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Abstract. On day 7 May 2005, the plasma instruments on
board Double Star TC1 and Cluster SC3 spacecraft register
inside the magnetosheath, at 19:15:12 and 19:16:20 UT, re-
spectively, a strong pressure pulse due to the impact of an
interplanetary shock wave (IS) on the terrestrial bow shock.
The analysis of this event provides clear and quantitative
evidences confirming and strengthening some results given
by past simulations and observational studies. In fact, here
we show that the transmitted shock is slowed down with re-
spect to the incident IS (in the Earth’s reference frame) and
that, besides the transmitted shock, the IS – bow shock in-
teraction generates a second discontinuity. Moreover, sup-
ported also by a special set three-dimensional magnetohy-
drodynamic simulation, we discuss, as further effects of the
interaction of the IS with the magnetosphere, other two in-
teresting aspects of the present event, that is: the TC1 double
crossing of the bow shock (observed few minutes after the
impact of the IS) and the presence, only in the SC3 data, of a
third discontinuity produced inside the magnetosheath.
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1 Introduction

Interplanetary shocks (IS) are compressional magnetohydro-
dynamic (MHD) discontinuities propagating through the so-
lar wind. The IS are known as one of the sources of geomag-
netic disturbances (Tsurutani and Gonzalez, 1997). In fact,
their impulsive action causes global changes in the magneto-
sphere determining several perturbative phenomena like, for
example, sudden impulses (SI) or sudden storm commence-
ments (SSC) (see, e.g.Huttunen et al., 2005, and references
therein).

The first phase of the interaction, between an IS and the
terrestrial magnetosphere, consists of the IS collision on the
bow shock. Theoretically, this process is highly nonlinear.
Actually, on the contact line of the two shock fronts, it is
generally impossible to satisfy the Rankine-Hugoniot jump
conditions with only one MHD discontinuity. Therefore, this
discontinuity splits up immediately in an ensemble of other
discontinuities or self-similar waves (Akhiezer et al., 1975).
The most general solution is given by a combination of seven
discontinuities and rarefaction waves: three waves travelling
in a direction (in this sequence: fast, Alfvén and slow) and
three waves travelling in the opposite direction (in the same
sequence) separated by a contact discontinuity, at rest relative
to the medium (Jeffrey and Taniuti, 1964). The fast and slow
waves can be either shocks or rarefaction waves. Of course,
some of the waves enumerated here may not be present in the
solutions of particular problems.

In the past years several theoretical papers were devoted
to the interaction of a IS with the bow shock. The pio-
neering one-dimensional studies, in gasdynamical approxi-
mation or with a magnetic field perpendicular to the solar
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wind velocity and to the shock normals, have shown that the
collision, between a fast IS and the bow shock, produces a
forward-reversed couple of fast shocks separated by a con-
tact discontinuity (Shen and Dryer, 1972; Dryer, 1973; Grib
et al., 1979).

By taking into account a magnetic field direction forming a
45◦ angle with the solar wind velocity,Grib (1982) has found
that the interaction of a fast IS with the bow shock results in
a couple of forward waves (i.e., the transmitted fast IS and a
slow expansion wave), a couple of reverse waves (i.e., the fast
modified bow shock and a slow shock) and a contact discon-
tinuity. TheGrib (1982) theoretical findings have been con-
firmed by later MHD simulations both in one-dimensional
(Yan and Lee, 1996) and in full three-dimensional case close
to the Sun-Earth line (Samsonov et al., 2006). Moreover,
Samsonov et al.(2006) have shown that the speeds of the for-
ward slow expansion wave, of the contact discontinuity and
of the reverse slow shock are all very close. In the experimen-
tal data, therefore, a compound discontinuity (i.e. a discon-
tinuity resulting from two or more superimposed waves or
discontinuities) rather than the three separate waves should
be probably observed. Some evidencies supporting this issue
can be found in past papers (Šafŕankov́a et al., 2007; P̌rech
et al., 2008) and, as it will be discussed, also in the present
paper. However, with regard to the problem of the number
of discontinuities in the ensemble resulting from the IS-bow
shock collision,it should be stressed that the nature of this en-
semble may change if the parameters, concerning the initial
conditions of the model, are modified (Pushkar’ et al., 1991).

The second phase of the process of interaction of a IS with
the magnetosphere consists of the propagation of the shock
front through the magnetosheath. Calculating the differences
between the predicted and the observed times of arrival of 10
interplanetary shocks to the spacecraft locations in the mag-
netosheath,Koval et al.(2006a) have found a deceleration of
the IS within the magnetosheath ranging from 0.82 to 0.97
of the shock speed in the solar wind. A deceleration, even
if much higher (a shock speed in the magnetosheath ranging
from 0.25 to 0.33 of the external speed), is also reported in
an observational study on 20 cases byVillante et al.(2004).
At present, the geometry of the shock front in the magne-
tosheath is still matter of discussion. Using a hydrodynamic
model,Spreiter and Stahara(1994) have found that the shock
front is still nearly planar. Differently, by means of observa-
tions from several spacecraft and of MHD modeling,Koval
et al.(2005, 2006b) have argued that the transmitted IS front
has a curved profile within the magnetosheath.

The collision on the magnetopause is another crucial phase
in the interaction of an IS with the magnetic Earth’s environ-
ment and it is, as the other two previously mentioned phases,
still poorly understood. In a theoretical study based on the
Rankine-Hugoniot relations,Grib et al.(1979) have shown
that the impact of a fast shock on the magnetopause, con-
sidered as a tangential discontinuity, produces a fast rarefac-
tion wave moving sunward.Grib and Martynov(1977) have

proposed that this reflected rarefaction wave starts an oscil-
lating process in which other secondary waves are generated
by the reflections upon both the bow shock and the magne-
topause. This mechanism produces oscillations of the mag-
netopause and bow shock positions and also reverse shocks
in the magnetosheath due to the evolution of outward com-
pression waves. Global MHD simulations (Samsonov et al.,
2007) show that the interaction of a fast shock with the
magnetopause results in a transmitted fast shock propagat-
ing earthward through the magnetosphere. This transmit-
ted shock reflects from the inner boundary of the numeri-
cal model which may be either the plasmapause or the iono-
sphere. The reflected fast shock propagates sunward through
the dayside magnetosphere and magnetosheath. The passage
of the transmitted shock causes the bow shock and magne-
topause to move inward, while the passage of the reflected
fast shock causes these boundaries to move outward.

Here, we present an event in which both Cluster and Dou-
ble Star spacecraft register, in quite different positions within
the magnetosheath, a pressure pulse due to an IS imping-
ing on the bow shock. Our analysis provides some interest-
ing quantitative results regarding the motion of the transmit-
ted IS, of the bow shock and two secondary discontinuities
generated by the IS-magnetosphere interactions. Moreover,
we discuss our results also with the support of a specially
set simulation based on the local model bySamsonov et al.
(2006)

2 Double Star and Cluster observations

The event under study occurs on 7 May 2005 between 19:13
and 19:23 UT. The data used are from Hot Ion Analyser
(HIA) and Flux Gate Magnetometer (FGM) onboard Clus-
ter SC3 and Double Star TC1 spacecraft. HIA instrument
selects the incoming ions according to the ion energy per
charge ratio by electrostatic deflection in an analyser hav-
ing a “top hat” geometry (Carlson et al., 1982). The particle
imaging is based on microchannel plate (MCP) electron mul-
tipliers and position encoding discrete anodes. HIA is able
to provide, in a spacecraft spin period of∼4 s, a full three-
dimensional ion distribution function in the energy range of
5 to 32 000 eV, with no mass separation. FGM flight instru-
mentation consists of two, tri-axial fluxgate magnetometer
and an onboard data-processing unit on each spacecraft, and
is capable of high sample rates (up to 67 vectors s−1) at high
resolution (up to 8 pT). Cluster (Cluster Ion Spectrometry
(CIS)/HIA and FGM) and Double Star (HIA and FGM) ex-
periments are widely described inRème et al.(2001) and
Balogh et al.(2001), Rème et al.(2005) and Carr et al.
(2005), respectively. For the present study, HIA onboard mo-
ments of the ion distribution function and spin averaged mag-
netic field are used and, therefore, the time resolution of the
data set is∼4 s. Unfortunately, in this event, other HIA data
from Cluster are not available due to some data gaps (SC1)
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and to a not suitable operation mode (SC4) in the considered
time interval whereas no HIA data are available on SC2 at
all.

On day 7 May 2005, the Hot Ion Analysers (HIA) plasma
instruments, onboard Double Star TC1 and Cluster SC3
spacecraft, start to measure, at 19:15:12 and 19:16:20 UT,
respectively, a pressure pulse (Fig. 1). At those times, both
satellites are on dawn flank and in the northern magne-
tosheath, with TC1 closer both to the bow shock and to the
Sun-Earth line than SC3 (Fig. 2).

This compression is due to the impact of an interplanetary
discontinuity on the terrestrial bow shock. Indeed, the ACE
monitor observes, at 18:18:32 UT and near the lagrangian
point L1, an abrupt increase in the protons densityn, tem-
peratureT and bulk flow speedV . The magnetic fieldB
rotates of a very small angle whereas its magnitudeB jumps
(Fig. 3 and Table 1). Given that, across a MHD discontinu-
ity whose normal isn, B ·n is conserved (e.g.,Landau and
Lifshitz, 1960), it is easily deduced that, in the present case,
B is nearly perpendicular to the normal discontinuity. The
above features, together with the observation that the jump
n2/n1 is very close toB2/B1 (Table 1) (the subscripts 1 and
2 will refer, from now on, to the upstream and downstream
average parameters, respectively), permit to identify the in-
terplanetary discontinuity as a fast quasi-perpendicular shock
(e.g.,Hudson, 1970). The shock normal at the ACE location
is n(IS)(ACE) = (0.982,0.172,−0.08) and the IS speed (in
the spacecraft reference frame) isUn(IS)

(ACE) = 461 km/s
earthward. The upstream fast magnetosonic Mach number
has a value ofMf1 = 1.25 indicating that the IS is a quite
weak shock. The estimated propagation time, from ACE to
the TC1 position, results to be 55.13 min, in good agreement
with the observed lag of 56.7 min. Therefore, there exists a
strict relation between the arrival of the IS and the observed
compression of the magnetosheath.

The pressure pulse shows clearly a compound structure in-
side the magnetosheath. In fact, TC1 resolves the whole per-
turbation as two distinct discontinuities separated by∼30 s
in time (Fig. 1a). The first discontinuity, at 19:15:12 UT, is
characterized by an increase ofn, T and also ofV (Fig. 1a).
Moreover, the magnetic field rotates of a small angle of 5.5◦

whereas its magnitudeB slightly increases (Table 1). This
discontinuity represents again a quasi-perpendicular shock
wave which is actually the transmitted IS. The TC1 data anal-
ysis shows that the transmitted shock is earthward directed
with a speed ofUn(IS)

(TC1) = 328 km/s along its normal
n(IS)(TC1) = (0.992,0.125,−0.025) whereas the upstream
fast magnetosonic Mach number isMf1 = 1.01.

The second discontinuity, observed by TC1 at 19:15:40,
is charaterized by a decrease ofT and a weak increase ofn.
On the contrary,B is practically constant through it (Fig. 1a
and Table 1). A decrease of the y-component of the plasma
bulk flow velocity (V2Y (GSE)/V1Y (GSE) = 0.6) is also observed
∼8–12 s before theT decrease. However this finding must
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%V 2

= 4.7 nPa and the alfv́enic Mach numberMA = 7.4.

be considered with caution because the parameters jumps are
quite weak and the fluctuations not negligibile.

The SC3 spacecraft is positioned more deeply into the
magnetosheath, roughly 4 Earth’s radii along the Sun-Earth
line, with respect to the TC1 spacecraft (Fig. 2). When seen
by SC3, the structure of the magnetosheath perturbation con-
sists of three discontinuities (Fig. 1b).

The first of these, observed at 19:16:20 UT, is still the
quasi-perpendicular fast transmitted shock whose jumps of
the n, T and B are all quite close to the ones measured
at the TC1 location (Table 1). In this case, the measured
speed of IS has a value ofUn(IS)

(SC3) = 314 km/s whereas
the shock normal is practically coincident with theXGSE
axis (Table 1). Using the time delay of∼68 s, between the
shock arrivals at TC1 and SC3 locations, and the TC1-SC3
separation of∼ 4.0RE along the shock normaln(IS)(TC1),
we obtain an average shock speed of< Un(IS)

>= 375 km/s
earthward which is close to both values of 328 km/s and
314 km/s, i.e. the Rankine-Hugoniot istantaneous values of
the IS speed at TC1 and SC3 positions respectively. With re-
gard to the Cluster observations of the IS, it is necessary to
explain the reason why the multi-spacecraft timing technique
(e.g.,Schwartz, 1998) has not been used to measure the nor-
mal and speed of the shock. Actually, the magnetic field data
are available also from SC1, SC2 and SC4 but the time de-
lays (of the IS arrivals between the four spacecraft) are very
poorly measured by means of the FGM data inspection. The
reason of this drawback is that those delays are short, at most
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Fig. 3. The perpendicular interplanetary shock, causing the magne-
tosheath perturbation of Fig. 1, as seen by ACE/SWEPAM (plasma
analyzer) and ACE/MAG (magnetometer) instruments. The time
resolutions of plasma and magnetic field L2 verified data are 64 s
and 16 s, respectively. The magnetic field is reported in GSE polar
coordinates.Trad is the proton radial temperature.

of few seconds, and the IS magnetic signatures (i.e.B rota-
tion andB jump) weak and blurred by other fluctuations with
considerable amplitudes.

The second discontinuity is observed around 2 min after
the transmitted shock and shows an increase ofn and a de-
crease ofT (Fig. 1b). Across it, moreover,B has a rotation
of few degrees associated with a small jump ofB (Table 1).
On the contrary, the flow speed field has not a discontinuous
variation but a quite regular increase (∼ 40 km/s) ofVX(GSE)
between 19:17:40 and 19:19:30 UT (Fig. 1b). Under the hy-
pothesis that the discontinuity is moving in the same direc-
tion as the transmitted shockn(IS)(TC1), we can affirm that
it is not a propagating structure. In fact, taking into account
its travelling time between TC1 and SC3 (∼155 s) and the
spacecraft distance alongn(IS)(TC1) (∼ 3.98RE), we can es-
timate its average speed being< Un(II) >= 164 km/s earth-
ward, practically the same value as the flow speed along
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n(IS)(TC1). A further and extremely important annotation
is that this discontinuity is not from the interplanetary space.
In fact, an inspection of the solar wind data does not reveal
any signature which can be associated with the present mag-
netosheath structure (actually, in the ACE data a drop ofT

is visible around 2 min after the IS passage (Fig. 3). How-
ever, it is possible to rule out easily the possibility that the
ACE T drop is related to the magnetosheath discontinuities
II. The argument is the following: if the ACET drop were an
advected structure, then it should arrive at the Earth around
∼9 min after the IS, that is a time delay much longer than the
observed 2 min at SC3 location. Viceversa, if ACET drop
were rigidly linked to the IS structure and, therefore, if it
travelled at the same IS speed, well then its time delay from
IS in magnetosheath would be consistent with the SC3 ob-
servations (delay time of∼2 min) but absolutely in disagree-
ment with TC1 observations where the time delay is only of
∼ 30 s. Moreover, it is noted that the ACET drop coincides
with a density decrease whereas in the magnetosheath theT

decrease is associated with a density increase both at TC1
and SC3 positions.)

Assuming that the second discontinuity is generated when
the IS hits the bow shock, it is possible to provide an ap-
proximation of both the positionRimpact where the observed
discontinuity fronts have been generated and the timeTimpact
of this generation. In fact, given the speeds< Un(IS)

> and
< Un(II) > of the transmitted IS and of the second disconti-
nuity respectively, given their arrivals time and also the SC3
position, a simple calculation provides the value ofRimpact=

(11.18,−4.75,5.58) RE and placesTimpact at 19:14:51 UT.
These results will be useful in the paper later on.

The third discontinuity is seen by SC3 at 19:20:15 UT and,
as in the case of the second discontinuity, its interplanetary
origin must be excluded. Across it,n decreases whereas both
T andB slightly increase (Fig. 1b and Table 1). The rota-
tions of B and V field are both less than 10◦. The mini-
mum variance direction of the magnetic field (Sonnerup and
Cahill, 1967) nIII = (0.896,−0.277,0.346), calculated in the
time interval from 19:19:20 UT to 19:21:30 UT comprising
this discontinuity, is very well defined being quite high the
ratio between the intermediateλ2 and the minimun eigenval-
uesλ3 of the variance matrix (λ2/λ3 = 31). AlongnIII the
flow speed has an average component of−52 km/s (Fig. 4).
A simple analysis of the arrival times of the discontinuity at
the Cluster spacecraft positions, made with CLUSTER/FGM
magnetic field data, permits to understand in which direction
it is travelling. As shown in the upper panel of Fig. 5a, the
four time profiles ofBy of the discontinuity are well sepa-
rated in time. By means of time shifts, derived under the
assumption that the discontinuity is moving earthward along
nIII with a speed ofUn(III ) = 52 km/s, these profiles can be
nicely made overlapping (Fig. 5a). Therefore this disconti-
nuity is an advected structure moving earthward at the local
plasma speed. This last finding is also confirmed by a multi-
spacecraft timing analysis performed on the magnetic field
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data. In fact, this technique provides a speed of∼58 km/s
along a direction which forms an angle of only∼ 8◦ with nIII .
Finally, taking into account that along thenIII the magnetic
field has a component nearly zero and that the total pressure
is approximately balanced (Fig. 4), we note that the present
structure resembles a tangential discontinuity (e.g.,Landau
and Lifshitz, 1960; Hudson, 1970).

Finally, we discuss another interesting aspect of the
present event concerning the behaviour of the bow shock just
after the impact with the IS. At 19:17:06 UT, TC1 has an
outbound bow shock crossing, followed, 5 min later, by an
inbound crossing (Fig. 1a). In the solar wind plasma and
magnetic field behind the IS, there are no significant varia-
tions which could cause the observed double displacements
of the bow shock. Therefore, the double crossing should
be related to the interaction IS-magnetosphere as suggested
by Šafŕankov́a et al.(2007) in the discussion of some other
events quite similar to the present one. In the first cross-
ing, we find the bow shock moving earthward with a speed
of Un(BS1)

= 47 km/s. Differently, in the second crossing, it
turns out that the bow shock travels in the opposite way, that
is sunward, with a speed ofUn(BS2)

= 80 km/s. For sake of
completeness, note that, due to the saturation of TC1 HIA in-
strument in the solar wind in the present event, in the above
calculation of the bow shock speeds we have used suitable
time averages ofn andV coming from ACE/SWEPAM ions
instrument (Fig. 1a). The reconstucted impact timeTimpactof
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Fig. 5. (a) Upper panel: the GSEBy component of the magnetic
field of the third discontinuity as seen by the four Cluster space-
craft. Bottom panel: same as in the upper panel but with the SC1,
SC2 and SC4 profiles ofBy suitably shifted ahead in time (only the
SC3 profile is unchanged).
(b) First three panels: Cluster spacecraft GSE positions at the time
of the third discontinuity passage. Last panel: the spacecraft dis-
tances from SC3, calculated along thenIII direction (see Table 1),
plotted versus the time delays expected under the hypothesis that
the third discontinuity is moving alongnIII with the local plasma
speed ofUn(III ) = −52 km/s (Table 1 and Fig. 4). The amounts of
these delays equal the time shifts applied to theBy profiles in the
bottom panel of (a).

IS with the bow shock is, as previously found, 19:14:51 UT,
moreover TC1 crosses the bow shock for the first time around
∼135 s later. Under the hypothesis that the bow shock starts

to move inward immediatly after the IS collision, taking into
account also the TC1 distance of∼ 1.17RE (along its normal
nBS1) from Rimpact, we get an average speed of< Un(BS1)

>=

55 km/s which is very close to the Rankine-Hugoniot istan-
taneous value ofUn(BS1)

= 47 km/s.

3 Numerical simulation

We have simulated the event on 7 May 2005 using a three-
dimensional (3-D) MHD model developed for the Earth’s
magnetosheath (Samsonov et al., 2006; Samsonov, 2006).
This model calculates the MHD flow around a parabolic ob-
stacle using solar wind temporal variations observed by ACE
(or another solar wind monitor) as boundary conditions at the
inflow boundary. The numerical calculations are based on
the TVD Lax-Friedrichs II-order scheme (e.g.,Tóth, 1996)
and the maximal resolution is in the subsolar region where
the grid spacing equals nearly 0.2RE. The jump condi-
tions through the bow shock are obtained self-consistently
during the simulations. Since the model does not simulate
the magnetospheric field, it can not take into account self-
consistently the magnetopause motion. Therefore, for the
simulations in this work, the magnetopause is considered as a
solid impenetrable obstacle. The reason of this assumption is
that Samsonov’s model, using a solid magnetopause, agrees
better with magnetosheath observations of IS than the same
model with moving magnetopause (e.g.,Koval et al., 2006b).
In this approach, the magnetopause motion can be taken into
account indirectly as explained below. We record temporal
variations of the MHD parameters in two points approxi-
mately corresponding to the SC3 and TC1 positions. Since
the size of the magnetopause obstacle changes responding to
pressure variations in front of the magnetopause, we vary the
position of the artificial spacecraft in relation to the magne-
topause and bow shock. In other words, it means the vari-
ations of spatial units or normalization in the simulation as-
sume that the magnetopause shape is fixed during the consid-
ered time interval.

We start the simulation using solar wind conditions at
18:00 UT that is 18 min before the IS arrival at ACE. At the
beginning, a stationary solution for the initial conditions has
been found by the relaxation method. Then time varying
boundary conditions determined by the ACE data are used.
The numerical predictions (red lines) and the observed vari-
ations (black lines) ofn, V , T andB for SC3 and TC1 are
shown in Fig. 6 and Fig. 7, respectively. We mark three no-
table changes by vertical dashed lines in Fig. 6. The first one
is the IS itself when then, V andT increase.B increases too,
but this increase is weak and is followed by a larger decrease.
The second structure corresponds to another increase ofn,
but a decrease ofV andT . B slightly increases again. The
third vertical line marks a decrease ofn and an increase of
B (only in the observations). The model predicts a decrease
of B between 19:16 and 19:17 which is really observed a
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little later in SC3 FGM data. This decrease could be caused
by the inward magnetopause motion or by a fast rarefaction
wave reflected from the magnetopause (Grib et al., 1979).
However, the presence of a rarefaction wave does not agree
with a smooth increase ofn.

Most important features in Fig. 7 are the forward IS
marked by a vertical dashed line and following double bow
shock crossings when TC1 goes from the magnetosheath to
the solar wind at 19:17 UT and then returns back into the
magnetosheath 5 min later. Numerical simulations may help
to resolve spatial-temporal uncertainty existing in spacecraft
observations. Figures 8–11 show changes of then, V , T and
B in 24 16-s intervals in the noon-meridional plane. The pan-
els contain only a dayside part of the numerical region where
the positions of SC3 and TC1 are shown by star and cross,
respectively. A decrease of parameters during an interval is
shown by violet and blue colours, an increase is shown by
red and yellow colours. Arrows mark the direction of motion
of the bow shock (BS), interplanetary shock (IS), compound
discontinuity (CD), and reflected fast shock (RFS). The IS
front in the supersonic solar wind is sometimes vague be-
cause the changes are smoothed by the numerical viscosity.
But it is well defined after the interaction with the bow shock
when the IS goes through the dayside magnetosheath. The
shock front in the magnetosheath is slightly curved as dis-
cussed byKoval et al.(2005). The interaction between the
IS and the bow shock results in anti-sunward bow shock mo-
tion. The motion means a decrease ofn, T , B and an increase
of V in the points shifted from the magnetosheath to the so-
lar wind. This helps to identify the position of the moving
bow shock rather well. While the IS propagates through the
inner magnetosheath, another discontinuity with an increase
of n and a decrease ofT becomes visible between the IS and
the bow shock (panels 7–8 of Figs. 8 and 11). In a partic-
ular case simulated byYan and Lee(1996) andSamsonov
et al. (2006), this discontinuity was found to be a combina-
tion of a forward slow expansion wave, a contact disconti-
nuity, and a reversed slow shock. The three discontinuities
travel with similar speeds and can not be resolved in the 3-D
simulations (Samsonov et al., 2006). However, another com-
bination of discontinuities may appear for a slightly different
upstream configuration (see results ofPushkar’ et al., 1991;
Grib and Pushkar, 2006). The contact discontinuity seems
to exist in any combination, and it is generally surrounded
by slow shocks and/or slow rarefaction waves. Panels 7–8 of
Fig. 10 show two thin layers in the subsolar region with de-
creased and increasedB shifted earthward and sunward with
respect to the variation ofn andT which would agree with
the combination of a forward slow shock, a contact disconti-
nuity and a reversed slow shock. The changes ofB through
the slow shocks are relatively small and can not be identified
clearly at both spacecraft positions. A stronger anti-phase
variation ofn andT caused by a contact discontinuity has
been observed by SC3 (second vertical line) and predicted in
the simulation (between 19:18 and 19:19 in Fig. 6). This dis-
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Fig. 6. Ions density, total speed, temperature and magnetic field
magnitude observed by CIS/HIA and FGM instruments onboard
SC3 (black lines) and predicted by the MHD code (red lines). Verti-
cal dashed lines mark the three observed discontinuities (see details
in text).

continuity is also found in the simulated TC1 profile although
it is then overlapped by the outbound bow shock crossing. In
fact,T decreases at around 19:16 well beforen or B do and,
whenT begins decreasing,n has a second step of increase
(Fig. 7). Therefore, the jumps of some parameters are not si-
multaneous indicating that this discontinuity has a compound
nature.

The incident fast shock reflects from the inner numerical
boundary in the simulation producing a reverse fast shock
(RFS) which propagates toward the bow shock. The RFS is
well defined in the all figures (panels 8–13 of Figs. 8–11).

When the RFS reaches the bow shock, this begins to move
sunward. The sunward bow shock motion appears first near
the Sun-Earth line, while the flank bow shock still moves
anti-sunward (panels 14–17). Then the sunward moving re-
gion of the bow shock extends toward the flanks. Similar
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(black lines) and predicted by the MHD code (red lines). Vertical
dashed line marks the arrival of IS.

results were obtained bySamsonov et al.(2007) with a global
MHD code. TC1 being at that time in the solar wind can
not observe the RFS, but SC3 can observe the RFS as an
increase of simulatedn, T , B and a decrease of simulated
V (| Vx | decreases) starting at around 19:18:00 UT in Fig. 6.
The reflected shock or wave results in the outward bow shock
motion which creates another discontinuity moving inward
through the magnetosheath. In Figs. 8–11, this discontinu-
ity near the Sun-Earth line is characterized by a decrease of
n and B, and an increase ofT (panels 15–18). However,
only a smooth decrease of simulatedn is obtained at the SC3
position beginning from about 19:19:30 UT in Fig. 6. Since
SC3 is in the inner magnetosheath rather far from the Sun-
Earth line, the simulated variations at its position are a mix-
ture of inward and outward waves. A strict identification of
this structure in the simulation is hardly possible and, there-
fore, a more strict analysis should be done in future works
using the Rankine-Hugoniot conditions.

4 Discussion

The analysis of the combined observations of TC1 and SC3
has given some quantitative results which is useful to discuss
and to highlight.

The IS speeds, measured in the Earth’s reference frame,
are Un(IS)

(ACE) = 461 km/s andUn(IS)
(TC1) = 328 km/s,

Un(IS)
(SC3) = 314 km/s in the interplanetary medium and in

the magnetosheath, respectively. Therefore, the IS is slowed
down by the interaction with the bow shock as already re-
ported in previous papers (Villante et al., 2004; Koval et al.,
2006a). The IS deceleration here obtained is more close to
the estimates byKoval et al.(2006a) than to the results by
Villante et al.(2004). In fact, in the present case the magne-
tosheath speeds of IS are 0.71 and 0.68 of the corresponding
interplanetary speed whereasKoval et al. (2006a) and Vil-
lante et al.(2004) have reported a value ranging from 0.82
to 0.97 and from 0.25 to 0.33, respectively. Besides the
Rankine-Hugoniot istantaneous estimatesUn(IS)

(TC1) and
Un(IS)

(SC3), an average value of< Un(IS)
>= 375 km/s of the

IS magnetosheath speed has been obtained using the time de-
lay between the IS passages at TC1 and SC3 positions (we
note that, considering as shock speed< Un(IS)

>, the IS de-
celeration is 0.82, that is a value falling in the above men-
tioned Koval’s interval). Taken into account that< Un(IS)

>,
Un(IS)

(TC1) andUn(IS)
(SC3) are all quite close, we can con-

clude that the travel through the magnetosheath does not fur-
ther decelerates the IS. Moreover, going from the interplan-
etary space to the magnetosheath, the shock compression ra-
tio, r = %2/%1, has a decrease fromr = 1.6 to r = 1.4 and
r = 1.5, the last two values being the measurements ofr

made at TC1 and SC3 locations, respectively. Therefore, the
observations indicate that the IS is scarcely weakened by the
collision with the bow shock and also by the following prop-
agation through the magnetosheath.

As shown in Sect. 2, just after the IS, both TC1 and SC3
observe in the magnetosheath a second discontinuity having
an increase ofn and a decrease ofT . Moreover, no track
of this discontinuity is found in solar wind data. In this re-
gard, therefore, our observations are in qualitative agreement
with the observations reported byŠafŕankov́a et al.(2007).
In fact, analysing some others events similar to the present
one, those authors have found that the magnetosheath pertur-
bations, due to the impact of an IS on the bow shock, have
a two-step like structure when observed by a spacecraft po-
sitioned very close to the bow shock (such as TC1 in the
present case). The first step being the transmitted IS and
the second step being a discontinuity strictly resembling that
observed in the present event. Differently fromŠafŕankov́a
et al.(2007), we have given an estimate of the speed of this
discontinuity finding a value of 164 km/s very close to the
plasma bulk flow speed along the discontinuity normal, i.e.
this structure does not propagate with respect to the plasma.
This finding is in good agreement with a quantitative re-
sult, obtained by (P̌rech et al., 2008), concerning the speed
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Fig. 8. Contours of1n in the noon-meridional plane for a successive set of 24 time intervals, where1n is a variation of density during 16 s
interval. The abbreviations BS, IS, CD, and RFS refer to the bow shock, interplanetary shock, compound discontinuity, and reflected fast
shock, respectively. A star and a cross in every panel illustrate relative positions of simulated SC3 and TC1 with respect to the magnetopause
and bow shock. The Sun-Earth line is along the horizontal axis.
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Fig. 9. Contours of1V showing variations of velocity. The format is the same as that in Fig. 8.

of the discontinuity which follows the IS. It is very inter-
esting to stress that the numerical simulations bySamsonov
et al.(2006) are generally consistent with the observations re-
ported in the present anďSafŕankov́a et al.(2007) andP̌rech

et al. (2008) studies. Indeed,Samsonov et al.(2006) have
found a compound discontinuity (comprising a forward slow
expansion wave, a contact discontinuity and a reversed slow
shock) which travels, at nearly the local plasma flow speed,
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Fig. 10. Contours of1B showing variations of field magnitude. The format is the same as that in Fig. 8.

behind the transmitted IS and which is generated by the inter-
action between the IS and the bow shock. This discontinuity
is mainly charatherized by an increase ofn, a decrease ofT
and a weak increase ofB.

A third discontinuity, actually a not propagating structure
which moves earthward at the local plasma flow speed, is
present in the magnetosheath perturbation seen by SC3. On
the contrary, TC1 does not observe this discontinuity neither

Ann. Geophys., 28, 1141–1156, 2010 www.ann-geophys.net/28/1141/2010/



G. Pallocchia et al.: IP shocks into the magnetosheath 1153

Fig. 11. Contours of1T showing variations of temperature. The format is the same as that in Fig. 8.

in the magnetosheath nor in the solar wind. An inspection of
the solar wind data excludes the interplanetary origin of this
discontinuity and, therefore, it must be considered as a prod-
uct of some process linked to the global IS-magnetosphere
interaction. Note that, to our knowledge, this is the first

time that such a kind of discontinuity is reported in obser-
vational studies regarding the present topic. With regard to
the generation of this discontinuity, a possible qualitative ex-
planation comes from the event numerical simulation. The
latter, in fact, shows that the reflection of the transmitted IS
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from the magnetopause results in a fast reverse shock (RFS)
moving sunward. When RFS hits the bow shock, this starts
to move outward and, at the same time, a new discontinu-
ity (earthward propagating) is produced. In the simulation,
this discontinuity is characterized by a decrease ofn and
B, and an increase ofT whereas the observed discontinu-
ity shows an increase ofB (besides a decrease ofn and an
increase ofT ), that is the simulation does not exactly fit the
observations in this specific case. Anyway, in our opinion,
the numerical simulation is very useful because it suggests
a generation mechanism which is able to explain the reason
why TC1 misses to observe this discontinuity. The hypo-
thetical scenario could be the following: TC1 is in the solar
wind when the RFS reaches the bow shock, later, the out-
ward motion of the bow shock causes the inbound crossing
of TC1 but, by this time, the discontinuity is far from the
TC1 position due to its earthward motion through the mag-
netosheath. At this point, we must clarify an important ques-
tion regarding the existence of the RFS. In the present sim-
ulation, as already reported at the beginning of Sect. 3, the
magnetopause is modelled as a solid and impenetrable ob-
stacle. As a matter of fact, such approximation does not per-
mit to take properly into account the magnetopause motion
due to the interaction with the IS. In fact,Grib et al.(1979)
and Wu et al. (1993) have found that the IS impact upon
the magnetopause produces a rarefaction wave rather than
a RFS. However, we note that our local model gives, into
the magnetosheath, results close to those obtained bySam-
sonov et al.(2007) (e.g. see their Figs. 5 and 6) by means
of a global MHD code where the IS is reflected by a bound-
ary placed inside the magnetosphere. AsSamsonov et al.
(2007) noted, this boundary is either the plasmapause or the
ionosphere. Therefore, we are quite confident that a RFS is
really produced, but it originates inside the magnetosphere
and propagates outward through the magnetopause and mag-
netosheath.

Around 2 min after the passage of the transmitted IS at its
position, TC1 has an outbound crossing of the bow shock fol-
lowed, 5 min later, by an inbound crossing which brings back
the spacecraft from the solar wind to the magnetosheath.
The TC1 observations are, therefore, very similar to those
discussed by̌Safŕankov́a et al.(2007) with respect to some
others events where spacecraft, located in very outer mag-
netosheath, observed the effects of an IS impact on the bow
shock. Šafŕankov́a et al.(2007) have suggested, supported
by 3-D MHD simulations based on Samsonov’s model (Sam-
sonov et al., 2006), that the first (outbound) crossing is due,
as predicted by the theory (e.g.,Grib et al., 1979), to an
earthward displacement of the bow shock caused by its in-
teraction with the IS, whereas the second (inbound) cross-
ing is given by a RFS from the inner magnetosphere which
pushes the bow shock outward when colliding with it. The
above suggestions are completely confirmed by the special
set simulation of our event. In fact, as described in Sect. 3,
our simulation predicts correctly the TC1 double crossing

and, moreover, shows as the inward and outward displace-
ments of the bow shock are caused by the collisions on it
of the IS and the reverse shock respectively. However, with
regard to the TC1 double crossing the most interesting re-
sults come from the experimental data. In fact, we have been
able to measure the bow shock speeds for both TC1 crossings
(Un(BS1)

= 47 km/s andUn(BS2)
= 80 km/s) obtaining a clear

observational confirmation that the bow shock has a defi-
nite motion, first earthward and, then, sunward directed. It is
noted that the inward bow shock speedUn(BS1)

= 47 km/s is
close to the value of∼40 km/s obtained byP̌rech et al.(2008)
studying a different event. Bow shock speeds asUn(BS1)

and

Un(BS2)
are not so frequent. As a matter of fact,Šafŕankov́a

et al. (2003) have reported that in a large majority of cases,
i.e. 78% of the 112 bow shock crossings analyzed, the shock
velocity is below 40 km/s. In the present case, moreover,
there are no significant variations, in the solar wind plasma
and the magnetic field following the IS front, such to jus-
tify the above crossings. Therefore, there exists a strong in-
dication that the double bow shock displacement is some-
how due to the interaction IS-magnetosphere. As shown in
Sect. 2, under the hypothesis that the bow shock starts to
move, fromRimpact, immediately after the interaction with
the IS at the timeTimpact, we have found that its speed should
be∼55 km/s, a value only∼1.2 higher than the direct mea-
sure ofUn(BS1)

= 47 km/s. Therefore, taken into account the
crudeness of some approximations made in this calculation,
we can be quite confident that the observed earthward mo-
tion of the bow shock is really due to the interaction with IS
and thatRimpactandTimpactare reliable estimates. Moreover,
the reliability ofRimpact andTimpact is an indirect confirma-
tion of the hypothesis on which the calculation of those re-
constructed values is based on (Sect. 2), i.e. that the second
discontinuity is generated by the collision of the IS upon the
bow shock. Viceversa, our data do not permit to shed much
more light on the origin of the sunward bow shock motion.
As reported earlier, the MHD simulation of the event shows
that the outward displacement of the bow shock is given by
the interaction with a reverse shock or wave. Unfortunately,
in the data we have found only an indication of the existence
of this reverse wave but not any robust evidence. The indi-
cation is given by the smooth increases ofn andPth and by
the regular decrease of| Vx | observed in SC3 data between
19:17:00 and 19:20:00 UT, that is just after the passage of the
IS. These trends, in fact, are compatible with the transit of a
compressive wave propagating sunward.

5 Summary

We have analyzed, by means of Double Star TC1 and Clus-
ter SC3 data, an event of magnetosheath perturbation caused
by the impact of IP shock on the terrestrial bow shock. We
have also performed a 3-D numerical MHD simulation of this
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event to get some suggestions for its physical interpretation.
Our results are summarized as follows:

1. The transmitted IS has a speed lower than the inci-
dent IS (in the Earth’s reference frame) and is not fur-
ther slowed down by the propagation into the magne-
tosheath. Moreover, the impact with the bow shock pro-
duces a negligible weakening of the IS strength.

2. Besides the transmitted shock, the interaction IS-bow
shock produces also a second discontinuity which is
moving earthward with the local bulk flow speed.

3. A third discontinuity, moving earthward with the local
plasma flow speed, is also present but only in SC3 data.
This discontinuity is not from the interplanetary space
but is the product of some process linked to the global
interaction IS-magnetosphere. The 3-D numerical sim-
ulation of the event suggests as a possible mechanism
of its generation the interaction between a reverse fast
shock and the bow shock.

4. After the passage of the IS, the bow shock moves first
earthward and then sunward. Moreover, our obser-
vations provide a robust and experimental support to
the theoretical prediction that the inward motion of the
bow shock is due to its interaction with the incident
IS. As the numerical simulation indicates, the outward
displacement of the bow shock is produced, together
with the third discontinuity, by its impact with a reverse
shock coming from the inner magnetosphere. An obser-
vational indication (indeed quite vague) of the existence
of the above reverse fast shock has been found in SC3
data.
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