam
velocities (Vb/VAe = 2,3,4) as the parameters. The beam

Fig. 3. From top to bottom:(a) Maximum growth rate,(b) related
(real) frequency and(c) wave number versus the propagation angle
θ , for different beam velocities (in units ofVAe). The beam density
is nb/npo= 0.01. Note that the wave number for maximum growth
rate is atkc/ωe≈ 1.

density is fixed atnb/npo = 0.01. A significant feature is
that the optimum propagation angle shifts closer to 90◦ if the
beam velocity increases. Further, changing the beam velocity
from Vb = 2VAe to Vb = 4VAe is accompanied by a decrease
of the related frequency from aboutω/�e ∼ 0.35 to 0.15.
In all cases, however, the maximum growth rate remains at
kc/ωe∼ 1 which is just the point where the phase velocity of
the whistler mode has its maximum and coincides with the
group velocity. As discussed in an earlier paper by Sauer et
al. (2002) the coincidence of phase and group velocity is a
necessary condition for the existence of the specific class of
stationary nonlinear whistlers (“whistler oscillitons”). This
is a topic of interest on it’s own that will be discussed sepa-
rately later (see Sect. 3). Finally, Fig. 4 summarizes how the
optimum growth rate, the related frequency and propagation
angle, vary as a function of the beam velocity. Once again,
based on this analysis, one can conclude that the observa-
tion of strongly inclined whistlers (θ ≥ 60◦) may indicate the
presence of super-Alfv́enic electron beams withVb ≥ 2VAe.

Our numerical studies of beam-excited whistlers are com-
pleted by the addition of some useful analytical expressions
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Fig. 4. (a)Optimum growth rate,(b) related (real) frequency and
(c) propagation angleθ as a function of the beam velocityVb/VAe;
nb/no = 0.01. With higher beam velocity the growth rate increases
and the propagation angleθ shifts closer to 90◦. The relations (b)
and (c) can be expressed analytically by Eqs. (5) and (7), respec-
tively.

that are related to the specific whistler wave mode with
kc/ωe = 1, which has been called the Gendrin mode (Gen-
drin, 1961; Verkhoglyadova and Tsurutani, 2009). If we start
from the whistler dispersion relation, assumingωe � �e, the
real frequency is expressed as

ω

�e
=

cosθ

1+
ω2

e
k2c2

(4)

and the phase velocity (vph) and propagation angle (θ) at
kc/ωe= 1 (Gendrin point) are related through

ω

�e
=

vph

VAe
=

cosθ

2
(5)

Furthermore, the phase velocity has a maximum for differ-
entk values and is equal to the group velocity (Sauer et al.,
2002; Dubinin et al., 2003). Based on the numerical studies
presented in Figs. 1–3, the growth rate of the beam-excited
whistlers maximizes atkc/ωe ' 1 from the intersection of
the Gendrin mode (ω/�e = 0.5cosθ ) and the beam mode

Fig. 5. Vlasov dispersion of beam-excited whistlers at oblique
propagation (θ = 70◦) for two values of electron plasma beta (βe=

0.04-solid lines,βe = 0.2-dashed lines), showing the effect of ki-
netic damping on the growth rate. The other parameters are:
nb/npo= 0.05,Vb/VAe = 3.0.

(ω/�e = −1+ (Vb/VAe)cosθ). Therefore, one finds a re-
lation between the beam velocity and the (optimum) propa-
gation angle as

Vb

VAe
'

1

2
+

1

cosθ
(6)

or

cosθ ' (
Vb

VAe
−

1

2
)−1. (7)

For instance, if we takeVb/VAe = 4, one obtains a propaga-
tion angle ofθ = 73.4◦, which is in full agreement with the
value obtained in Fig. 4. Furthermore, Eq. (6) immediately
gives the minimum beam speed ofVb/VAe = 1.5, a value also
obtained from the same figure.

2.2 Kinetic approach

In the kinetic approach the full apparatus of Vlasov dis-
persion theory is used, expressing the matrix elements of
the susceptibility tensor by Bessel functionsIn(λ) and the
plasma dispersion functionW(z) as described, e.g., in the
book by Stix (1992). To study beam-excited whistlers the
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distribution functions of protons and main electrons are ex-
pressed by Maxwellians with given temperaturesTp andTe;
for the beam, a shifted Maxwellian is taken, characterized
by the beam velocityVb and the beam temperatureTb. The
kinetic dispersion relation, which is a transcendental equa-
tion for ω = ω(k,θ) with complexω and realk, is solved by
a Newton root finding method. The knowledge of solutions
using the cold plasma fluid approach of the previous section
has been proven to be very helpful in finding the correspond-
ing kinetic solutions in the case of finite temperatures. Fig-
ure 5 shows the results of solving the kinetic dispersion re-
lation comparable to that of Fig. 1 indicating the effect of
kinetic damping on the growth rate. The essential parameter
is the electron plasma beta and as long asβe is smaller than
about 0.05, both the kinetic and fluid approaches give nearly
the same results. The instability is suppressed ifβe exceeds
about 0.2. These values weakly change with the beam den-
sity which was taken asnb/npo= 0.01 in Fig. 1.

The formalism of dispersion theory is also applied to de-
termine the polarization of whistler waves at oblique prop-
agation and to see how it is affected by thermal effects.
For later comparison with space measurements it is neces-
sary to perform a linear coordinate transformation(x,y,z) →

(x′,y′,z′): the original coordinate frame with the undisturbed
magnetic field in the z-direction is rotated through the angleθ

about the y-axis in such a way that the new z′-axis is aligned
in the direction of wave propagationk. In the lower two pan-
els of Fig. 6, the polarization in the z′-x′ and x′-y′ planes
(E′

z/E
′
x,E

′
x/E

′
y) is plotted versuskc/ωe, takingθ = 70◦ and

βe = 0.2. The corresponding whistler dispersion (real and
imaginary parts of the frequency) is shown in the top panel.
For comparison, the outcome of the cold plasma theory is
drawn as thin lines. The straight dashed line in the middle
panelE′

x/E
′
y = i, which belongs to a cold plasma, means

that the whistler waves are right-hand circularly polarized
in a plane normal to the wave propagation direction. That
is generally valid, independent of the propagation angle and
wave number. The situation becomes more complicated for
finite electron plasma beta (βe) as indicated by the appear-
ance of the complex amplitude ratio (thick solid and dashed
lines). The polarization in the x′-z′ plane, on the other hand,
is linear in the cold plasma approximation (thin solid line
in the bottom panel); it varies fromE′

z/E
′
x = tanθ at k = 0

to E′
z/E

′
x = 2tanθ at the Gendrin pointkc/ωe= 1 indicating

the existence of a dominant longitudinal electric field compo-
nent at highly oblique propagation. With increasing electron
temperatures, the ratioE′

z/E
′
x becomes increasingly mod-

ified due to the fact that real and imaginary parts become
comparable.

3 Whistler oscillitons (Nonlinear Gendrin modes)

Whistler oscillitons are stationary nonlinear structures, like
solitons but superimposed by spatial oscillations, as first de-

Fig. 6. Dispersion and polarization of whistler waves:θ = 70◦,
βe = 0.2. From top to bottom: frequency and amplitude ratios
(E′

z/E
′
x ) and (E′

x/E′
y ) representing the polarization in the z′-x′ and

x′-z′ plane, respectively. Note, that the polarization has been calcu-
lated in a coordinate system in which thek-vector is directed along
the (new) z′-axis, which is rotated by the angleθ with respect to
the magnetic field direction. Solid (thick) lines mark the real parts,
dashed lines the imaginary parts of the three complex quantities.
The thin (solid and dashed) lines denote the outcome of cold plasma
theory.

scribed in papers by Sauer et al. (2002) and Dubinin et
al. (2003). A necessary condition for the existence of os-
cillitons is a particular dispersion behavior of the underlying
wave mode in such a way that the dispersion curveω = ω(k)

contains a point in which phase and group velocity coin-
cide. For whistlers, that is the case atkc/ωe = 1, inde-
pendent of the propagation angle. As already mentioned in
Sect. 2.1, the corresponding waves are also called Gendrin
modes (Gendrin, 1961). Their physical relevance has re-
cently been discussed in a paper by Verkhoglyadova and Tsu-
rutani (2009). Several indications brought us to the conclu-
sion that the nonlinear saturation of beam-excited whistlers at
oblique propagation may be directly associated with the for-
mation of whistler oscillitons (a kind of nonlinear Gendrin
mode wave). One hint came from our earlier studies of the
nonlinear behavior of parallel propagating whistlers which
are excited by another type of instability, namely by a tem-
perature anisotropy (Sydora et al., 2007). Using PIC simula-
tions we have shown that the anisotropy instability saturation
leads to quasi-stationary structures which have signatures of
whistler oscillitons. An interesting effect of the formation of
oscilltons concerns the observed wave number shift. If the in-
stability has a maximum growth at wave numberskc/ωe> 1,
for example, a shift tokc/ωe∼ 1 takes place and, finally, the
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Fig. 7. (a)Dispersion relation of whistler waves at oblique prop-
agation (θ = 70◦): normalized frequency (solid line) and phase
velocity (dashed line) versus wave numberk (in units of the electron
skin lengthc/ωe). Maximum phase velocity is atkc/ωe= 1. b) Dis-
persion relation of stationary whistlers:k = k(U); kr (solid line),ki

(dashed line) are the real and imaginary parts ofk, respectively,
whereU is the velocity of the moving frame. Exponentially grow-
ing solutions (ki 6= 0) superimposed by spatial oscillations (kr 6= 0)
exists forU/VAe ≥ 0.17. That is the region where whistler oscilli-
tons are expected.

resulting waveform of the quasi-stationary state can well be
fitted by spatial profiles of whistler oscillitons. We anticipate
a similar situation for beam-excited whistlers where the opti-
mum growth rate is already close tokc/ωe = 1, independent
of the beam velocity; see Fig. 3.

We begin with a few simple results from linear disper-
sion theory which allows for the determination of conditions
under which whistler oscillitons may exist. In Fig. 7a the
frequency (solid line) and phase velocity (dashed line) of
whistlers are plotted versuskc/ωe for a propagation angle
of θ = 70◦. As can be seen, the phase velocity (vph) has a
maximum atkc/ωe = 1 and reachesvph/VAe ∼ 0.17 at that
wavenumber. Periodic waves with higher phase velocities
do not exist. But this is just the region of stationary waves
which have no time dependence in a frame that moves with
a velocityU larger than the maximum phase velocity, that
is U ≥ 0.17VAe. For the transition to a moving frame, in
the dispersion relationω = ω(k) one has to replaceω by
ω = ω′

+kU (with ω′
= 0 for stationary waves), and a rela-

tion for k = k(U) is obtained, which is plotted in Fig. 7b. In
the regionU ≥ 0.17VAe the wave numberk is complex which
means growing solutions with the incrementki are superim-
posed by spatial oscillations whose wavelengthλ is deter-
mined byλ = 2π/kr . It should be noted that near the border

between periodic and stationary waves the wave numberkr

is always given bykrc/ωe ∼ 1.
The next step is to calculate the spatial profiles of whistler

oscillitons. To derive the governing equations which describe
stationary nonlinear whistlers, one starts from the fluid equa-
tions of electrons and protons together with the Maxwell
equations. Opposite to the assumptions in earlier papers
(Sauer et al., 2002; Dubinin et al., 2003), the analysis is car-
ried out in the plasma rest frame in which the structure moves
with the velocityU in x-direction. The undisturbed magnetic
field lies in the x-z plane and is inclined by the angleθ rel-
ative to the x-axis,B = Bo(cosθ,0,sinθ). Looking for sta-
tionary waves means finding solutions of the Maxwell-fluid
equations in which the time dependence appears only in the
form f (x −Ut). Since the more general formalism has been
described in earlier papers, only a summary of equations is
given which we used for our calculations and which we need
for later discussion.

The transverse velocities (velocity components transverse
to the propagation directionx) of both species are calculated
by means of ordinary differential equations which directly
follow from the basic fluid equation using the ansatz of sta-
tionary solutions (∂/∂t → −Ud/dx)

dve,py

dx
=

qe,p

µe,p
(Ey −ve,pxBz +ve,pzBx)/(Me −ve,px) (8)

dve,pz

dx
=

qe,p

µe,p
(Ez −ve,pxBy +ve,pyBx)/(Me −ve,px) (9)

The velocities are normalized by the (electron) Alfvén
velocity based on the electron mass density,VAe =

Bo/(µoneome)
1/2. The electric field is given in units ofEo =

VAeBo, the magnetic field is normalized byBo. Me= U/VAe
is the electron Mach number of the moving structure at infin-
ity. The other quantities are the electric charge and the mass
of electrons and protons in units of the electron mass, respec-
tively: qe= −1,qp = +1,µe= 1,µp = mp/me.

From Faraday’s law one gets

Ey = Me(Bz −Bzo), Ez = −MeBy (10)

The longitudinal electric field componentEx can be deter-
mined from the transverse field conditionE×B = 0, that is

Ex = −(EyBy +EzBz)/Bx = −Me tanθBy

= tanθEz (11)

Conservation of mass and (longitudinal and transverse) mo-
mentum together with the quasi-neutrality conditionnp = ne,
combined with zero current in x-direction,jx = 0, which
yields vex ≈ vpx , one gets the following equations for the
remaining quantitiesvpx,By,Bz as follows

vpx ≈ vex =
1

2Meµp

(B2
−1) (12)

By = −Me(µpvpy +µevey)/Bx (13)

Bz = −Me(µpvpz +µevez)/Bx (14)
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Fig. 8. Spatial profiles of whistler oscillitons forθ = 70◦ andU =

0.172VAe. From top to bottom: proton density(np − npo)/npo,
three components of the electric field (in units ofEo = VAeBo) and
the magnetic field componentBy/Bo. The right panels show the
hodographsBz versusBy , Ex versusEz, andEz versusEy .

If the propagation angle is chosen, the only free parameter in
the system of equations above is the velocity of the moving
structure,Me, also called the oscilliton speed. For a propaga-
tion angle ofθ = 70◦, taken from Fig. 7 of the previous sec-
tion, whistler oscillitons should exist forMe≥ 0.17. In Fig. 8
the corresponding spatial profiles of the electric and mag-
netic field components are plotted usingMe = 0.172. They
clearly exhibit a soliton-like structure with superimposed os-
cillations representing the expected nonlinear configuration
in the form of a whistler oscilliton.

One has to take in to consideration that the oscilliton pro-
file (amplitude and extension of the nonlinear wave packet)
varies if the oscilliton speedMe changes. This is depicted
in Fig. 9 where the spatial profile of the longitudinal elec-
tric field amplitudeEx/Eo is plotted for three values ofMe
which are all slightly aboveMe = 0.17, but close together
(Me = 0.1718,0.1721,0.1723). As one would expect from
Fig. 7b, the wavelength always remains the same and is
given by krc/ωe ∼ 1. In comparison, the oscilliton wave-
form (amplitude and spatial extent) changes considerably.
An increase of the amplitude is accompanied by a larger

Fig. 9. Spatial profiles of the longitudinal electric field component
(in units of Eo = VAeBo) for three values of the oscilliton speed
Me = U/VAe. Obviously the waveform is very sensitive to values
of Me. ForMe≥ 0.1725 whistler oscillitons no longer exist.

wavepacket length and the latter changes from about 7 to 20
wavelengths. If one selects a waveform with an extension
of about 10 wavelengths, for fitting with the observations
of Catell et al. (2008), one finds an associated amplitude of
Ex/Eo ≈ 0.01. For oscillitons speeds ofMe ≥ 0.1725 it was
not possible to find any more stationary solutions.

Additional information about the wave characteristics can
be obtained from the hodograms on the right hand side of
Fig. 8. As clearly seen, the wave is circularly polarized in
the plane perpendicular to the propagation direction and has
a significant electric field component parallel to this direc-
tion. The straight line in the middle of the hodogram rep-
resentsEx = tanθEz according to Eq. (11). A comparable
polarization is obtained in the paper by Verkhoglyadova and
Tsurutani (2009) in the context of the Gendrin mode analy-
sis.

4 Summary and discussion

In this paper, the excitation of whistler waves by an isotropic
electron beam parallel to the ambient magnetic field has
been studied. Instability occurs for the case of oblique wave
propagation due to the interaction of the Doppler-shifted cy-
clotron modeω = −�e+ kVbcosθ with the whistler mode;

www.ann-geophys.net/28/1317/2010/ Ann. Geophys., 28, 1317–1325, 2010



1324 K. Sauer and R. D. Sydora: Beam-excited whistler waves

Fig. 10. Measured waveform (top) and hodogram (bottom) of the
maximum component versus the intermediate component for the
time interval above (adapted from Cattell et al., 2008). The first
additional scale is obtained by multiplying the time (from zero to
0.005 s) with the electron cyclotron frequency of�e= 6×104 s−1

according to a magnetic field ofBo ∼ 320 nT. The second spatial
scale, in units of the electron skin depthc/ωe, follows directly from
the upper one by multiplying it with a normalized phase velocity of
Vph/VAe = 0.2 and allows a direct comparison with the oscilliton
waveform plotted in Figs. 8 and 9.

its maximum growth rate is atkc/ωe ∼ 1. In addition, at
the particular wave numberkc/ωe= 1, the so-called Gendrin
mode waves exist. The group velocity of such waves is di-
rected along the magnetic field and coincides with the com-
ponent of the phase speed parallel to the magnetic field. This,
in turn, is a necessary condition for the appearance of station-
ary nonlinear waves (whistler oscillitons) which, therefore,
can be considered as nonlinear Gendrin modes. In this con-
text, the dispersion relation of beam-excited whistler waves
in a cold plasma has been analyzed leading to relations be-
tween the beam speed and wave propagation characteristics
(frequency, growth rate, phase velocity, propagation angle).
In addition, the Vlasov approach is applied to check the mod-
ifications due to thermal effects. Finally, using a fluid ap-
proach, spatial profiles of obliquely propagating whistler os-
cillitons have been calculated.

Our studies of beam-excited whistler waves have been
stimulated by the recent satellite measurements in the Earth’s
radiation belt. Catell et al. (2008) describe the discovery
of large-amplitude whistlers aboard the satellite STEREO-B
with peak amplitudes of approximately 240 mV/m. During
the passage through the radiation belt, a sequence of wave-

form samples have been obtained using the Time Domain
Sampler (TDS). As an example, the maximum variance com-
ponent and the hodogram of that component versus the inter-
mediate component for the same time interval is shown in
Fig. 10. A characteristic feature is the occurrence of wave
packets with varying shapes and durations. The peak fre-
quency for all TDS measurements wasω ∼ 0.2�e. A remark-
able feature is that the waves propagate very oblique to the
geomagnetic field with a propagation angle (θ ) ranging from
45◦ to 60◦. From the estimated phase velocity (vph) between
35 000 and 70 000 km/s and an electron Alfvén velocityVAe
of about 135 000 km/s (usingne=4 cm−3 and B = 300 nT)
one obtains a ratio ofVph/VAe ∼ 0.2−0.4. These values can
be used to check whether the conditions for Gendrin mode
waves, expressed by Eq. (5), are fulfilled. If we assume a
(Gendrin) propagation angleθ = 60◦, then the associated fre-
quency and phase velocity are given byω/�e = vph/VAe =

cos(60◦)/2= 0.25, a value relatively close to that of the mea-
surements and estimations, respectively. The required beam
velocity, according to Eq. (6), would beVb/VAe ∼ 2.5 and
corresponds to about 0.3 MeV. Whether such beams which
lie in the range of relativistic velocities (Vb > 1010 cm/s) re-
ally exist is presently an open question. Another critical
problem concerns the electron temperature. With the mea-
sured radiation belt density and magnetic field parameters
given above, the temperature should not exceed 10 keV to re-
main in the unstable range ofβe≤ 0.2. This value is too low
for the typical substorm situation and one may ask whether
the whistler excitation mechanism considered here requires
particular radiation belt conditions.

In this context, the solar wind appears to be another suit-
able medium to analyze the origin of coherent obliquely
propagating whistlers. First examples of simultaneous mea-
surements of large-amplitude whistler wave packets propa-
gating slightly oblique to the magnetic field and beam-like
electron distribution functions have been presented by Cat-
tell et al. (2009). Dispersion analysis withβe ≤ 0.5 shows
that instability at smallk (kc/ωe ≤ 0.2) appears if moderate
beam densities (nb/no ∼ 0.05) are taken. It seems that these
waves play an important role in understanding the evolution
of the solar wind, especially with respect to the strahl and
halo properties and heat flux regulation.

Returning to the STEREO radiation belt observations,
Fig. 10 shows a measured whistler waveform together with a
hodogram adapted from the paper by Catttell et al. (2008).
For comparison with the oscilliton waveform plotted in
Figs. 8 and 9, the originally measured temporal variation
is transferred to a spatial waveform by assuming that the
structure is stationary in a frame moving with the phase
velocity. If for the present case a phase (oscilliton) velocity
of vph/VAe = 0.2 is assumed, the resulting waveform is in
good agreement with the spatial profiles of whistler oscilli-
tons (see Figs. 8 and 9). In particular, it means, that the wave-
length is specified bykc/ωe ∼ 1, which is clear evidence of
Gendrin mode waves and their importance for whistler wave
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emission. This aspect has also been discussed in the paper
by Dubinin et al. (2007).

Another interesting signature which one has to note is the
observed ratio between the longitudinal and transverse elec-
tric field amplitudes (with respect to the wave propagation
direction) as depicted in Fig. 10. The hodogram of the max-
imum variance component versus the intermediate compo-
nent for the time interval shown above can roughly be ap-
proximated by a straight line,Ex ∼ 3Ez. This would indicate
linear polarization, close to the theoretical amplitude ratio of
Eq. (11);Ex = tanθEz. To understand what the amplitudes
of the electric field components in Fig. 8,Ei/E0, mean in
real units (V/m), reasonable values forne0 andB0 have to
be taken to calculateE0 = VAeB0. Again, we use the pa-
rameters of the Earth’s radiation belt described in the paper
by Catell et al. (2008):ne0= 4 cm−3 andB0 = 300 nT. For
these parameters one getsE0 = 45 V/m and an amplitude of
Ex/E0 = 0.01 for the longitudinal field. This corresponds
to Ex ∼ 450 mV/m, which is a value less than twice the
measured electric field of∼240 mV/m and this corresponds
well considering the assumptions of the model. Of course,
these simple estimations from cold plasma theory are very
crude. More detailed polarization analysis using the Vlasov
approach has shown that significant modifications arise if ki-
netic effects become more important with increasing electron
temperature.

Finally, we want to point out that a subsequent paper
is in preparation in which particle in-cell simulations are
used to calculate the quasi-stationary states of beam-excited
whistlers. The kinetic PIC simulations (Sydora et al., 2007)
make it possible to calculate the whistler waveforms and am-
plitudes and their dependence on the most relevant parame-
ters of the background plasma and the beam, including ther-
mal effects.
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