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Abstract. A theoretical model is proposed to account for
some of the behavior of arc-polarized magnetic structures
seen in the solar wind. To this end, an exact analytical solu-
tion is developed that describes infinite plane wave trains of
arbitrary amplitude in a plasma governed by ideal Hall MHD.
The main focus is on intermediate-mode wave trains, which
display double-branched magnetic hodogram signatures sim-
ilar to those seen in the solar wind. The theoretically derived
hodograms have field rotation in the ion-polarized sense at
a slightly depressed field magnitude on one branch and an
electron-polarized rotation at a slightly enhanced field mag-
nitude on the other branch. The two branches are joined at
the two “turning points”, at which the normal flow is exactly
Alfv énic. The behavior is accounted for in terms of the oppo-
site dispersive properties of ion and electron whistlers. The
hodograms derived from the theory are shown to compare
favorably with those of one event, observed by the Cluster
spacecraft near the ecliptic plane, and one event at high heli-
ographic latitude observed by the Ulysses spacecraft. How-
ever, these two observed structures comprise only a single
full wave period, approximately from one turning point to
the other and then back again. The theory can be used to pre-
dict propagation direction (away from, or towards, the sun)
from magnetic data alone, provided the sign of the magnetic
field component along the wave normal can be reliably deter-
mined. Under the same condition, it also predicts whether the
ion-polarized branch should precede or follow the electron-
polarized branch. Both behaviors are seen in the solar wind.
The major shortcoming of the theory is that it fails to repro-
duce the observed saw-tooth like time series for the magnetic
field, in which the field rotation is rapid in the ion sense and
slow in the electron sense. Instead, the theory gives about
the same rotation rates. Possible explanations for this dis-
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crepancy are discussed. Also discussed is the fact that the
magnetic field measurements by Cluster, while giving high
quality determinations of normal direction and normal field
component for each of the four spacecraft, indicate a reversal
of the normal field component and the predicted propagation
sense during the event, as well as a wide spread in the four
normal vector orientations.

Keywords. Interplanetary physics (Solar wind plasma) –
Space plasma physics (Kinetic and MHD theory)

1 Introduction

The purpose of this paper is to propose a theoretical de-
scription of what we will call “double-arc polarized” mag-
netic structures observed in the solar wind (Lichtenstein and
Sonett, 1980; Tsurutani et al., 1994, 1996, 1997; Riley et al.,
1996; Tsurutani and Ho, 1999; Horbury and Tsurutani, 2001,
and references therein). In these structures, the magnetic
field appears to be tipping back and forth, roughly speak-
ing in a plane and with approximately constant field mag-
nitude, with a small field component normal to that plane,
i.e., along the propagation direction, being present as well.
The formation of such structures, starting from linearly po-
larized Alfvén waves near the sun and evolving as they are
carried outward by the solar wind, has been extensively stud-
ied, both analytically and by use of numerical simulations.
Here we attempt to find steady state, one-dimensional (1-
D: ∂/∂y=∂/∂z=0), Hall-MHD solutions for large amplitude
wave trains of this type. The attempt is partially successful
in the sense that solutions are obtained in which the tangen-
tial magnetic field tips back and forth with nearly, but not
precisely, constant magnitude, as observed. However, a sec-
ond important aspect of the observations is not contained in
our simple 1-D model, namely rapid rotation of the field in
one sense, followed by, or preceded by, slow rotation in the
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Variance Analysis: Cluster C1, Magnetic Field Vector, full resolution in GSE

Time Interval (UT): 2003-02-03 19:11:20.092 - 19:14:34.503

Units: nT  Frame: vector>mv_xyz
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14.4 (-0.354,  0.849,  0.392)

Fig. 1. Magnetic hodogram for Cluster 1 double-arc polarized event, seen in the solar wind on 3 February 2003, at (16.85;9.15;−1.77)RE
(GSE). Hodogram curve starts at small circle. It is shown in three projections, using as axes the right-handed orthonormal eigenvector
triad (x̂1;x̂2;x̂3) (the principal axes) from variance analysis of the magnetic field (MVAB). Herex̂1 = (0.9336;0.2936;0.2057) (GSE) is
the minimum variance direction, with varianceλ1 = 0.26 nT2; x̂2 = (0.0599;0.4380;−0.8970) is the intermediate variance direction, with
λ2 = 1.41 nT2; and x̂3 = (−0.3534;0.8497;0.3914) is the maximum variance direction, withλ3 = 14.50 nT2. Note that our ordering of
the eigenvectors differs from that used by Sonnerup and Scheible (1998). Time series of field components along the principal axes are
shown in the bottom right panel. Note the saw-tooth like behavior of the curve for the maximum-variance component. Time resolution is
22.4 samples/s.

opposite sense, the latter with superimposed Alfvénic fluc-
tuations. In our model, the rotation rates for the two senses
instead turn out to be approximately the same. Possible rea-
sons for this defect will be discussed. By examination of
two particularly well-organized events, one seen by the four
Cluster spacecraft and one by the Ulysses spacecraft, we will
show that other aspects of our model are capable of account-
ing for their observationally obtained counterparts.

The magnetic field behavior in a double-arc polarized
structure, seen by Cluster 1 in the near-earth solar wind but
outside the region influenced by the bow shock, is shown

in Fig. 1. In this figure, the magnetic field is presented as
three magnetic hodogram projections and also, to the lower
right in the figure, as time series of the field components in
the maximum, intermediate, and minimum variance direc-
tions, obtained from standard minimum variance analysis of
the field (MVAB; see the review by Sonnerup and Scheible,
1998). The rapid reversal of the maximum-variance field
component, followed by a much slower return to more or
less the original direction, is seen in the uppermost time
series. The rotation of the field in the tangent plane of
the structure is shown in the top left hodogram projection.
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Fig. 2.  MHD shock properties. (a) Schematic drawing, showing the location of fixed points 1139 
in the tangential hodogram plane. These four points represent the possible upstream and 1140 
downstream states of fast shocks (1 !  2), weak and strong subfast intermediate shocks (2 1141 
!  3, or 2 !  4), and slow shocks (3 !  4). Superfast intermediate shocks (1! 3 and 1142 
1! 4) can also occur. Also shown is a banana-shaped hodogram trace, around the fixed 1143 
point 2, for a non-dissipative wave train. This trace marks the successive locations, as the 1144 
normal coordinate x increases, of the head of an arrow from the origin, representing the 1145 
tangential magnetic field vector. The indicated sense of motion around the banana is for the 1146 
case where (v
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x
)  is positive. (b) Representation of shock jump conditions in terms of 1147 

upstream ( A
x1

) and downstream ( A
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Acronyms FS, IS, and SS represent fast, intermediate, and slow shocks. The symbols s, i, 1150 
and f, denote small-amplitude slow, intermediate, and fast modes; the switch-off shock is 1151 
denoted by so. Superfast intermediate shocks occur above the line cf-cf-f. (After Hau and 1152 
Sonnerup (1989)).  1153 
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Fig. 2. MHD shock properties.(a) Schematic drawing, showing the location of fixed points in the tangential hodogram plane. These four
points represent the possible upstream and downstream states of fast shocks (1→2), weak and strong subfast intermediate shocks (2→3, or
2→4), and slow shocks (3→4). Superfast intermediate shocks (1→3 and 1→4) can also occur. Also shown is a banana-shaped hodogram
trace, around the fixed point 2, for a non-dissipative wave train. This trace marks the successive locations, as the normal coordinatex

increases, of the head of an arrow from the origin, representing the tangential magnetic field vector. The indicated sense of motion around
the banana is for the case where(vx/Bx) is positive.(b) Representation of shock jump conditions in terms of upstream (Ax1) and downstream
(Ax2) Alfv én numbers for two different sets of values of upstream plasma beta,β1, and angle,θ1, between shock normal and upstream field.
Acronyms FS, IS, and SS represent fast, intermediate, and slow shocks. The symbolss, i, andf , denote small-amplitude slow, intermediate,
and fast modes; the switch-off shock is denoted byso. Superfast intermediate shocks occur above the linecf-cf-f (after Hau and Sonnerup,
1989).

The rapid initial rotation is seen to occur at a slightly de-
pressed field magnitude, while the slow return rotation has
a slightly enhanced field magnitude. The slow branch of
the hodogram also shows more rapid, but smaller amplitude,
field rotations back and forth along the hodogram path, as-
sociated with substantial fluctuations of the field component
in the normal (minimum-variance) direction, as seen in the
upper right hodogram projection. A main hypothesis under-
lying our model is that the two branches of the tangential
hodogram should be considered as part of one and the same
structure and not as two unrelated field rotations. We call the
events “double-arc” polarized because the simpler term “arc-
polarized” is ambiguous: it can also refer to observed field
rotations of only one sense at nearly constant field magnitude
(so-called rotational discontinuities, or RDs for short). We
will refer to such events as being “single-arc” polarized. The
double-arc structures will be described as one full period of a
highly non-linear wave train. The single-arc polarized struc-
tures correspond to field rotation, either along the inner or the
outer branch. Multi-arc polarized structures can in principle
also occur, although observations of such structures seldom
show sufficiently well organized behavior to argue that they
represent two or more periods of one and the same periodic
wave train.

The main objective of our study is to develop a simple,
Hall-MHD based, model of wave trains that accounts for the
double-branched nature of the tangential hodogram and for
the fact that the slow rotation sometimes follows the rapid
rotation, as in Fig. 1, while in other events it may precede
the fast rotation. The slow-fast order was seen in a Ulysses
event frequently discussed in the literature (see, e.g., Fig. 10
in Tsurutani and Ho, 1999, and also Fig. 8 of the present
paper). Tsurutani and Ho have argued that the fast rotation
is the result of phase steepening within this part of the wave,
caused by dispersive effects. This is one of several reasons
to include Hall physics in our model.

Our presentation is organized as follows: in Sect. 2, we de-
velop the theory and provide numerical examples; in Sects. 3
and 4, we compare the theoretical predictions with our two
observed events. The main results and conclusions are sum-
marized and discussed in Sect. 5.

www.ann-geophys.net/28/1229/2010/ Ann. Geophys., 28, 1229–1248, 2010
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2 Theory

2.1 Background

To set the stage for our analysis, we begin by briefly dis-
cussing the magnetic structure of time-independent, disper-
sive magneto-hydrodynamic shocks. They can be described
in terms of the behavior of the two field components,By
andBz, tangential to the shock surface (a normal compo-
nent,Bx, is also present and remains constant throughout
the structure). In a plot ofBz versusBy (a tangential mag-
netic hodogram), shock structures are described as, some-
times complicated, transitions (paths) between pairs of “fixed
points”, also called “stationary points”, that represent their
upstream and downstream states. It follows from the co-
planarity condition, valid for shocks, that these points can
all be placed on, for example, theBz-axis of the hodogram
plane. As illustrated in Fig. 2a, there are four fixed points;
two on the positive and two on the negativeBz-axis. Points 1
and 2, both located on the positiveBz-axis by choice, are
the upstream and downstream states of fast shocks. Point 2
is also the upstream state of weak and strong but subfast in-
termediate shocks (the superfast version has point 1 as its
upstream state), for which the downstream states are points 3
and 4, respectively, both located on the negativeBz-axis, in-
dicating that the tangential field reverses sign in intermediate
shocks. Points 3 and 4, respectively, are also the upstream
and downstream states of a slow shock. A graphical rep-
resentation of the relationship between upstream and down-
stream Alfv́en-Mach numbers for these various shocks was
developed by Hau and Sonnerup (1989) and is, for conve-
nience, reproduced in Fig. 2b. In this plot, we note that the
strongest slow shock, called the switch-off shock because it
brings the tangential field to zero (By =Bz = 0), marks the
change from a slow shock to a strong intermediate shock and
that the infinitely weak intermediate shock becomes a rota-
tional discontinuity, across which the plasma state and field
magnitude remain unchanged; in that limit, co-planarity is
no longer required. The fixed points themselves can be spiral
points, nodes, or saddle points. Furthermore, the hodogram
plane can be thought of as having two layers: it has a super-
sonic and a subsonic “Riemann sheet” on which the plasma
flow component in the x-direction, relative to the structure,
is supersonic or subsonic, respectively. We emphasize that
it is only the flow component along the normal (x-) direction
that matters; the total flow may well be supersonic. The fixed
points do not all lie on the same Riemann sheet. Point 1 is
always on the supersonic sheet and point 4 is always on the
subsonic sheet but, depending on parameter values, points 2
and 3 may be on either sheet. The two sheets come together
along a closed curve in the hodogram plane. On this curve,
the flow component along the shock normal is sonic. If the
shock dissipation is described as purely resistive, i.e., if vis-
cosity and heat conduction are neglected, transitions from su-
personic to subsonic flow along the x-direction occur as dis-

continuous jumps from the supersonic to the subsonic Rie-
mann sheet, across which the jump conditions are those of an
ordinary gas-dynamic shock. These various shock structures
were described by the resistive models, analyzed by Hau and
Sonnerup (1989, 1990), for ordinary MHD as well as for Hall
MHD.

In the work to be presented here, we will examine struc-
tures governed by Hall MHD (electron inertia is not included
and, we believe, not needed) in the limit where the resistivity
and all other dissipative coefficients have been set to zero. In
that case, fixed points of the spiral variety become converted
to “centers” around which the hodogram curves form a set
of nested closed loops. These loops describe wave trains of
various angular amplitudes. With our application to double-
arc polarized structures in the solar wind in mind, we will
focus attention on orbits around the fixed point 2, and as-
sume it to be located on the subsonic Riemann sheet, as is
indeed the case in our applications. For an example, see the
schematic plot in Fig. 2a. These wave trains should be identi-
fied as being of the intermediate mode. However, the general
solution we will present applies to fast-mode and slow-mode
finite amplitude wave trains as well. Solitary waves, in which
the tangential field rotates by exactly 360◦, are described by
curves (separatrices) in the hodogram plane that mark the
boundary between different classes of solutions (see Fig. 3a).
Finally, note that in order to compare the observed tangential
hodogram in Fig. 1 with the theoretically derived versions in
Fig. 3, the latter will need to be rotated counter-clockwise by
90◦.

2.2 Basic equations

The development is based on ideal Hall MHD. The ion and
electron pressures are assumed isotropic and the flow is com-
pressible but isentropic (or polytropic). The analysis is per-
formed in a frame of reference traveling with the wave train
in the negative x-direction and having vanishing electric field
components in the tangent (y-z) plane. In this frame of refer-
ence, an intrinsic electric field component in the x-direction
remains as part of the wave structure but does not enter into
the main description. The governing equations can be ob-
tained from the three principal equations, numbered (6), (7),
and (8), in the work by Hau and Sonnerup (1990) on the
structure of resistive-dispersive shocks, by simply letting the
resistivityη approach zero. The procedure is to let their pa-
rameterh≡ Bx/neη approach infinity. After simple alge-
braic rearrangements, the principal equations for the tangen-
tial field, expressed in the coordinate system we described in
the previous section, then become

λi2
A2

x

Ax2

dBy

dx
= −(A2

x −1)Bz+(A2
x2−1)Bz2 (1)

λi2
A2

x

Ax2

dBz

dx
= (A2

x −1)By (2)
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Fig. 3. Examples of tangential hodograms from theory.(a) Hodogram for parameter values at fixed point 2 given byβ2 = 1,A2
x2 = 1.001,

and with ratio of specific heatsγ = 2. On the blue curve, the field rotates by1ψ = 180◦ from the left to the right turning point, at both
of which B∗

z = 0, and then by1ψ = −180◦ back again. For the black curve,1ψ = 120◦ instead, and for the red curve,1ψ = 360◦.
The red curves are separatrices in the hodogram; they intersect at the fixed point 3 (a saddle point) and represent left and right polarized
solitary waves.(b) Hodogram for parameter values representative of the Cluster 1 event (β2 = 0.9; θ2 = 86.2◦; B∗

z /Bz2= sin25◦), with the
valuesA2

x2=1.0063 andγ = 1.134 chosen to reproduce the observed separation (Fig. 1) of the inner and outer branch of the hodogram at the
symmetry point (By = 0) as well as the observed spatial extent of the inner hodogram branch. Arrowheads indicate the sense of field rotation
that corresponds tovx/Bx>0.

These two equations are straightforward to derive. They ex-
press the tangential components of the generalized Ohm’s
law, combined with the integrated tangential momentum
equations to eliminate the tangential velocity components,
and mass conservation; the quantityλi2 = (mi/µ0n2e

2)1/2

is the ion inertial length, evaluated at the fixed point 2,
which is a ‘center’ located at(0,Bz2) in the hodogram plane,
around which our hodogram trajectories will appear as a
nested set; the local Alfv́en-Mach number for the axial flow
is Ax = (vx/Bx)(µ0nmi)

1/2, which has the valueAx2 at the
fixed point. We have assumedBz2 to be a positive quantity
but emphasize thatAx will be positive or negative depending
on whethervx andBx have equal or opposite signs. Equa-
tion (8) in the work by Hau and Sonnerup (1990) describes
the behavior ofA2

x. After lengthy algebra, it is obtained
from the energy equation, combined with the three momen-
tum equations to eliminate pressure and tangential velocity
components, and mass conservation. In the Hau-Sonnerup
version of the equation, we will, for later convenience, use
B2

=B2
t +B2

x andBz2/Bx = tanθ2 to eliminateB2 andBx in
favor of the tangential fieldBt = (B2

y +B2
z )

1/2 and the field
angleθ2 at the fixed point. The result is

A2
x =

γ /2

γ +1

[
2A2

x2+
β2

cos2θ2
+

(
1−

B2
t

B2
z2

)
tan2θ2

]

±

{(
γ /2

γ +1

)2
[

2A2
x2+

β2

cos2θ2
+

(
1−

B2
t

B2
z2

)
tan2θ2

]2

+
γ −1

γ +1
(tan2θ2)

[
B2

t

B2
z2

+2(A2
x2−1)

Bz

Bz2
+(A2

x2−1)2

−
A2

x2

sin2θ2

(
A2

x2+
γβ2

γ −1

)]}1/2

(3)

Here the quantityγ = cp/cv is the ratio of specific heats
at constant pressure and constant volume. Also,β2 =

p22µ0/B
2
2 is the plasma beta value andθ2 = tan−1(Bz2/Bx)

is the field angle, both evaluated at the fixed point. The nor-
mal field componentBx is constant and mass conservation
requiresnvx =const., wheren is the number density. The±
sign in front of the square root in Eq. (3) specifies the su-
personic (+) and the subsonic (−) Riemann sheets. Sonic
conditions occur where the square root vanishes. For our ap-
plication, the negative sign should be used because we will
havev2

x <γp/nmi in our structures. Also, since point 2 rep-
resents the upstream state of an intermediate shock, we must
haveA2

x2> 1, as can be seen in Fig. 2b. If the field magni-
tude is to remain nearly constant in the wave train, as it is
observed to be, then it must belong to the weak intermediate-
wave family, withA2

x2 only slightly larger than unity.

www.ann-geophys.net/28/1229/2010/ Ann. Geophys., 28, 1229–1248, 2010
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Two general comments should be made about Eqs. (1) and
(2). First, the space derivatives reverse sign ifAx reverses
sign, i.e., if the ratiovx/Bx reverses sign. Second, the scale
length along the x-axis of the wave is of the order of the
ion inertial length, unlessA2

x is very near unity. This latter
situation is assumed to occur in our applications.

2.3 Turning points

We note from Eq. (2) thatdBz/dx = 0 whenA2
x = 1. As an

observer moves through the structure toward more positive
x-values, the tip of the tangential field vector will be seen
to move along the hodogram curve, as illustrated in Fig. 2a.
The two locations whereBz reaches its minimum value, i.e.,
wheredBz/dx = 0 andd2Bz/dx

2> 0, are called the turn-
ing points. Note that it is the field componentBz that turns
around. The two points on top of the hodogram, where,By =

0, are additional turning points forBz, but will be referred to
as symmetry points instead. There are also turning points
for By, which are located near those forBz. At these latter
points, Eq. (1) shows thatBz/Bz2= (A2

x2−1)/(A2
x −1)).

By puttingA2
x = 1 in Eq. (3), the following turning point

condition forBz, denoted by an asterisk, can be obtained af-
ter straightforward but lengthy algebra:

B∗
z

Bz2
=

B∗2
t /B

2
z2−1

2(γ −1)(A2
x2−1)

+
γ

γ −1
+

γβ1/2−1

(γ −1)sin2θ2

+
1

2
(A2

x2−1)cot2θ2 (4)

As before, we haveB2
t ≡B2

y +B2
z . Equation (4) gives the lo-

cation of the turning points forBz in the hodogram plane as
a relationship between the non-dimensional “z-coordinate”,
Bz/Bz2, in terms of the non-dimensional polar “radius”,
Bt/Bz2. We see from Eq. (4) that the locus of all points
having A2

x = 1 is a circle with its center on the “z-axis”
and slightly displaced above the origin of the hodogram (see
Fig. 2a).

As an example, consider the case whereB∗
z/Bz2 = 0 so

that the two turning points forBz are on theBy-axis. This
means that the tangential field rotates back and forth by 180◦.
At the turning points we then haveB∗2

t =B∗2
y so that, from

Eq. (4), we find them to be at

B∗
y/Bz2 = ±{1−(A2

x2−1)[2γ +(γβ2−2)/sin2θ2

+(γ −1)(A2
x2−1)cot2θ2]}

1/2 (5)

Because(A2
x2 −1) is small but positive, Eq. (5) shows that,

as long as the square bracket remains positive, the turn-
ing points will be located slightly inside the circle, given
by Bt/Bz2 = 1. This latter circle is centered at the origin
and passes through the fixed point 2. In other words, the
hodogram must have nearly semi-circular shape in this ex-
ample. For other locations of the turning points, Eq. (4) in-
dicates that the hodogram should still look approximately as
a circular arc. But, as mentioned already, the hodogram will

in reality have two branches that do not precisely overlap but
that join at the two turning points. As indicated by Eqs. (1)
and (2), and as illustrated in Fig. 2a, there will be an outer
branch on which(A2

x −1) is slightly positive with rotation
of the field vector in the hodogram plane of one sense, and
an inner branch where(A2

x −1) is slightly negative with ro-
tation in the opposite sense. At the top of the outer branch
(the symmetry point), the two terms on the right-hand side
of Eq. (1) have opposite signs, suggesting the possibility of
slower rotation along this branch (assumingAx>0, we have
dBy/dx ≤ 0, becauseA2

x ≥A2
x2 on this branch). On the in-

ner branch, the two terms have the same sign, both posi-
tive, suggesting more rapid rotation in the opposite direction
(dBy/dx ≥ 0). However, the difference between the two field
rotation rates turns out to be much too small to account for
the observed saw-tooth like time series. Except for this fact,
the qualitative discussion given above illustrates that our ba-
sic equations are capable of producing at least some of the
behavior of observed double-arc polarized structures.

2.4 Integration

The material in this section may be bypassed without loss of
continuity. We first observe that to obtain only the hodogram
shape, but not the x-dependence, one can divide Eq. (1) by
Eq. (2), thus eliminating the space variablex and obtaining a
first-order differential equation, which, together with Eq. (3),
describesBy as a function ofBz. However, sinceA2

x is ex-
pressed in Eq. (3) as a function ofB2

t andBz, a more conve-
nient approach is to first combine Eqs. (1) and (2) to obtain

λi2
A2

x

Ax2

dB2
t /2

dx
= (A2

x2−1)Bz2By (6)

If Eq. (2) is now divided by Eq. (6), one obtains our basic
hodogram equation

2Bz2(A
2
x2−1)

dBz

dB2
t

= (A2
x −1) (7)

whereA2
x is given by Eq. (3) as a function ofB2

t andBz.
Equation (7) can now be integrated analytically by use of

the following variables in place ofB2
t andBz:

R≡
γ /2

γ +1

[
2A2

x2+
β2

cos2θ2
+

(
1−

B2
t

B2
z2

)
tan2θ2

]
(8)

Z2
≡ R2

+
γ −1

γ +1
(tan2θ2)

[
B2

t

B2
z2

+2(A2
x2−1)

Bz

Bz2

+(A2
x2−1)2−

A2
x2

sin2θ2

(
A2

x2+
γβ2

γ −1

)]
(9)

In this notation, the expression forA2
x in Eq. (3) is simply

A2
x =R±Z and, after differentiation of Eqs. (8) and (9) with
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respect toR and some straightforward algebra, the differen-
tial equation (7) becomes

γZ
dZ

dR
=R∓(γ −1)Z (10)

This equation is seen to be homogeneous; it is therefore solv-
able by use of the new variableU ≡Z/R in place ofZ. It
then becomes separable and can be written as

γUdU

1−γU2∓(γ −1)U
=
dR

R
(11)

with solution

(R∓γZ)((R±Z)γ =C± (12)

AssumingZ to be the positive root of Eq. (9), the upper signs
in Eq. (12) represent supersonic conditions and the lower
signs, which are the relevant ones for our solar wind applica-
tion, represent subsonic conditions. Given the definitions of
R andZ in Eqs. (8) and (9), in whichB2

t =B2
y +B2

z , we see

that Eq. (12) provides a general relationship betweenB2
y and

Bz that describes all possible hodogram trajectories around
the fixed point 2. Where they exist (i.e., where spiral points
occur in the resistive shock model described by Hau and Son-
nerup, 1990), non-dissipative wave trains around the fixed
points 1, 3, or 4 are described by the same formulas but with
the subscript 2 replaced by the subscript 1, 3, or 4. Individ-
ual hodogram curves are defined by the value of the constant
of integrationC±. The fact that onlyB2

y but notBy appears
shows that all these curves are symmetric about theBz-axis.

Because Eq. (3) is of the formA2
x =R±Z, Eq. (12) can

also be written as

[(γ +1)R−γA2
x]A

2γ
x =C± (13)

From this expression, one sees that the hodogram is ex-
pressed in parametric form: a chosen value of the parameter
A2

x allows calculation ofR from Eq. (13) and thenZ from
A2

x =R±Z (for the subsonic case, the negative sign must be
used). The value ofR then allowsB2

t to be obtained from
Eq. (8), whereuponBz can be found from Eq. (9).

The value of the constant of integration,C±, is obtained,
for example by putting the turning point conditions,A2

x = 1
andR=R∗, into Eq. (13) to give

C± = [(γ +1)R∗
−γ ] (14)

The value forR∗ is obtained by first specifyingB∗
z/Bt2, the

non-dimensional value ofBz at the turning points, and then
finding the corresponding value ofB∗2

t /B
2
z2 from Eq. (4).

The latter value is then substituted into Eq. (8) to giveR∗.
Once the hodogram has been determined, as described

above, we know the functionsBy(A
2
x) andBz(A

2
x). The rela-

tionships describing the x-dependence of the field can then be
obtained in the form of quadratures by integration of Eq. (1)

or Eq. (2) to give expressions in the form of either of the
following two integrals

x

λi2A
−1
x2

= ∫
A2

x

A2
x −1

dBz

By
= ∫

A2
xdBy

Bz2(A
2
x2−1)−Bz(A2

x −1)
(15)

where, as before,A2
x =R±Z. As already mentioned, these

expressions show that structures much wider than the ion in-
ertial lengthλi2 can occur, but only whenA2

x remains very
close to unity at all points on the hodogram curve; this hap-
pens only whenA2

x2 is very close to unity. We note again
thatAx2 is positive whenvx andBx have the same sign and
is negative when they have opposite signs. Starting at the
left turning point in Fig. 2a or Fig. 3, and assumingAx2 to
be positive, one then sees the inner (lower) branch first, fol-
lowed by the outer (upper) branch. WhenAx2 is negative,
the order, and therefore the overall sense of motion around
of the banana-shaped hodogram, is reversed.

The integrand of the first integral in Eq. (15) is singular
at the left and right turning points forBz, whereA2

x = 1,
and also at the top of the hodogram branches (the symme-
try points) whereBy = 0. In the second integral, there is a
singularity at the turning points forBy instead. These singu-
larities are all integrable.

2.5 Numerical examples

To illustrate the details of the solution, we select the follow-
ing parameters:γ = 2; β2 = 1; A2

x2 = 1.001; cos2θ2 = 0.004
(θ2 = 86.4◦); B∗

z = 0. We will give certain results with high
accuracy so that they can be used for code validation. From
Eq. (4), we find(B∗

t /Bz2)
2
−1= −4.00000401606×10−3

and, from Eq. (8),R∗
= 84.332667. With thisR∗ value,

Eq. (14) gives the constant of integrationC± = 250.998001.
Equation (13) now gives a relationship betweenR and the
parameterA2

x. For each choice of the latter, we can use the
resulting R-value in Eq. (8) to calculate the corresponding
value of(B∗

t /Bz2)
2
−1. UsingZ2

= (A2
x −R)2, we can then

find Z2 and finally use Eq. (9) to getBz/Bz2. By making a
set of choices ofA2

x slightly larger (smaller) than unity, we
can thus map out the outer (inner) branch of the hodogram.
Note that the choices ofA2

x are restricted by the requirement
B2

t ≥B2
z ; the equality applies at the symmetry point, at the

top of each branch, whereBy = 0. These two points must be
found by trial and error. The result for our numerical exam-
ple is:

Top of outer branch:

A2
x = 1.0477398; Bz/Bz2= 1.04181769 (16)

Top of inner branch:

A2
x = 0.9582725; Bz/Bz2= 0.95217432 (17)

The resulting hodogram is shown as the blue double-
branched curve in Fig. 3a, which curve corresponds to the
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Fig. 4. Plot of the angleψ = tan−1(By/Bz) of the tangential field
relative to the vertical axis of the hodogram (see Fig. 2a) versus
distancex. Parameters are the same as for the hodogram curve in
Fig. 3b.

choice,B∗
z/Bz2 = 0, made above. The tangential field tips

back and forth in the angle range−90◦
≤ψ ≤ +90◦, where

ψ = tan−1(By/Bz). WhenAx2 is positive, the sense of the
field rotation on the inner branch is toward the right in the
figure (from negative towards positive anglesψ), followed
by the return rotation (to the left) along the outer branch.
WhenAx2 is negative, the sense is reversed: rotation on the
inner branch is to the left and on the outer branch to the right.
Similarly, the black double-branched curve corresponds to
B∗

z/Bz2= +0.5 and an angle range of approximately−60◦
≤

ψ ≤ +60◦. The two branches of the red hodogram curve
are close to the two separatrices, which intersect at the fixed
point 3 (a saddle point) and form the boundaries of the do-
main in the hodogram plane within which the solutions of in-
terest to us are located. The separatrices themselves describe
two solitary waves of opposite polarization, each showing a
field rotation of 360◦.

The results in expressions (16) and (17) can be used in
Eq. (1) to calculate the spatial derivative(λi2/Bz2)dBy/dx

on top of the two branches, whereBy = 0. Its value is
−0.04654 for the outer branch and +0.04253 for the inner
branch (assumingAx1 is positive). The two signs are oppo-
site as expected, but contrary to the observed behavior, the
corresponding two angular rotation rates|dψ/dx| are nearly
equal.

A hodogram for parameter values applicable to the event
in Fig. 1 is shown in Fig. 3b, with a plot of the corresponding
tilt angleψ of the tangential field versus distancex along the
normal direction in Fig. 4. In this latter plot, the beginning
point of the curve, atx=0; ψ = 0, corresponds to the top of

the inner branch of the hodogram. The field then tips to the
right until the right turning point atψ = +65◦ is reached and
a transition to the outer branch occurs. Along the latter, the
angle then decreases until the left turning point atψ = −65◦

is reached. There, a transition to the inner branch occurs
and the angle starts increasing untilψ = 0 is reached again
at the top of the inner branch. The curve does not display
any substantial differences between the field rotation rates
on the inner and outer branches and we have been unable
to find parameter values for which such a difference occurs.
The solution shown has been matched to the observed thick-
ness of the inner branch (in the range 25λi2 to 32λi2) and the
observed branch separation (∼ 13%), which necessitated re-
placing the isentropic model (γ = 5/3) by a polytropic one,
with the nearly isothermal choiceγ = 1.134.

3 Cluster event

We now analyze in more detail the structure in Fig. 1, seen by
Cluster 1 (C1). We will examine the normal magnetic field
and flow, the Waĺen relation, and the sense of flow of the
‘strahl’ electrons relative to the sense of the magnetic field.
We will also calculate spatial dimensions of the fast and slow
rotations and make various comparisons with our theoretical
model. Finally, we will summarize the results from all four
Cluster spacecraft. Note that all our MVAB calculations are
based on the full resolution magnetometer data (22.4 sam-
ples/s). However, calculations that include plasma informa-
tion are limited to the 4 s resolution of the CIS/HIA instru-
ment.

The eigenvectors from MVAB, used as axes in Fig. 1, form
a right-handed orthonormal triad,(x̂1;x̂2;x̂3), with the pos-
itive minimum-variance axis,̂x1, pointing towards the sun
(this convention is maintained throughout our paper). This
minimum-variance axis provides a single-spacecraft estimate
of the normal vectorn, which is therefore always sunward
directed, according to our convention. The fact that the
average field component in this direction is negative (see
the upper right hodogram projection in Fig. 1) means that,
with this estimate ofn, the normal field component points
away from the sun. However, the intermediate and small-
est eigenvalues from MVAB have the relatively low ratio
λ2/λ1 = 1.41/0.26= 5.4, indicating that the normal direc-
tion may not be particularly well determined. The reason
for the poor ratio is that the field fluctuations in the normal
direction during the slow rotation increase the correspond-
ing variance,λ1. It may also corrupt the MVAB estimate
of the orientation ofn. For this reason, we obtain the nor-
mal direction by instead applying MVAB to only the short
data interval containing the rapid field rotation. The resulting
hodogram set is shown in Fig. 5, with numerical information
in Table 1. One can see that the eigenvalue ratio now has
increased toλ2/λ1=230, indicating that the minimum vari-
ance direction should provide an accurate estimate of the true
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Table 1. Results from MVAB and HT/Waĺen analysis of Cluster and Ulysses events.

CLUSTER 1 2003-02-03
MVAB: 19:11:32.000–19:11:36.995 UT Resolution: 0.0446 s
Eigenvectorŝxi GSE (i=1;2;3) Eigenvaluesλi nT2

〈B〉 ·n (nT)
(+0.924; +0.106: +0.368)=n 0.00657 +0.53±0.04a (+0.68)b

(+0.233; +0.608−0.759) 1.509
(−0.304; +0.787; +0.537) 31.44
HT/Walén: 19:11:10–19:14:34 UT Plasma resolution: 4 s
GSE (km/s):V HT=(−511.8; +44.4;−12.8)〈v〉 =(−519.0; 26.5; 29.6)(〈v〉−V HT) ·n=+7.1
Walén slope=+0.89ccWalén=+0.991 Strahl pitch angle = 180◦

CLUSTER 2 2003-02-03
MVAB: 19:11:27.032–19:11:30.956 UT Resolution; 0.0446 s
Eigenvectorŝxi GSE (i=1;2;3) Eigenvaluesλi (nT)2 〈B〉 ·n (nT)
(+0.943; +0.333;−0.009)=n 0.00891 −1.58±0.07a (−2.16)b

(−0.166; +0.447;−0.879) 0.812
(−0.288; +0.830; +0.477) 26.2

CLUSTER 3 2003-02-03
MVAB: 19:11:27.006–19:11:31.957 UT Resolution: 0.0446 s
Eigenvectorŝxi GSE (i=1;2;3) Eigenvaluesλi (nT)2 〈B〉 ·n (nT)
(+0.881; +0.358: +0.311)=n 0.0491 +0.31±0.08a (+0.40)b

(+0.043; +0.592−0.805) 2.15
(−0.472; +0.722; +0.506) 33.2
HT/Walén: 19:11:10–19:14:34 UT Plasma resolution: 4 s
GSE (km/s):V HT=(−505.7; +44.6;−20.1)〈v〉=(−512.4; 27.0; 24.8)(〈v〉−V HT) ·n=+1.8
Walén slope=+0.79ccWalén=+0.995 Strahl pitch angle = 180◦

CLUSTER 4 2003-02-03
MVAB: 19:11:24.048–19:11:28.463 UT Resolution; 0.0446 s
Eigenvectorŝxi GSE (i=1;2;3) Eigenvaluesλi (nT)2 〈B〉 ·n (nT)
(+0.842; +0.497:−0.211)=n 0.0390 −1.56±0.08a (−3.01)b

(−0.389; +0.289−0.875) 1.47
(−0.374; +0.819; +0.436) 28.8 Strahl pitch angle=180◦

ULYSSES 1995-07-29
MVAB: 23:40:47.710–23:43:19.720 UT Resolution: 1 s
Eigenvectorŝxi RTN (i=1;2;3) Eigenvaluesλi (nT)2 〈B〉 ·n (nT)
(−0.853;−0.092: +0.513)=n 0.00903 −0.42±0.02a (−0.68)b

(−0.447;−0.378;−0.811) 0.263
(+0.269;−0.921; +0.282) 1.28
HT/Walén: 23:25:30.700–23:43:18.720 Plasma resolution: 242 s. (4 points)
RTN (km/s):V HT=(+800.0;−13.4; +1.5)〈v〉=(+777.8;−9.6;−9.9)(〈v〉−V HT) ·n=+12.7
Walén slope =−0.607ccWalén=−0.982

a Statistical errors only, estimated from Eq. (8.24) in Sonnerup and Scheible (1998).
b Value in parentheses uses same normal vector but〈B〉 from full event.

normal direction. Figure 5 suggests that a nearly perfect pla-
nar structure (in whichB ·n would be strictly constant) may
have been sampled. Along this new normal direction, which
forms an angle of 14◦ with the direction derived from the
total event (see Fig. 1), the normal field component is now
positive, not only during the fast rotation (〈B〉·n = +0.53 nT,
where〈...〉 denotes an average over the data set), as shown in
the upper right hodogram projection in Fig. 5, but, with the
exception of a few data points, also during the combined fast

and slow rotations (〈B〉 ·n = +0.68 nT). The purely statisti-
cal uncertainty of these normal components, calculated from
Eqs. (8.23) and (8.24) in the review of MVAB by Sonnerup
and Scheible (1998), is only about±0.04 nT. It is caused
mainly by the uncertainty in the normal vector orientation
under rotation about the maximum variance axis and its small
value is the result of the high time resolution used. Experi-
ments using MVAB with five lower sampling rates give re-
sults for〈B〉·n that all fall within this small error interval. In
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Variance Analysis: Cluster C1, Magnetic Field Vector, full resolution in GSE

Time Interval (UT): 2003-02-03 19:11:32.000 - 19:11:36.995

Units: nT  Frame: vector>mv_xyz

λ Direction
0.00657 ( 0.924,  0.106,  0.368)

1.51 ( 0.233,  0.608, -0.759)
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Fig. 5. Cluster 1 event in Fig. 1: Hodogram for the rapid field rotation alone. Resolution is 22.4 samples/s. Time axis in lower right panel
spans 5 s from 19:11:32 to 19:11:37. The eigenvalue ratio isλ2/λ1 = 230; further details from the MVAB calculation are given in Table 1.

experiments with nested larger and smaller data intervals (in
the range−3 s to +5 s), the variations are larger but〈B〉 ·n

remains positive. Calibration errors, estimated not to exceed
0.1 nT for the data set used here, is an additional source of
uncertainty in〈B〉 ·n. But it is still much too small to call
into question the positive sign of〈B〉 ·n.

The theoretical hodogram in Fig. 3b is based on the pa-
rameter values for the Cluster event. If it is rotated counter-
clockwise so as to assume the same orientation as the tan-
gential hodogram in Fig. 1 (or Fig. 5), then the sense of mo-
tion along the hodogram trajectory, from bottom to top along
the inner branch, followed by motion from top to bottom
on the outer branch, is seen to be the same in the two fig-
ures. But the sense of motion indicated in Fig. 3b is based
on the assumption thatAx1 is positive, i.e., that the normal
flow and the normal field have the same sign. Since the av-

erage normal field, calculated above, is positive, our model
predicts that the normal flow should also be positive and that,
more generally, the Walén slope for the entire event should
be positive and near +1, since the flow is nearly Alfvénic
in the model. The Walén slope is the slope of the regres-
sion line in a scatter plot of the flow velocity components in
the deHoffmann-Teller (HT) frame versus the corresponding
components of the Alfv́en velocity. The HT frame (see the
review by Khrabrov and Sonnerup, 1998) is used as our pre-
diction of the proper frame of the structure. As recorded in
Table 1, the regression line slope is indeed positive and equal
to +0.89, with a correlation coefficient +0.991. The Alfvén
velocities used in the Walén test are based on the assumption
that all measured particles are protons and that the pressure
is isotropic. If 8.8% of them were in fact alpha particles, the
slope would increase to +1. However, measurements by the
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ACE spacecraft during the event indicate an alpha to proton
ratio of only 4%. Therefore, pressure anisotropy and/or other
factors must also play a role.

The Alfvén speed based on the normal field component
of 〈B〉 · n = +0.53 nT (for the rapid rotation only) and a
number density (assuming protons only) ofn= 9.6 cm−3 is
VAx = +3.7 km/s. Using the same normal vector but the av-
erage normal field,〈B〉 ·n = +0.68 nT, for the entire struc-
ture (fast and slow rotation together), the corresponding re-
sult isVAx = +4.8 km/s. Since the Walén slope is positive
as predicted by our theory, the plasma flow speed across the
structure should also be positive, i.e., it should be directed
toward the sun, and be of comparable magnitude (on account
of the Waĺen slope it should be some 11% below the range
3.7–4.8 km/s). In other words, we infer that the structure was
propagating anti-sunward through the ambient plasma at a
speed in, or near, this range. To accurately measure such a
small plasma flow relative to the structure is probably beyond
the limit of the combined accuracy of the CIS/HIA instru-
ment and of the determination of the proper frame velocity
(the HT velocity). The relative velocity is the difference be-
tween two speeds of the order of 500 km/s, which means
that the accuracy of each must be 0.5% or better. These
reservations notwithstanding, we have performed the calcu-
lation. Using the average measured plasma velocity〈v〉 and
the frame velocityV HT, both based on the data in the time
interval of the entire event, together with then vector from
the rapid rotation only, we find a relative plasma velocity of
(〈v〉−V HT) ·n = +7.1 km/s. Within the large uncertainties,
this result can be considered consistent with the estimates of
the normal component of the Alfvén velocity given above.
The overall consistency with the model indicates that at least
the signs of these two velocity components have been cor-
rectly obtained.

The time durations of the rapid and slow rotations in Fig. 1
are about 4–5 s and 170 s, respectively. By use of the HT
frame velocityV HT = (−511.8;+44.4;−12.8) km/s and the
normal vectorn = (0.924;0.106;0.368) from Table 1, the
corresponding widths of the structure are 1880–2350 km and
80 390 km, respectively. Noting that the ion inertial length,
with an average density of 9.6 protons/cm3, is λi = 73.6 km,
we then find the rapid rotation to occur over a distance along
the normal that is in the range 26–32λi ; the corresponding
distance for the slow rotation is some 43–34 times larger. The
result for the inner-branch width may be compared with the
spatial scale of 29λi in Fig. 4. As already mentioned, the val-
uesβ2, θ2, and1ψ , used to generate the figure, correspond
to the observed values and the pair of valuesA2

x2=1.0063
andγ = 1.134 was chosen so that the theoretical hodogram
would reproduce the observed gap between the inner and
outer branch of the hodogram (compare Figs. 1 and 3b) and
at the same time give a spatial scale of about 29λi for the
rapid rotation. It appears that the polytropic version of the
model is capable of reproducing the hodogram as well as the
spatial scale of its inner branch.

As expected, the PEACE instrument onboard Cluster 1
saw the beam of electrons, referred to as “strahl”. By ex-
amining the electron spectrograms, available on the PEACE
web site, at 0◦ and 180◦ pitch angle, the “strahl” was found
to be directed anti-parallel to the magnetic field (peak flux at
180◦ pitch angle). These electrons are believed to originate
on the sun. Because the normal magnetic-field component
points sunward in our discontinuity, this means the “strahl”
electrons were crossing the structure from its sunward to its
earthward side. This behavior is consistent with the field
lines on the sunward side being “rooted” in the sun and the
electrons accessing the earthward side by flowing across the
structure.

Overall for C1, there is good consistency between the
observations and the behavior predicted by the theoretical
model. The major disagreement is that the model fails to pre-
dict the slowness of the field rotation on the outer hodogram
branch. In this context, it is noted that the model does not
include the possible net effect of the field fluctuations.

The other three Cluster spacecraft recorded tangential
hodograms similar to that shown for C1 in Fig. 1, includ-
ing the same sense of rotation of the field vector around the
inner and outer hodogram branches. But there were some
important differences. The normal vectors (as for C1, based
on data from the fast-rotation interval only) were again very
well determined but varied significantly from spacecraft to
spacecraft (see Table 1 and Fig. 6). The sign of the normal
field component and of the normal flow across the structure
was positive and the same for C3 as for C1, while for C2
and C4 the normal field component had the reverse sign (see
Table 1). The prediction from our theory is that the flow
direction should then have reversed as well. Since the CIS
instrument is not functional on C2, the actual direction of the
plasma flow across the discontinuity could not be checked
for that spacecraft. For C4, the HIA part of the CIS instru-
ment is also not functional but the CODIF part is delivering
data. These data, while less accurate and containing gaps, do
in fact produce results that are consistent with the prediction
((〈v〉−V HT) ·n = −19 km/s; Waĺen slope = +0.5), at least in
terms of signs. The implication is that the structures observed
by C2 and C4 had the reverse propagation direction, heading
sunward rather than earthward relative to the plasma, and,
contrary to the case for C1 and C3, therefore having the slow
field rotation on its upstream rather than its downstream side.
Here the terms upstream and downstream refer to the plasma
velocities as viewed in the HT frame. In the spacecraft frame
of reference, the rapid rotation preceded the slow rotation for
all four spacecraft, as shown in the time plot in Fig. 7. In
this figure one can also see that the time order of the traver-
sals was C4, C2, C3, and C1, with less than 1 s separation
between the C2 and C3 crossings. In spite of this near simul-
taneity, there are noteworthy differences, in particular in the
behavior of the GSEBx component of the field seen by C2
and C3 (see the second panel in Fig. 7). Together with the
large differences in the predicted normal direction, and the
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Fig. 6.  Polar plot of MVAB normal vectors for the rapid rotation interval (filled squares) and 1196 
for the full (F=rapid + slow) time interval (unfilled squares) of the Cluster event (colors: C1 1197 
black; C2 red; C3 green; C4 blue). Time intervals are listed in Table 1. At the center is the 1198 
direction of the GSE X axis. Four-spacecraft timing, along with the constant velocity 1199 
assumption, CVA (purple cross), gives n

CVA
= (0.9436;0.2306;0.2374) , using the following 1200 

spacecraft locations (GSE components in R
E

) and time lags (Fig. 7) relative to C4:  1201 
                                             C1 = [16.8374    8.3899   -1.7107],  +9.098 s 1202 
                                             C2 = [17.2566    8.2638   -1.4753],  +3.077 s 1203 
                                             C3 = [17.2965    8.3549   -1.9919],  +3.969 s 1204 
                                             C4 = [17.3747    8.7685   -1.5073],    0.000 s 1205 
 1206 

Fig. 6. Polar plot of MVAB normal vectors for the rapid rotation interval (filled squares) and for the full (F=rapid + slow) time interval
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C3= [17.2965 8.3549 −1.9919], +3.969 s
C4= [17.3747 8.7685 −1.5073], 0.000 s

reversal of the sign of the normal field component, such be-
havior indicates the presence of significant and unexplained
2-D or 3-D structure on scales of the spacecraft separation.
Adding to the puzzle is the fact that the normal directions,
determined by use of MVAB in the data interval of the rapid
rotations, indicate that the four individual normal-vector de-
terminations had very high quality, which in turn strongly
suggests, locally 1-D structure during the fast field rotation
at each of the spacecraft.

Because the time lag between the four crossings is so
small, one expects that the “strahl” electrons were flowing
anti-parallel to the field and that the Walén slope was posi-
tive at and around all four crossings. For C3 and C4, these
features were directly confirmed by CIS/HIA, CIS CODIF,
and PEACE . No PEACE or CIS data were available dur-
ing the C2 encounter but we infer with confidence that the
‘strahl’ must have been at 180◦ for this crossing too and that
the Waĺen slope must have been positive.

4 Ulysses event

This event was observed by the Ulysses spacecraft on 29
July 1995, in the time interval 23:15 30 – 23:43 20 UT, at
80.2◦ northern heliographic latitude and a distance of 2.0 AU.
The event was first reported and discussed by Tsurutani et
al. (1997) and has subsequently been further discussed in the
literature (e.g., Tsurutani and Ho, 1999; Horbury and Tsu-
rutani, 2001). It has the remarkable property that the space-
craft observed the slow rotation first, followed by the rapid
rotation. Here we re-examine the event in the context of
our theory. The hodogram representation of the magnetic
field is shown in Fig. 8 for the entire event and in Fig. 9 for
the rapid rotation only. The tangential field is seen to ro-
tate by approximately 180◦. In the tangential hodogram of
Fig. 8, the inner (rapid) branch of the tangential hodogram
is obscured by fluctuations on the outer (slow) branch but
a plot of field magnitude versus time reveals a noticeably
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Fig. 7. Cluster event on 3 February 2003: Time plots of GSE magnetic field components, measured by each of the four spacecraft (C1 black;
C2 red; C3 green; C4 blue). Resolution is 22.4 samples/s.
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Fig. 8. Variance results for Ulysses event seen at 2.0 AU and 80.2◦ northern heliographic latitude on 29 July 1995. The event was first
discussed and analyzed by Tsurutani et al. (1997). Format is the same as in Fig. 1. Resolution is 1sample/s. The MVAB eigenvectors,
expressed in terms of their RTN components, and the corresponding variances are:x̂1 = (−0.718;0.058;0.693) with λ1 = 0.0378 nT2;
x̂2 = (−0.676;−0.293;−0.676) with λ2 = 0.129 nT2; x̂3 = (0.164;−0.954;0.250) with λ3 = 0.578 nT2. In the bottom right panel, note that
the slow rotation precedes the fast rotation for this event.

lower field magnitude on the fast branch than on the slow
branch (see Fig. 10 in the work by Tsurutani and Ho, 1999).
In both Figs. 8 and 9, the normal magnetic field is small
but negative (anti-sunward). The more reliable result, which
comes from the time interval of the rapid rotation only (see
Table 1), is〈B〉 · n = (−0.42±0.02) nT; the corresponding
normal vector from MVAB isn = (−0.853;−0.092;+0.513)
(in the RTN system, whereR is radial outward from the sun,
N is due north in the plane containingR and the sun’s spin
axis, andT completes the right-handed orthogonal triad) and
the eigenvalue ratio isλ2/λ1 = 29. Using this normal vector,
but field vectors from the entire (slow + fast) event, we find
〈B〉 ·n = −0.68 nT instead.

The low (242 s) time resolution of the plasma data means
that only four data points are available during the entire
event. On the basis of these points one can calculate
the average normal plasma flow in the HT frame to be
positive, i.e., pointing towards the sun,(〈v〉 − V HT) · n =

+12.8 km/s, which value is comparable to the Alfvén speed,
|VAx | =11.8 km/s, based on the normal field (−0.42 nT) and
a proton density of 0.6/cm3. Also, the Waĺen slope is neg-
ative (= −0.61, with cc = −0.982) as expected, although
significantly less in magnitude than unity. The low slope
may be the result mainly of the low time resolution but
other effects, such as the presence of alpha particles, pres-
sure anisotropy, and field fluctuations, are likely to play a role
as well. The sunward flow in the proper (HT) frame of the
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Fig. 9. Ulysses event in Fig. 8: Hodogram for the rapid field rotation only. Resolution is 1 sample/s. The eigenvalue ratio isλ2/λ1 = 29;
further details from the MVAB calculation are given in Table 1.

discontinuity indicates that, relative to the plasma, the struc-
ture was propagating outward from the sun, in agreement
with the conclusion reached by Tsurutani and Ho (1999)
from different considerations. The negative Walén slope is
consistent with the fact that the normal field and the normal
flow have opposite signs. This result also implies that the
quantityAx1 in Eq. (1) and Eq. (2) is negative and the neg-
ative sign in turn leads to a reversal of the predicted time
order so that the outer (slow) rotation should now precede
the inner (fast) rotation in the hodogram; this is indeed the
observed behavior.

Although the statistical uncertainties are substantial, the
internal consistency of the results supports our view that
the signs of the nominal normal field and flow components
are correct. An additional indication of the robustness of
our result is that the signs of these components remain un-
changed even if one uses the less accurate normal vector,

obtained from MVAB on data for the entire event (Fig. 8),
rather than from the rapid rotation only. This vector is
n = (−0.719;+0.058;+0.692) with the much smaller eigen-
value ratioλ2/λ1 = 3.4; the corresponding normal field and
flow are〈B〉·n = −0.35 nT and(〈v〉−V HT)·n = +8.8 km/s.

The durations of the rapid and the slow rotation are about
30 s and 928 s, respectively. Since the structure moves anti-
sunward at velocityV HT ·n = 680 km/s, the corresponding
widths of the structure are about 20 400 km and 631 410 km,
respectively. These widths, seen at high latitude and a radial
distance of 2 AU from the sun, are an order of magnitude
larger than those for the Cluster event, at low latitude and
1 AU. But because of the low ion density (0.6 protons/cm3)

at Ulysses, the ion inertial length is also larger (λi =294 km)
so that the rapid rotation occurs over a distance of about
70λi , which is roughly twice the result for Cluster (26–32λi).
The difference could be accounted for by different values of
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(A2
x −1) in the two events or by the two-step nature of the

rapid field rotation (see Fig. 9). The result of the comparison
of the two results can therefore be considered consistent with
our claim thatλi is a key ingredient in the spatial scale of the
rapid rotation.

5 Summary and discussion

In this paper, we have shown that the isentropic/polytropic
Hall-MHD equations have exact 1-D solutions describing in-
finite, plane, nonlinear wave trains in which the magnetic
field transverse to the propagation direction rotates back and
forth, within an angle range of up to±180◦, with a nearly,
but not precisely, constant field magnitude. The magnetic
field component in the propagation direction is constant and
is usually small. We have then compared the theoretically
predicted behavior during one wave period with behavior of
one double-arc polarized structure observed by the four Clus-
ter spacecraft and one observed by the Ulysses spacecraft.
The observations show fast field rotation in one sense of di-
rection with slightly weaker magnetic field, followed by (for
the Cluster event), or preceded by (for the Ulysses event),
a much slower rotation in the opposite sense with a slightly
larger field magnitude. Although our theoretical model does
not account for the difference in rotation rates, it appears to
well describe many of the other observed features. This leads
us to conclude that the slow rotation observed adjacent to the
fast rotation is not a separate phenomenon but is instead an
integral part of an overall propagating wave structure. The
fast or slow rotation part can be separately called either a
rotational discontinuity (RD) or an arc-polarized directional
discontinuity (although the term “discontinuity” is less apt
for the slow part). For clarity, we have referred to the overall
(fast + slow) structure as being double-arc polarized. We
have shown that our model can describe the fast rotation
part, including its width, as well as the average field be-
havior in the slow rotation, except for the slow rotation rate.
The model does not describe the field fluctuations seen dur-
ing the slow rotation; these fluctuations are not consistent
with the 1-D, time-independent nature of the model. Finally,
we emphasize that solutions of the type we have found do
not exist in ordinary MHD; the Hall term in the generalized
Ohm’s law, and with it the ion inertial lengthλi , plays a criti-
cal role. We have also shown that the characteristic length
scale isλi/(A2

x − 1), whereAx = vx(µ0nmi)
1/2/Bx is the

Alfv én number based on the plasma flow component (in the
co-moving frame) and the field component along the x-axis,
i.e., in the direction normal to the wave fronts. ProvidedA2

x
has values sufficiently close to one, the characteristic length
scale, i.e., the wavelength, can therefore be manyλi .

The detailed features of the theoretical model and their re-
lationship to observed features, and to basic physics, can be
summarized as follows.

1. The tangential hodogram for the wave has two branches:
an inner branch in which the average field magnitude is
slightly depressed and the Alfvén numberAx has mag-
nitude slightly less than one; an outer branch, in which
the field magnitude is slightly enhanced and the magni-
tude ofAx is slightly larger than one. The separation
of the two branches depends on the chosen parameter
values, including the net rotation angle of the tangen-
tial magnetic field. It is usually small. These features
of the model are present in hodograms from real phys-
ical events observed in the solar wind (Figs. 1 and 8).
One usually sees only one full period of the wave train;
this period starts and ends with the tangential field in,
or near, an extreme position, at one of the two turn-
ing points of the hodogram. In our model, the turning
points are not fixed points and therefore do not represent
the precise asymptotic upstream or downstream state
of a discontinuity. But it is around the turning points
that the field rotation rate is small, making possible, via
small disturbances, the creation of a local fixed point
(a center) and therefore a transition to a small ampli-
tude gyration or periodic tipping back and forth around
a field representative of neighboring solar-wind regions.
The same argument indicates that observations of only
one part of a full period, from turning point to turning
point along either the inner or outer branch, should oc-
cur as well. These are the single-arc polarized structures
referred to as rotational discontinuities (RDs). Com-
parison of their predicted properties with observations
will be presented in a separate paper. Temporal varia-
tions can probably also lead to the creation of transient
fixed points elsewhere along the hodogram curve. Such
behavior appears to be present on the outer hodogram
branch (e.g., Fig. 1). It can in principle produce ex-
tremely complicated hodogram structures, as frequently
seen in the observations.

2. As seen by an observer traveling with a plasma element
across the structure, the predicted field rotation on the
outer branch is always electron polarized, i.e., the rota-
tion sense is the same as that of an electron gyrating in
the normal component of the magnetic field. Similarly,
the predicted rotation on the inner branch is always ion
polarized. As discussed below, the observations indeed
show this behavior. Since an ion-polarized whistler (re-
gardless of amplitude) has a phase velocity that is in-
creasingly less than the Alfvén speed as the wavelength
shortens, such a wave can phase stand in the flow only
if the local conditions haveA2

x < 1; this is the situa-
tion on the inner branch of the hodogram. Similarly,
the electron-polarized whistler at long wavelengths has
phase velocity larger than the Alfvén speed; to phase
stand, such a wave must be in a flow whereA2

x > 1, as
is indeed the case on the outer hodogram branch.
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Because mass conservation requiresρvx =const., a
larger (smaller) value ofA2

x = (ρvx/Bx)
2µ0/ρ corre-

sponds to a lower (higher) density and, from the isen-
tropic/polytropic law (p/ργ =const.), a lower (higher)
plasma pressure and a higher (lower) ram pressureρv2

x .
As long asγ > 1, a lower (higher) plasma pressurep
wins over the higher (lower) ram pressure in the normal
stress balance,(ρv2

x +p+B2
t /2µ0)=const. To main-

tain the overall balance, the tangential magnetic field
must therefore be stronger on the electron-polarized
branch and weaker on the ion-polarized branch, which
is indeed the case. Thus the separation of the two
branches is a direct consequence of the dispersive prop-
erties of whistler waves, which properties result from
the inclusion of the Hall term in Ohm’s law. Further-
more, the separation of the branches increases asγ in-
creases. In the MHD limit,A2

x → 1 on both branches,
which then coincide, but the price paid is that the wave-
length→ ∞, which means that the field rotation rate
becomes infinitely slow. In this limit, the fixed point
(point 2 in Fig. 2a), around which our hodogram traces
are nested, degenerates into a circle on whichA2

x = 1;
contrary to the situation depicted in Fig. 2a, this circle
is now centered exactly at the origin (0,0) of the tangen-
tial hodogram plane.

3. When, as in our Cluster event, the normal field compo-
nent and the normal flow component have the same sign
(either++ or −−), and a period of the wave structure
is taken to start at the largest negative value of the field
angleψ = tan−1(By/Bz), i.e., at the left turning point in
Fig. 2a, then an observing spacecraft will see the tip of
the tangential field vector start moving to the right along
the inner branch of the hodogram. This ion-polarized
rotation takes the tangential field to its most positiveψ
value. After the right turning point has been reached,
an electron-polarized rotation follows along the outer
branch, back to the originalψ value. In the theoretical
model, this return rotation has about the same thickness
as the rotation on the inner branch but, as observed by
Cluster, it is 34–43 times wider. In this event, what is
seen by an observing spacecraft as the structure is car-
ried past it by the solar wind, is therefore a rapid ro-
tation followed by a slow return rotation (Figs. 1 and
7). The observed rapid rotation occurs over a distance
(thickness) along the propagation direction of some 26–
32 ion inertial lengths.

When, as in the Ulysses event, the normal field and flow
components have opposite signs instead (either+− or
−+), the spacecraft will first see a slow rotation fol-
lowed by a rapid return rotation (see the time plot in
Fig. 8). In the Ulysses event, the thickness of the rapid
rotation was about 70 ion inertial lengths and the width
of the slow rotation was some 31 times larger.

Note that the sense of field rotation recorded in a mea-
sured hodogram agrees with the sense that would be
seen by an observer traveling with the plasma across the
structure only if the propagation direction is away from
the sun; if it is toward the sun, the sense is reversed. In
the Ulysses, C1, and C3 crossings, the former was the
case; for C2 and C4, the latter situation occurred.

4. Since the sign of the normal flow component in the HT
frame determines the propagation direction of the struc-
ture relative to the plasma, we conclude that the prop-
agation sense can be determined from magnetic data
alone. For a fast-slow event, where, additionally, the
sign of the normal magnetic field component can be es-
tablished with confidence (from MVAB or otherwise),
a positive (sunward) value of this field component im-
plies that the structure propagates anti-sunward, while a
negative (anti-sunward) value means it propagates sun-
ward. The former case was found for the C1 and C3
observations of our Cluster event and the latter was the
case for the slightly earlier C2 and C4 observations. By
use of CIS/HIA data, we found that the sign of the pre-
dicted normal flow was indeed positive for C1 and C3.
This result may be fortuitous but it was consistent with
the positive Waĺen slope during the entire event. For C2,
the entire CIS instrument is non-functional. Therefore,
the predicted sunward propagation direction could not
be checked. For C4, the CIS/CODIF instrument is func-
tional and confirms the predicted sunward propagation
and the positive Walén slope. Because it is hard to imag-
ine a physical process that would rapidly reverse the
sign of the Waĺen slope, we conclude it must have been
positive for C2 as well. This conclusion in turn confirms
that the propagation direction was sunward during the
C4 and C2 crossings. For a slow-fast case, such as the
Ulysses event, the normal field and flow should have op-
posite signs and, since the normal field was found to be
negative (anti-sunward), the normal flow should be pos-
itive (sunward), corresponding to anti-sunward propa-
gation. This prediction was directly, albeit perhaps for-
tuitously, confirmed by use of data from the plasma in-
strument, which data indicated sunward flow along the
normal direction as well as the expected negative Walén
slope. Tsurutani and Ho (1999) also found anti-sunward
propagation. Note that the rapid rotation is not always
at the leading (inflow) side of the wave, with the slow
rotation on the trailing (outflow) side. It is evident from
the Cluster 2 and 4 crossings and from the Ulysses event
that such is not the case: the slow rotation is sometimes
on the leading side of the structure and the rapid ro-
tation on the trailing side. Therefore an analogy with
wind-driven water waves cannot be drawn.

5. From the discussion in items 3 and 4 follows that there
is a one-to-one correspondence between the sign of
the Waĺen slope and the sense of motion along the
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hodogram trace. When the slope is positive, so thatvx
andBx have the same signs (either++ or −−), the
order seen in the hodogram is fast (inner-branch) rota-
tion followed by slow (outer-branch) rotation. When
the Waĺen slope is negative, so thatvx and Bx have
opposite signs (either+− or −+), the order seen is
slow rotation followed by fast rotation. It follows that
one can replace information about the Walén slope, for
which plasma measurements are required, by simple ob-
servation of the ordering of the fast (inner-branch) and
slow (outer-branch) rotation parts of an event, which re-
quires only the field measurements. To determine the
actual propagation direction, i.e., to find the sign ofvx,
one can either use direct plasma measurements of that
velocity component, or one can determine the sign of
Bx. When these components are small, both determina-
tions are difficult, but reliably establishing the sign of
Bx tends to be the easier task.

6. In order to match the theoretical model to the branch
separation in the C1 hodogram and at the same time
to the spatial width of the inner branch, it was neces-
sary to use aγ value smaller than that of isentropic be-
havior, converting the model to a polytropic one. This
corruption of the ideal physical model is an indication
that processes and effects not included in the model in
reality play a non-negligible role. A further indication
that something is missing is that the Walén slope mag-
nitudes are significantly less than unity.

7. For the Cluster event, the “strahl” electron flow was
found to be anti-parallel to the magnetic field. For
C1 and C3, where the normal field pointed toward the
sun, this fact could perhaps be taken to suggest that the
sunward facing side of the structure was magnetically
connected to the sun in a direct way (the field lines had
one “end” on the solar surface), whereas the earthward
facing side was so connected only via the small sun-
ward pointing (positive) normal magnetic field compo-
nent across the structure. However, if the same argu-
ment were applied to the C2 and C4 observations in-
stead, the conclusion would be the reverse: The earth-
ward side would be directly connected and the sunward
side only via the small, now earthward pointing (neg-
ative) normal field. It appears that, on and off, both
sides must have had direct connection to perhaps dif-
ferent regions on the solar surface. The implication is
that “strahl” information cannot be used to unambigu-
ously decide that one side of a discontinuity has direct
connection and the other one only indirect connection
to the sun.

8. We now comment on the failure of the model to ac-
count for the slowness of the field rotation on the outer,
electron-polarized branch of the hodogram. We have
not studied the stability of our solution and doing so

is not a simple matter. One possibility is that, at
least for the parameter values applicable to our events,
the electron-polarized part of our theoretically derived
structure (in which part the group velocity exceeds the
phase velocity) is unstable and can spread out over time.
In the solar wind, the corresponding situation would
be that, as the overall structure moves outward from
the sun, the ion-polarized part (in which the group ve-
locity is less than the phase velocity) is able to reach
its equilibrium thickness but the electron-polarized part
is not. At least the electron-polarized part of the ob-
served structures may therefore be evolving with time.
Furthermore, one can perhaps understand how the ion-
polarized part can steepen when it is located on the up-
stream side of the wave structure (as for C1 and C3):
ion polarized wave packets generated within the struc-
ture cannot escape upstream. But it is not clear how it
can happen when this part is on the downstream side (as
for C2, C4, and Ulysses).

Many studies of the evolution of Alfv́en waves as they
are convected away from the sun can be found in the
literature. A detailed discussion of these is beyond the
scope of our paper. We simply note that 11

2-D hybrid
simulations (Vasquez and Hollweg, 1996) of the evo-
lution of linearly polarized Alfv́en waves near the sun
into arc-polarized wave trains do not show the differ-
ence between fast and slow field rotation rates found in
the observed events; the behavior they find is instead
somewhat similar to that shown in our Fig. 4. Notice-
able differences are that, in the simulation results, the
field rotation rate is slower around the turning points
and that there is no readily noticeable separation be-
tween the two branches of the hodogram. The parame-
ter values used in the simulations were similar to those
of the Cluster event, except that the propagation angle
relative to the magnetic field was smaller (θB = 60◦ ver-
sus θB ' 86.2◦ for Cluster). It must be remembered
that the simulations, as well as our equilibrium solution,
by no means incorporate all features of the real situa-
tion, such as global-scale gradients and associated de-
formations of flow and field, the presence of alpha par-
ticles, and the presence of deviations from 1-D behav-
ior. We also cannot exclude the possibility that events
may be found in which the field rotation for the electron-
polarized branch is as well ordered and rapid as it is for
the ion-polarized branch.

There are 1-D processes, such as modulation and de-
cay instabilities that could play a role. But in the
Vasquez and Hollweg (1986) simulations, these in-
stabilities, if at all present, do not seem to produce
the observed different rotation rates for the ion- and
electron-polarized parts of a double-arc event. Perhaps
the explanation lies in the periodic nature of the simula-
tion. If only a single period were included, it is possible
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that the observed behavior might develop, as in the ar-
ticle by Spangler et al. (1985). Since this latter work
is based on weakly nonlinear analysis, it is not clear
how relevant it is to our case, where the wave amplitude
(Bt/Bx) is very large.

Another possibility is that the flaw lies in the 1-D na-
ture of both simulation and equilibrium model, although
subsequent 212-D simulations (Vasquez and Hollweg,
1998a, b) also do not appear to slow down the electron-
polarized field rotation. Perhaps the large amplitude
fluctuations seen on this branch are a signature and es-
sential ingredient of the process that leads to the slow
average rotation rate in the electron-polarized portion
of a wave period. These fluctuations are essentially
Alfv énic and propagate along the local, slowly rotat-
ing, average tangential field and causing the field vector
to tip back and forth along the slow hodogram branch.
In the 11

2-D simulations and in our model, such fluc-
tuations cannot occur because they also involve fluc-
tuations of the normal field component. In the model,
their influence could perhaps be described in an average
sense by inclusion of some extra terms in the conserva-
tion laws or by using slightly different parameter values
on the outer branch. In this context, we note that the
field rotation rate becomes smaller the closer the branch
comes to the circle defining Alfv́enic normal flow.

It is also possible that the fluctuations do not play a sig-
nificant role but are simply part of a large sea of Alfvén
waves in which the structure is immersed. There is time
for these waves to show up during the slow rotation,
while the duration of the fast rotation may usually be
too short for their presence to be evident. However, in
the Ulysses hodogram (Fig. 9), there are in fact indica-
tions that these fluctuations can occur also during the
fast part of the structure, causing it to have longer du-
ration. Unfortunately, the overall conclusion is that the
true reason for the observed slow field rotation on the
outer hodogram branch remains unknown.

9. For the Cluster event, a second mystifying feature is the
reversal of the inferred propagation direction from sun-
ward for the earliest (C4) and the second earliest (C2)
crossing to anti-sunward for the next-to-last (C3) and
the last (C1) crossing (see Fig. 7). The near simultane-
ity of the C2 and C3 crossings indicates that the re-
versal must be the result of spatial effects on the scale
of the spacecraft separation. Further evidence of pro-
nounced spatial structure is provided by the fact that
the four MVAB normal vectors, based on high resolu-
tion data during the rapid parts of the structure, all have
high quality, as judged by the eigenvalue ratio, but yet
point in widely different directions, as shown in Fig. 6.
The conclusion is again that there must be substantial
spatial structure on the scale of the spacecraft separa-
tion and presumably also associated temporal evolution.

The reasons for these effects are not obvious but could
involve Kelvin-Helmholtz and/or tearing mode instabil-
ities operating mainly in the relatively thin ion-polarized
part of the structure, or it could be a consequence of the
fluctuations seen during the slow rotation. As shown
in Fig. 6, the normal vectors from the full event, which
are determined mainly by the data from the slow rota-
tion, have less spread. The results as they stand seem
to torpedo the concept that double-arc polarized mag-
netic structures are always nice and one-dimensional
over substantial spatial scales. A consequence is that
a normal vector determination from relative timing of
the four crossings by use of the standard constant ve-
locity assumption (CVA; see the article by Haaland et
al., 2004), while providing perhaps a reasonable average
orientation (see Fig. 6), cannot always be used to calcu-
late meaningful values of the small normal magnetic-
field and flow components at each individual crossing.
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