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Abstract. We present a study of Broad-Band Extremely Low
Frequency (BB-ELF) electric fields in the mid-altitude (4–6
Earth radii) cusp during periods of southward interplanetary
magnetic field, using data from the Cluster spacecraft. Mag-
netospheric boundary layers are identified and classified ac-
cording to particle precipitation characteristics. We find that
the BB-ELF is contained within the cusp ion precipitation
region, and its onset is closely co-located with the equator-
ward edge of the cusp ion dispersion signature. Previous
studies have shown a positive correlation between BB-ELF
and downward ion number flux. In this study, we compare
the correlation coefficients of BB-ELF wave power versus
the ion number and energy fluxes for upward, downward and
total field-aligned fluxes. There is a greater degree of cor-
relation between the total field-aligned flux and wave power
than between the downward flux and wave power, which in-
dicates that the BB-ELF wave generation is independent of
ion beam direction. Our results support the idea of a local
ion – BB-ELF wave interaction.

Keywords. Magnetospheric physics (Energetic particles,
precipitating) – Space plasma physics (Wave-particle inter-
actions)

1 Introduction

A commonly occurring feature in the precipitation regions
near the open-closed field line boundary (OCB) is intense
low-frequency fluctuations of the electric field. It has been
observed at altitudes ranging from the ionosphere up to 10
Earth radii (e.g.Gurnett and Frank, 1977; Maynard et al.,
1982; Sugiura et al., 1982; Gurnett et al., 1984; Marklund
et al., 1990; Matsuoka et al., 1991, 1993; Kintner et al., 1996;
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Stasiewicz et al., 2000; Ivchenko and Marklund, 2001; Gri-
son et al., 2005).

This kind of fluctuations is commonly referred to as broad-
band extremely low frequency (BB-ELF) electric fields (e.g.
Wahlund et al., 1998; Knudsen et al., 1998; Kintner et al.,
2000; Lund et al., 2000; Lynch et al., 2002; Hamrin et al.,
2002; Bogdanova et al., 2004; Burchill et al., 2004; Back-
rud et al., 2005; Tam et al., 2005). The term BB-ELF has
been used to refer to different frequency ranges by differ-
ent authors, but generally it covers a frequency range from
below the ion cyclotron frequency to above the ion plasma
frequency.

Ivchenko and Marklund(2001) analyzed 6 months of elec-
tric and magnetic field measurements from the Astrid-2 mi-
crosatellite, whose orbit was at an altitude of 1000 km. They
found that low frequency electromagnetic activity was per-
sistently observed in the cusp region, but for periods of high
geomagnetic activity also in the rest of the auroral oval. They
suggested that the fluctuations were caused by the energy and
plasma influx from the magnetosphere.

Miyake et al. (2003) surveyed the statistical properties
of intense low-frequency electric field fluctuations at alti-
tudes from 5000 to 10 000 km, using data from the Akebono
(EXOS-D) satellite. They found that the fluctuations were
most commonly observed in the prenoon cusp region, and
noted that their dependence on the interplanetary magnetic
field (IMF) and solar wind plasma parameters was similar to
that of the ion outflow.

Golovchanskaya et al.(2006) statistically connected high-
latitude electric and magnetic fluctuations to Birkeland field
aligned currents, and noted that they occurred in an oval sim-
ilar to the auroral oval and that they were insensitive to the
direction of the field aligned current.

Kasahara et al.(2001) analyzed data from from Akebono,
which orbited in the altitude range of 270–10 000 km, and
found broadband low-frequency noise in the auroral region
to be closely correlated with transverse acceleration of ions
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(TAI). They found the broadband noise to occur in the auroral
oval and the cusp, with the most intense noise located in the
cusp region.

Using the SCIFER rocket, which was launched into the
prenoon cleft and reached an altitude of 1400 km,Kintner
et al. (1996) demonstrated that there are narrow regions of
TAI closely correlated with broadband low frequency electric
fields and reduced density.

Matsuoka et al.(1993) investigated the relation between
electric field fluctuations and particle precipitation in the
cusp, using data from Akebono in the altitude range of 6000–
10 000 km. They found a positive correlation with the precip-
itating ion flux. The correlation was best, and the fluctuation
most intense, for southward IMF. They identified the fluctu-
ations as Alfv́en waves with a downward Poynting flux, and
since they did not find a specific frequency peak in the power
spectral density (PSD) they concluded that the waves are pos-
sibly generated in association with the plasma injection at the
magnetopause.

Wahlund et al.(1998) analyzed data from two orbits of the
Freja spacecraft, which had an apogee of 1750 km. They
found the BB-ELF emissions to consist of several wave
modes, and suggested a scenario where slow kinetic Alfvén
waves cause intense transverse ion heating via BB-ELF emis-
sion.

Knudsen et al.(1998) found correlation between core
ion energization, suprathermal electron bursts, and BB-ELF
waves in the cusp, using data from the Freja spacecraft. In
a similar study using data from Cluster at 4RE, Bogdanova
et al.(2004) found correlation between suprathermal electron
bursts, local ion heating, and BB-ELF waves.

Grison et al.(2005) and Sundkvist et al.(2005) investi-
gated electromagnetic waves at frequencies near the proton
cyclotron frequency in the cusp at 8–10RE altitude. Both
found the waves to be Alfv́en waves below the proton cy-
clotron frequency and Bernstein waves above, and presented
evidence of local wave generation.Grison et al.(2005) sug-
gested a coupling between the observed waves and ion heat-
ing.

The main objective of the present work is to reinvestigate
the correlation between the ion flux and the BB-ELF wave
power using Cluster data.Matsuoka et al.(1993) found BB-
ELF to be correlated with the cusp ion and electron precipita-
tion, but that the correlation coefficients varied from case to
case, exceeding 0.5 in only half the cases. When investigat-
ing the correlation to BB-ELF, they considered the precip-
itating (downward) number flux. However, if the BB-ELF
waves are generated locally by ion beams, as suggested by
Grison et al.(2005) andSundkvist et al.(2005), the beam
direction should not matter.

Despite the availability of an increasing amount of high
quality satellite data there has been made no further attempts
to quantify the relationship between cusp ion fluxes and BB-
ELF wave power afterMatsuoka et al.(1993). In this study
we will advance the work by Matsuoka et al. by considering

both ion number and ion energy fluxes for upward, down-
ward and total field-aligned fluxes. As mentioned above, the
BB-ELF phenomenon has been roughly addressed to the au-
roral zone and is frequently associated with cusp ion pre-
cipitation. Here we make the first attempt to place the occur-
rence of BB-ELF waves in context of the open-closed bound-
ary (OCB) and in relation to the equatorward and poleward
edges of the cusp ion dispersion signature. We will demon-
strate that the correlation between BB-ELF wave power and
ion fluxes maximize when we treat cusp events individually.

The data analysis methods used are presented in Sect.2.
The results are presented in Sect.3 and discussed in Sect.4,
followed by a brief summary in Sect.5.

2 Data analysis

2.1 Data selection criteria

This study is based on data from the Cluster mission (Cred-
land et al., 1997; Credland and Schmidt, 1997) between the
years 2001 to 2005. The orbit of the Cluster spacecraft passes
the mid-altitude (in this paper defined to be 4–6 Earth radii)
cusp area in the autumn, so cusp passes in the months from
July to November were investigated. This study focuses on
crossings where the IMF was stable and oriented southward,
(clock angles 135–225 degrees) in favor of magnetopause re-
connection. Some crossings were eliminated due to lack of
electric field data, IMF data or particle data. The final set of
data comprises 59 cusp passes, 15 of which lack ion data and
thus are useful only for comparing the onset of BB-ELF to
the OCB. In order to compare the occurrence of BB-ELF to
the cusp ion dispersion region, the ion spectra must be suffi-
ciently clear to allow identification of its latitudinal span. For
the correlation analysis, the data quality requirements were
higher, and only data from 24 cusp passes cases were used.

Electric field data are provided by the Electric Fields and
Waves (EFW) instrument (Gustafsson et al., 1997). Ion
spectra are provided by the ion spectrometer (CIS) (Reme
et al., 1997) and are used for identification of the cusp ion
dispersion signature. Electron spectra are provided by the
electron spectrometer (PEACE) (Johnstone et al., 1997) and
are the primary means of OCB identification. The sec-
ondary means of OCB identification are high-energy electron
measurements from the RAPID instrument (Wilken et al.,
1997). Interplanetary magnetic field data are provided by
the ACE satellite (Chiu et al., 1998; Smith et al., 1998). The
timeshifted ACE data were obtained from the GSFC/SPDF
OMNIWeb database.

2.2 Location of the BB-ELF region relative to the cusp
ion dispersion region and the OCB

For each crossing the time at which the spacecraft crossed
the OCB, and the start and end times of the ion dispersion
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Fig. 1. An example of a cusp pass, with vertical lines marking the boundaries of interest.1: The open/closed boundary. Identified by the
magnetosheath electron edge and by the drop in energetic electron flux.2: The start of the cusp ion dispersion, in this case coinciding with
the onset of BB-ELF.3: The end of the BB-ELF region.4: The end of the cusp ion dispersion.
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Fig. 2. Pitch angle distribution, omnidirectional flux, downward/upward fluxes and 60 s averaged downward/upward fluxes, for number flux
in the left column and energy flux in the right column. For the data in this figure, a pitch angle of 0 is downwards and a pitch angle of 180 is
upwards.

region and the BB-ELF region, are noted. The BB-ELF re-
gion is identified by rapid variations of the electric field with
amplitudes significantly greater than the background. Am-
plitudes being consistently greater than 10 mV/m has been
used as a guideline, but each case was manually inspected.
Figure1 shows an example of the times corresponding to the
different boundary crossings used in this study. The OCB is
identified by the electron edge as seen by PEACE and con-
firmed by the drop in the high-energy electron flux measured
by RAPID (Lockwood, 1997; Onsager and Lockwood, 1997;
Moen et al., 1996, 2004; Bogdanova et al., 2004).

The noted times are converted into the magnetic local time
(MLT) and invariant latitude (ILAT) of the various observed
boundaries, allowing comparison of the magnetic positions
of the OCB, the BB-ELF region and the poleward and equa-
torward edges of the energy dispersed cusp ion injections.

2.3 Correlation between BB-ELF wave power and ion
fluxes

To investigate the connection of the BB-ELF to particle
fluxes, correlation coefficients (Pearson’sr) were calculated
for the BB-ELF wave power versus downward, upward and
total field-aligned ion fluxes, considering both number and
energy fluxes. Note that the total field-aligned flux is not
the net flux, but a sum of the absolute upward and down-
ward fluxes. More on this, as well as the details of the ion
data sources and the flux calculations, is located in the ap-
pendix. Calculations were performed using a sliding win-
dow, in which the correlation coefficients between the aver-
age power of the electric field in the range 0.75 Hz–11 Hz
and the average fluxes of ions were computed. The lower
limit of the frequency range has been chosen to avoid any er-
roneous signals due to the spacecraft spin, which is roughly
0.25 Hz. When operating in normal mode, the electric field
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Fig. 3. Plots of BB-ELF wave power versus ion fluxes for the 6 September 2001 cusp pass by Cluster 4. The top row shows ion energy flux,
the bottom ion number flux. The four columns show how the correlation varies with different time averaging. For each panel the x-axis is the
logarithm of the average flux within the window and the y-axis is the logarithm of the average electric field power in the range 0.75–11 Hz
within the window. The data is plotted as points, and the lines are linear fits. Above each panel is the correlation coefficient (CC) for the
linear fit shown in that panel.

experiment on Cluster has a sampling rate of 25 Hz. The up-
per limit of the chosen frequency range is slightly below the
resulting Nyquist frequency. Figure2 shows an example of
the pitch angle distribution of the number and energy fluxes,
as well as the effect of a 60 s averaging of the downward and
upward number and energy fluxes.

The CIS instrument is mounted on the side of the Clus-
ter spacecraft, and thus requires at least one spin period to
collect a full ion distribution (Reme et al., 1997). This sets
a lower limit of 4 s on the sampling time of the ion data.
Sometimes, several spins are required. If the calculations are
performed at the measurement limit of the instrument, the

correlation will not be good. Averaging over several samples
yields better correlation coefficients. If viewed as a function
of the window size (i.e. time averaging) the correlation rises
sharply at first and then levels off, in those cases where there
is a definite correlation to be found. The correlation coeffi-
cient plateau was reached for time averages between 20 and
60 s. See Fig.3 for an example of this behavior.
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Fig. 4. Histogram of the latitudinal distance between the OCB and
the onset of the BB-ELF activity. A negative value means the BB-
ELF starts poleward of the OCB.

9 10 11 12 13 14 15
0.5

1

1.5

2

2.5

3

3.5

4

4.5

(d
eg

re
es

)

MLT

Latitudinal extent of the BB−ELF region

 

 

Data
Average ILAT size
1 standard deviation

Fig. 5. The latitudinal extent of the BB-ELF region as a function
of MLT. The solid line shows the average value for each 1-h bin,
with ± one standard deviation shown by the dashed line. There is
a clear tendency towards a broader region around noon, but with a
large variation in latitudinal extent from case to case.

3 Results

3.1 Location of the BB-ELF region relative to the cusp
ion dispersion region and the OCB

Figure4 shows the latitudinal distance between the OCB and
the equatorward boundary of the BB-ELF region. The latitu-
dinal difference is mostly less than 1 degree.
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Fig. 6. Histogram of the latitudinal distance between the onset of
the cusp ion dispersion and the onset of BB-ELF. A negative value
means the BB-ELF start poleward of the onset of ion dispersion.

Figure5 shows the latitudinal extent of the BB-ELF region
as a function of the MLT at which the OCB is observed. The
boundary crossings were almost along the magnetic meridian
and hence the change in MLT during each pass was negligi-
ble. There is a large spread in the data points but the average
value for the BB-ELF latitude span shows a clear maximum
around noon.

Figure6 shows the latitudinal distance between the bound-
aries corresponding to the onset of the ion dispersion and the
onset of the BB-ELF. For most cases, they are co-located. In
the other cases, the BB-ELF is always preceded by the ion
dispersion. The offset in the latitude of these two boundaries
is small, with a mean value of 0.06 degrees.

Figure7 shows the latitudinal distance between the bound-
aries corresponding to the poleward end of the cusp ion dis-
persion signature and the poleward edge of the BB-ELF re-
gion. There is a greater spread in the offset of these two
boundaries at the poleward end than was the case on the
equatorward side, with a mean value of 1.5 degrees. How-
ever, the poleward edge of the ion dispersion signature is not
so sharp and well defined as the equatorward ion edge. No-
tably, the ion dispersion signature always extends poleward
of the BB-ELF region.

A byproduct of this study is a statistical measure of the
width of the magnetosheath electron edge. In a statistical
study of the electron edge,Bogdanova et al.(2006) found
its latitudinal extent to vary between 0 and 2 degrees ILAT,
with a median of 0.2 degrees. For the data in this study, it
varies between 0 and 2.25 degrees ILAT, with a median of
0.38 degrees.
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Table 1. Each row shows a summary of the correlation coefficients of the Power Spectral Density (PSD) of the electric field fluctuations
around 1 Hz versus one type of ion flux, with each column containing the number of cases with a correlation within the interval shown
in the column header. 30 s averages of the wave power and flux levels were used for the calculations. The total number of cases is 26.
“field-aligned” flux is the sum of the absolute values of upward and downward flux. A summary of the correlation results ofMatsuoka et al.
(1993) have been included for comparison.

PSD vs.
Correlation, using 30 s averaging. # of cases.

< −0.8 −0.8 to−0.6 −0.6 to−0.4 None 0.4 to 0.6 0.6 to 0.8 >0.8

Energy flux, downwards 0 2 1 6 5 7 5
Energy flux, field-aligned 0 1 2 7 5 2 9
Number flux, downwards 0 0 2 5 6 5 8
Number flux, field-aligned 0 0 0 4 7 4 11

From Matsuoka, Fig. 10 11 7 9 3

3.2 Correlation between BB-ELF wave power and ion
fluxes

For some cusp passes the cusp contained additional injection
events. Treating these as one event will result in very poor
correlation, so they must be carefully separated, if possible.
Figure 8 shows the Cluster 1 10 September 2002 pass, in
which particles coming from two injection events are seen.
This pass has been split into two events, as indicated by the
red boxes. When treated as one event, the correlation co-
efficient of the BB-ELF wave power versus the total field-
aligned ion number flux, using 30 s averages, was 0.12. Af-
ter splitting into two events, the correlation coefficients were
0.37 and 0.93, respectively.

Table1 shows the number of cases with various sign and
strength of the correlation between the BB-ELF wave power
and the energy and number fluxes. The results ofMatsuoka
et al.(1993) have been included here for comparison. For this
table 30 s averages were used for the calculations to facilitate
comparison with Matsuoka et al., who used 28 s averages for
their calculations. Table2 shows the same as the previous
table, but for 60 s averages. This ensures that the correlation
has reached the plateau level for all cases. Upward fluxes
were found to have similar or less correlation than the down-
ward fluxes and are not shown. The field-aligned fluxes show
higher degrees of correlation than the downward fluxes. To
show this more clearly, the results shown in Table2 were fil-
tered using the Student’s t-test. Only correlation coefficients
with a significance level of 95% or greater were kept, and the
correlation values greater than 0.6 were sorted using smaller
correlation coefficient bins. The result of this is shown in
Table3.

4 Discussion

Ivchenko and Marklund(2001) used 6 months of data from
the Astrid-2 microsatellite to study low frequency electric
and magnetic field fluctuations in the high-latitude iono-
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Fig. 7. Histogram of the latitudinal distance between the poleward
end of the cusp ion dispersion and the poleward end of the BB-ELF
region. A positive value means the ion dispersion extends poleward
of the BB-ELF region.

sphere at 1000 km altitude. They found that this phenomenon
had a high occurrence rate in the dayside cusp/cleft region,
but was also found in the nightside auroral oval.Miyake
et al.(2003) used data from Akebono at an altitude of 5000 to
10 000 km to study low-frequency electric field fluctuations
around the dayside cusp/cleft region. They found that the
phenomenon occurred at lower altitudes for negativeBz than
for positiveBz, and noted that it was associated with the cusp.
The occurrence of broadband electric field fluctuations in the
auroral oval and the cusp has also been noted byGolovchan-
skaya et al.(2006) andKasahara et al.(2001). However, none
of these studies investigated the exact positioning of the fluc-
tuations in regards to the cusp, as their main focus was on
other issues.
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Fig. 8. The cusp pass of 10 September 2002. In the downward ion flux, two distinct injection events are clearly visible. The time intervals
used when studying the correlation between BB-ELF power and ion flux are marked with red boxes. Note that these do not correspond
exactly to the BB-ELF region defined in Fig.1. The first box starts 30 s later than the onset of BB-ELF as shown in that figure, and there is a
30 s gap between the first and second box. This was done to avoid the transition areas.

In this study a detailed account of the location of the BB-
ELF region with regard to the OCB and the cusp ion injection
region has been presented. The BB-ELF region is contained
within the cusp ion dispersion region, and was always present
for the cases examined. The equatorward edge of the fluctua-
tions corresponds closely to the equatorward edge of the cusp
ion dispersion region, while the poleward edge of the fluctu-
ations may deviate from the poleward edge of the cusp ion
dispersion region by several degrees.

Electrons of magnetosheath origin will arrive in the iono-
sphere almost immediately after reconnection and hence rep-
resents the most accurate observable proxy of the OCB and
is often referred to as the “low energy electron edge” of the

LLBL (e.g. Lockwood, 1997; Topliss et al., 2001; Sandholt
et al., 2002; Moen et al., 2004; Bogdanova et al., 2006).
When no electron spectra are available, ion spectra may be
used instead. As the onset of BB-ELF correspond closely to
the onset of ion dispersion, it may serve as a proxy for the
OCB such as the equatorward ion edge does. For this pur-
pose, its accuracy would be about the same as the accuracy
of the ion spectra, which have a maximum discrepancy of up
to 2 degrees around magnetic noon.

The correlation between BB-ELF power and ion fluxes has
been studied. Different frequencies of the BB-ELF are linked
by power laws, as seen in Fig.9. The break seen in the graph
is a common signature of spectra in the cusp, and this kind
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Table 2. Each row shows a summary of the correlation coefficients of the Power Spectral Density (PSD) of the electric field fluctuations
around 1 Hz versus one type of ion flux, with each column containing the number of cases with a correlation within the interval shown
in the column header. 60 s averages of the wave power and flux levels were used for the calculations. The total number of cases is 26.
“field-aligned” flux is the sum of the absolute values of upward and downward flux.

PSD vs.
Correlation, using 60 s averaging. # of cases.

< −0.8 −0.8 to−0.6 −0.6 to−0.4 None 0.4 to 0.6 0.6 to 0.8 >0.8

Energy flux, downwards 2 1 0 4 5 4 10
Energy flux, field-aligned 1 1 1 5 3 4 11
Number flux, downwards 0 1 1 4 2 8 10
Number flux, field-aligned 0 0 1 2 3 6 14

Table 3. Each row shows a summary of the correlation coefficients of the Power Spectral Density (PSD) of the electric field fluctuations
around 1 Hz versus one type of ion flux, with each column containing the number of cases with a correlation within the interval shown in
the column header. 60 s averages of the wave power and flux levels were used for the calculations. Only correlation coefficients with a
significance level of 95% or greater are included in this table. “field-aligned” flux is the sum of the absolute values of upward and downward
flux.

Correlation with significance≥95%

PSD vs.
using 60 s averaging. # of cases.

0.6 to 0.7 0.7 to 0.8 0.8 to 0.9 >0.9

Energy flux, downwards 2 0 6 2
Energy flux, field-aligned 3 1 5 5
Number flux, downwards 5 2 5 4
Number flux, field-aligned 4 1 4 7

of double slope behavior is common in turbulent plasmas in
general (e.g.Markovskii et al., 2008; Schekochihin et al.,
2009; Shaikh and Zank, 2009and the references therein). It
signifies a different set of processes taking place at the dif-
ferent frequency ranges, the details of which are outside the
scope of this study. The break occurs in the vicinity of the
ion gyrofrequency, which changes with altitude.Nykyri et al.
(2006) found that turbulent magnetic fields in the cusp were
correlated with the field-aligned ion flux, and had a break in
the power spectrum in the vicinity of the local ion cyclotron
frequency. They showed that the break could be caused by
damping of kinetic Alfv́en waves and ion cyclotron waves.

The cusp may contain several injection events (Escoubet
et al., 2008). The relation between ion fluxes and BB-ELF
power may be different for each of these, and so they must
be separated for a successful analysis. An example of this
is shown in Fig.8. This underscores the direct relationship
between localized ion injection events and the BB-ELF phe-
nomenon.

WhereasMatsuoka et al.(1993) only considered the down-
ward number flux when investigating the connection between
particles and BB-ELF, in this study both number and energy
fluxes have been considered, for upward, downward and to-
tal field-aligned fluxes. In Table1 the results of Matsuoka
et al. have been included for comparison. Our results for
the correlation between the downward ion number flux and
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are shown with the same color in the main panel. At this time, the
local proton gyrofrequency was 8.3 Hz. There is a break in the PSD
in the vicinity of the proton gyrofrequency. Thick lines have been
added as a visual aid to emphasize the break in the graph.
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the BB-ELF wave power are similar to those of Matsuoka
et al., but with a somewhat greater correlation. This may be
a result of better instrumentation, or possibly a better selec-
tion of events. The fact that Matsuoka et al. did not include
ions with energies lower than 500 eV in their calculations
may also have influenced their results, as there is a notice-
able flux of ions down to at least 200 eV (see for example
Fig. 8). It is also possible that some of their events included
injection events in addition to the normal cusp dispersion. It
is clear that the total field-aligned fluxes show a greater de-
gree of correlation with the BB-ELF wave power than the
downward fluxes. Table2 shows the same as Table1, but
using longer time averages for the calculations to ensure that
we do not notice any effects of limited instrument time reso-
lution. For all types of flux the correlation with the BB-ELF
wave power exceeded 0.6 in more than half the cases, and
0.8 in more than a third. The field-aligned fluxes showed a
greater degree of correlation with the BB-ELF wave power
than the downward fluxes. This is seen most clearly in Ta-
ble 3, where the results with a high positive correlation have
been sorted in smaller bins, and only correlation values with
a high significance have been included. These results support
a different interpretation than the one suggested by Matsuoka
et al.. They concluded that the waves are possibly generated
in association with the plasma injection at the magnetopause,
while the correlation with the total field-aligned ion fluxes
found here suggests a local exchange of energy between ions
and the BB-ELF waves. For a local generation of BB-ELF
waves by ion beams, there should be no reason to have a dis-
tinction between upward and downward flux.

Correlation between BB-ELF waves and ion heating in the
cusp has been reported by several authors (Knudsen et al.,
1998; Bogdanova et al., 2004). The nature of the waves has
been further investigated byGrison et al.(2005) andSund-
kvist et al.(2005), who found evidence of local wave gener-
ation, with protons being a probable source of energy. They
have shown that that while the wave activity below the proton
gyrofrequency consists of Alfven waves, there are other wave
modes dominating above the proton gyrofrequency.Mat-
suoka et al.(1993) dismissed local generation of the BB-
ELF waves because they found no specific frequency peak in
the PSD. However, they only covered the range 0.5 to 5 Hz,
while the proton gyrofrequency at the altitude where their
measurements were taken would be on the order of 100 Hz.
The electric field instrument of Akebono had a sampling rate
of 32 Hz, and thus would not be able to detect these effects.
Matsuoka et al. found the Poynting flux to be directed down-
wards. In the results of Sundkvist et al., the Poynting flux
of waves below the ion gyrofrequency was indeed found to
be directed downwards, but at frequencies above the ion gy-
rofrequency it was directed upwards. As the proton gyrofre-
quency decreases with increasing altitude, this is a strong in-
dication that waves are being generated locally. A full in-
vestigation of the nature of the waves comprising BB-ELF is
outside the scope of this study. For more information on this

topic, see the papers byGrison et al.(2005) andSundkvist
et al.(2005) and the references therein.

5 Summary

Electric field fluctuations (BB-ELF) in the cusp have been
investigated, using five years of Cluster data. We have revis-
ited the issue of correlation between BB-ELF and ion fluxes,
which has previously been investigated byMatsuoka et al.
(1993). We have also examined the location of BB-ELF rela-
tive to the OCB and the cusp ion dispersion boundaries. The
main results are:

– The BB-ELF region was found to be contained within
the cusp ion dispersion region.

– The equatorward boundary of the BB-ELF region was
found to be co-located with the equatorward boundary
of the cusp ion dispersion region.

– The BB-ELF wave power shows a strong correlation to
ion fluxes.

– The BB-ELF wave power was found to have a greater
degree of correlation with the total field-aligned fluxes
than with the downward fluxes. This is an improvement
over previous results, which only considered the down-
ward ion number flux. Our results are consistent with
the idea of a local ion – BB-ELF wave interaction.

Appendix A

Details of the ion data sources and the flux
calculations

The ion data in this study has been gathered from the Clus-
ter Active Archive database. The Cluster ion experiment
consists of two parts; the Hot Ion Analyzer (HIA) and the
Composition and Distribution Function analyzer (CODIF).
For cusp studies, the CIS team recommends high sensitivity
(HS), magnetospheric mode (MAG) data from HIA. If this
is not available, magnetospheric mode CODIF data may be
used. The ion experiment on Cluster 2 is not working, so
for this spacecraft there is no ion data available. On Clus-
ter 4, only the CODIF part of the ion experiment is work-
ing. Thus, for Cluster 1 and 3, the data products used were
CP CIS-HIA HS MAG IONS PF (differential ion number
flux) and CPCIS-HIA HS MAG IONS PEF (differential
ion energy flux). For Cluster 4, the data products used
were CPCIS-CODIFHS H1 PF (differential ion number
flux) and CPCIS-CODIFHS H1 PEF (differential ion en-
ergy flux). All of these are level 3 data products. In MAG
mode, the energy ranges of HIA and CODIF are 5 eV to
32 KeV and 25 eV to 40 KeV, respectively. The energy range
of the instrument used byMatsuoka et al.(1993) was 13 eV
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to 20 KeV. (Note, though, that Matsuoka et al. restricted their
calculations to an ion energy range of 500 eV to 10 KeV.)
The energy ranges of these instruments all cover the energy
range of cusp ion precipitation, which mainly consists of
ions with an energy between some hundred and some thou-
sand eV. Both the HIA and CODIF files from the CAA have
an angular resolution of 16 azimuth× 8 elevation angles
(22.5◦×22.5◦), for a total of 128 solid angle bins.

The downward and upward fluxes are calculated as fol-
lows: First, a pitch angle is calculated for each bin of the CIS
data, using magnetic field from the FGM instrument (Balogh
et al., 1997). Then, the average downward differential flux
for each energy bin is calculated as

DFdown(E) =

∑ π
2
θ=0DF(E,θ)cos(θ)

Number Of Bins In The Sum

where DF is the differential flux andθ is the pitch angle.
Similarly, the average upward differential flux for each en-
ergy bin is

DFup(E) = −

∑π
θ=

π
2

DF(E,θ)cos(θ)

Number Of Bins In The Sum

This is summed over the energy range and multiplied by 2π

(steradians of a half-sphere) to get the downward flux

Fdown= 2π
∑
Ei

DFdown(E)dE

whereEi is the set of energy bins, anddE is the width of
each energy bin. The upward flux is

Fup= 2π
∑
Ei

DFup(E)dE

The total field-aligned flux is then defined asFdown+Fup.
Note that as these are both positive numbers, this is not a net
flux. We are concerned with the total amount of ions/energy
passing through, not the net flux, as two equally strong
counter-streaming ion populations should be able to excite
more waves than a completely stagnant ion population even
though they both have a net flux of zero. As a test, the cor-
relation calculations were also performed using the absolute
net flux. It was found to have a similar to or lesser correlation
than the downward flux.
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