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Abstract. A recent third-order, essentially non-oscillatory
central scheme to advance the equations of single-fluid mag-
netohydrodynamics (MHD) in time has been implemented
into a new numerical code. This code operates on a 3-D
Cartesian, non-staggered grid, and is able to handle shock-
like gradients without producing spurious oscillations.

To demonstrate the suitability of our code for the sim-
ulation of coronal mass ejections (CMEs) and similar he-
liospheric transients, we present selected results from test
cases and perform studies of the solar wind expansion dur-
ing phases of minimum solar activity. We can demonstrate
convergence of the system into a stable Parker-like steady
state for both hydrodynamic and MHD winds. The model
is subsequently applied to expansion studies of CME-like
plasma bubbles, and their evolution is monitored until a sta-
tionary state similar to the initial one is achieved. In spite of
the model’s (current) simplicity, we can confirm the CME’s
nearly self-similar evolution close to the Sun, thus highlight-
ing the importance of detailed modelling especially at small
heliospheric radii.

Additionally, alternative methods to implement boundary
conditions at the coronal base, as well as strategies to ensure
a solenoidal magnetic field, are discussed and evaluated.

Keywords. Interplanetary physics (Solar wind plasma) –
Solar physics, astrophysics, and astronomy (Flares and mass
ejections)

1 Introduction

Coronal mass ejections (CMEs) moved into the focus of
several research activities during recent years. Besides a
variety of observational data resulting from SOHO (Pick
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et al., 2006), SMEI (Webb et al., 2006), and, very recently,
STEREO (Vourlidas et al., 2007), significant progress has
also been achieved with the numerical modelling of CMEs,
see, e.g., the reviews byAschwanden et al.(2006) andForbes
et al. (2006). The motivation for the various activities is at
least fourfold. First, CMEs are amongst the main mediators
of the influence of the Sun on the inner heliosphere, partic-
ularly on the Earth and its environment, where they signifi-
cantly co-determine the space weather conditions. There is,
in view of ever advancing technology that is increasingly sen-
sitive – if not vulnerable – to space weather effects, strong
interest in an understanding of the latter. An even stronger
driver of research activities is provided with the recognition
that space weather phenomena offer valuable opportunities
to study many aspects of plasma astrophysics in great detail
(Scherer et al., 2005; Bothmer and Daglis, 2006; Schwenn,
2006). Second, as a consequence of the shocks driven by
CMEs, they serve as particle accelerators that do not only
contribute to space weather effects, but can be used to study
the actual acceleration processes (Reames, 1999; Mewaldt
et al., 2005; Li et al., 2005), which are expected to oc-
cur in other astrophysical systems as well (Eichler, 2006).
Third, with the recent launch of the two-spacecraft mission
STEREO (Kaiser, 2005), the full three-dimensional struc-
ture of CMEs can be observed both remotely and in-situ for
the first time. First results have already been reported by,
e.g.,Howard and Tappin(2008) andVourlidas et al.(2007).
And, fourth, the magnetohydrodynamic (MHD) modelling
of CMEs provides an excellent testbed for numerical codes.
Although not strongly motivated by CME physics, this is ac-
tually one of the main drivers of model development, as is
manifest with numerous approaches documented in the lit-
erature. These various approaches can be ordered into three
groups. There is (i) principal modelling that is either analyt-
ical and/or based on symmetry assumptions (e.g.,Titov and
Démoulin, 1999; Roussev et al., 2003; Schmidt and Cargill,
2003; Jacobs et al., 2005), (ii) local modelling limited to the
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Table 1. Normalization constants used for Eqs. (1–4). M�, R�,
kB, mp, µ0, andcs denote the solar mass, the solar radius, the Boltz-
mann constant, the proton rest mass, the permeability of free space,
and the isothermal sound speed, respectively.

Quantity Normalization

(solar) mass M�= 2.0×1030kg
length L0:=R�= 7.0×108 m
temperatureT T0:= 1.0×106 K
number densityn≡ρ/mp n0:= 1.0×1014m−3

plasma pressurep 2 n0 kB T0= 2.8×10−3 Pa
velocityu cs:=

√
2 kB T0/mp= 1.3×105 m s−1

time t L0/cs= 5.5×103 s
energy densitye mp n0 (cs)

2
= 2.8×10−3 J m−3

mag. inductionB cs
√

µ0 mp n0= 4.2×10−5 T
heating rateQ (cs)

3/L0= 3.0×106 W kg−1

(CME) massMcme mp n0 (L0)3= 5.7×1013kg

extended corona, i.e. a few tens of solar radii (e.g.,Miki ć
and Linker, 1994), and (iii) global modelling covering the
inner heliosphere from the solar surface out to 1 AU and be-
yond (e.g.,Manchester et al., 2004; Odstřcil et al., 2005; Tóth
et al., 2005; Riley et al., 2006).

Despite these intensified efforts and activity regarding the
study of CMEs, there remains both a number of unsolved
problems and various modelling deficiencies. For example,
the acceleration and heating processes of the plasma near the
coronal base are – even nearly 50 years after the ’discovery’
of the solar wind – still not known (Cranmer et al., 2007),
and there is also no agreement on the processes that actu-
ally initiate CMEs (Forbes et al., 2006). Also, their prop-
agation and evolution in size and shape is by far not fully
understood in all detail, and neither is their interaction with
the background solar wind (Jacobs et al., 2007), with other
CMEs (Gopalswamy et al., 2001), and with planetary mag-
netospheres (e.g.,Groth et al., 2000; Ip and Kopp, 2002).
Regarding the model formulations underlying the numerical
simulation of CMEs, particularly the (non-thermal) heating
of the plasma is mostly treated in a rather simplified manner
via ad-hoc heating functions (e.g.,Groth et al., 2000; Man-
chester et al., 2004), variable adiabatic indicesγ=γ (r) (e.g.,
Lugaz et al., 2007), or phenomenological heating functions
(e.g.,Usmanov et al., 2000), for a discussion seeFichtner
et al.(2008).

With the intention to address several of the above-
mentioned problems, we have applied our recently developed
CWENO-based MHD code (Kleimann et al., 2004), which
primordially originated from that byGrauer and Marliani
(2000), to the CME expansion problem. To our knowledge,
this is the first published paper describing the application of a
CWENO-based numerical code to an MHD problem related
to space physics.

In the following, we describe the model (Sect.2) and its
numerical realization (Sect.3 to 5), present results of analy-
ses of both the propagation of individual and the interaction
of two CMEs, and suggest a possible connection of our find-
ings to observations (Sect.6).

2 Governing equations

Choosing the normalization constants summarized in Ta-
ble1, the set of MHD equations for mass densityρ, flow ve-
locity u, magnetic field strengthB, and gas pressurep reads
(in dimensionless form):

∂tρ +∇ · (ρ u) = 0 (1)

∂t (ρ u)+∇ ·
[
ρ uu

+(p + ‖B‖2/2) Î − BB
]
= ρ g (2)

∂tB +∇ · (uB − Bu) = 0 (3)

∂te +∇ ·
[
(e + p + ‖B‖2/2) u

−(u · B)B] = ρ (Q+ u · g) (4)

where

g = −0/r2 er and (5)

e =
ρ ‖u‖2

2
+
‖B‖2

2
+

{
p/(γ − 1) : γ 6= 1

0 : γ = 1
(6)

respectively denote gravity (with

0 := (GM�)/(R�c2
s) = 11.49 (7)

in normalized units, cf. Table1), and the total energy den-
sity of a plasma with adiabatic exponentγ . Throughout
this paper,‖·‖ is used to denote the norm of a vector (i.e.
‖X‖≡

√
X·X for any vectorX), and the symbol̂I in Eq. (2)

denotes the unit tensor (i.e.(Î)ij=δij ).
A Parker-like solution for the solar wind is per construc-

tion isothermal, i.e.γ=1, resulting in an adiabatic cooling
for γ>1. In reality, the decrease in temperatureT≡p/ρ due
to this adiabatic cooling of the expanding plasma is com-
pensated by processes such as reconnective energy release
and Alfvénic wave heating. A realistic inclusion of such ef-
fects, while certainly desirable, is beyond the scope of this
first approach, and, thus, reserved for future refinements of
our model. As an alternative, we employ an ad hoc heating
function

Q = α(r) (∇ · u)Tc (8)

with a prescribed heating profileα(r) and a target tempera-
tureTc. To derive the form of Eq. (8), we first seek the heat-
ing functionQiso which maintains a constant temperatureTc
everywhere, irrespective ofγ . This is done by inserting the
corresponding isothermal equation of state

p = Tc ρ (9)
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into the MHD Eqs. (1–4) and solving them analytically for
Q, which yields

Qiso ≡ Q|T=Tc = (∇ · u) Tc . (10)

Therefore, local heating (or cooling) at any heliocentric ra-
dius rh is conveniently achieved by choosingα(rh)>1 (or
α(rh)<1) in Eq. (8). Test runs demonstrating the validity of
this method have been carried out byKleimann(2005).

3 Numerical implementation

3.1 Algorithm

In order to integrate Eqs. (1–4) forward in time, we em-
ploy a 3-D variant (Kleimann et al., 2004) of a recent
semi-discrete central weighted essentially non-oscillatory
(CWENO) scheme byKurganov and Levy(2000) with third-
order Runge-Kutta time stepping. Notable advantages of
CWENO include its third-order accuracy in smooth regions
(which automatically becomes second order near strong gra-
dients to minimize spurious oscillations) and an easy general-
ization to multi-dimensional systems of equations due to the
fact that no (exact or approximate) Riemann solver is needed.
The CWENO scheme thus allows simultaneously to achieve
high shock resolution comparable with the best shock cap-
turing schemes and high-order convergence in smooth re-
gions dominated by plasma waves. Although this scheme
is not strictly total variation diminishing (TVD), simulations
by Levy et al.(2000) do indicate an upper bound for the to-
tal variation of their solutions. Moreover,Havĺık and Liska
(2006) use a set of astrophysically relevant test cases to com-
pare the performance of several methods for ideal MHD and
stress CWENO’s superior accuracy.

3.2 Example test case: Alfv́en wings

Various elementary tests of our implementation have been
completed successfully (Kleimann et al., 2004), such as ad-
vection in one and two dimensions (also for propagation di-
rections inclined at angles 0<ν<π/2 to the coordinate sur-
faces), shock tubes with and without magnetic field inclu-
sion, etc.

While those standard tests will not be reproduced here, one
rather advanced test setting, which is also of astrophysical
relevance involving so-called “Alfv́en wings” is worth being
mentioned. While the finite extent of the wave-generating
obstacle does not allow for an exact analytical solution, the
usefulness of this simple but meaningful test problem stems
from the fact that it incorporates several types of MHD waves
(Alfv én and slow/fast magnetosonic), the expansion speed
and characteristics of which can be verified quantitatively
with theoretical expectations to ensure proper implementa-
tion of the relevant physics. As shown byDrell et al.(1965),
the movement of a conductive obstacle (e.g. a satellite or

Fig. 1. 3-D structure of a pair of Alfv́en wings, illustrated as an
isocontour plot of absolute velocity.

small planet) through a homogeneous fluid with a perpendic-
ular magnetic field will generate standing MHD waves in the
(u, B) plane called Alfv́en wings. This phenomenon plays a
major role for the interaction of the moon Io with the Jovian
magnetosphere (Neubauer, 1980; Linker et al., 1988), and
also for artificial satellites in the magnetosphere of Earth, see
e.g.Kopp and Schr̈oer(1998) and references therein.

The corresponding numerical test case, which works well
both in 2-D and 3-D, involves an initially homogeneous flow
u=u0 ex of constant density, which is combined with a per-
pendicular, equally homogeneous magnetic fieldB=B0 ez.
A solid, spherical obstacle is then implemented by perform-
ing an artificial deceleration

u(r, t)← u(r, t) × [1−min(t, 1)]
× [1− tanh(4 max(‖r‖ − 1, 0))]

(11)

after each time step, such that fort≥1 the flow will vanish
within ‖r‖≤1. Figures1 and2 illustrate the emanating wing
structure. Direction and speed of propagation agree well with
their respective theoretical expectations.

3.3 Choice of coordinates

At first sight, the Sun’s obviously spherical shape would
suggest the use of spherical coordinates[r, ϑ, ϕ], especially
since the radial convergence of lines of constantϑ, ϕ en-
tails the additional benefit of increased spatial resolution
near the Sun’s surface. On the other hand, the Courant-
Friedrichs-Lewy (CFL) criterion of numerical validity and
stability (Courant et al., 1928), which requires the “velocity”
1x/1t to be greater than the maximum physical propaga-
tion velocity, imposes a limit on the time step1t based on
the cell size1x. The very choice of a coordinate system
with varying grid cell sizes, together with the requirement
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Fig. 2. Selected magnetic field lines in the(u, B) plane, with color
denoting flow velocity in normalized units. The flow is incident
from the left. Since sound speed and Alfvén speed are both unity,
the wings emanate in a tailward 45◦ wedge when viewed in the
obstacle’s rest frame. The central circle marks the spherical volume
inside of which deceleration according to Eq. (11) is applied.

that the time step be uniform on the entire grid, thus im-
plies that1t will be set by the1x of the grid’s smallest cell.
For spherical coordinates, this means that the increased re-
solution at smallr, however welcomed for physical reasons,
would force1t to be much lower than what the CFL cri-
terion would require for most parts of the computational do-
main. This “problem of small time steps” is avoided by using
Cartesian coordinates, which have equal cell spacing every-
where and thus do not waste computing time on the larger
cells. Even worse is the problem of coordinate singularities
at the polesϑ∈{0, π}, which require delicate numerical treat-
ment. For these reasons, we opt for Cartesian coordinates
[x, y, z], for which numerics are faster, simpler (esp. with re-
spect to multi-dimensional extension), and more stable. This
is especially true since our CWENO code is built within a
framework that allows for Cartesian Adaptive Mesh Refine-
ment (AMR, seeKleimann et al., 2004). This is of high in-
terest for more detailed studies of, e.g., the inner structure of
a CME. While AMR can, in principle, be used with spherical
coordinates, its advantage is over-compensated by the fact
that the convergence of grid spacing implies unacceptably
low CFL numbers. (Note also that since CMEs generally
do not exhibit any clear spatial symmetry, the use of non-
Cartesian coordinates is not expected to entail any particular
advantages for their description.)

3.4 Divergence cleaning

Like many other algorithms, CWENO does not exactly con-
serve the solenoidality condition∇·B=0 for the magnetic
field, and a correction scheme becomes mandatory to avoid

unphysical artifacts. From the wealth of existing schemes
(for an overview see, e.g.,Tóth, 2000), we have evaluated the
performance of the Generalized Lagrange Multiplier (GLM)
approach byDedner et al.(2002) against a classical projec-
tion scheme (see Sect.3.4.2).

3.4.1 The GLM scheme

The GLM scheme solves an additional equation

∂t9 + (vf)
2
∇ · B = −(vf/λ) 9 (12)

for a position- and time-dependent Lagrange multiplier9,
and adds a term−∇9 to the right hand side of Eq. (3). This
procedure causes9 (and hence∇·B) to be damped with de-
cay constantτd:=λ/vf , while at the same time advection of9

towards the boundary of the computational volume occurs at
the highest permissible speedvf (chosen to equal the global
maximum of the fast magnetosonic speed in this case). Fol-
lowing Dedner et al.(2002), a value of 0.18 is used for the
second constantλ.

The main advantage of this method is that Eq. (12) already
possesses the correct conservative form, allowing for direct
treatment with CWENO. In particular, physical conservation
laws are not affected in any way.

Figure 3 compares the performance of the two methods
for a standard run. The obviously inferior performance of
GLM can be explained by the fact that within a spherical
layerL around the inner (solar) boundary, the boundary pro-
cedure described in Sect.5.1entails an averaging of the inner
boundary valueB in and the newly computed outer solution
Bout via

Bavg := f B in + (1− f )Bout (13)

for some functionf : L7→[0, 1], which is bound to introduce
a marked violation of the divergence constraint due to the
first term of

∇ · Bavg= ∇f · (B in − Bout)− f ∇ · Bout (14)

being clearly non-zero. This divergence-laden field is then
advected outwards by the wind flow, thus causing the mag-
netic field to quickly become non-solenoidal in the outer re-
gion as well. (This behavior becomes particularly evident in
the left plot of Fig.3.)

Since the resulting magnitude of∇·B in the non-
solenoidal interface layer is inversely proportional to the
layer’s thickness, the problem cannot be avoided by choosing
a different matching method (i.e. a different matching func-
tion r 7→f (r)). Note that this line of reasoning includes the
case of doing no averaging at all: This simply corresponds to
the limiting casef=fstep, where

fstep : r 7→

{
1 : ‖r‖ ≤ 1
0 : ‖r‖ > 1

. (15)

Since this non-solenoidal layer is actively re-created every
time the newly computed outer solution is connected to the

Ann. Geophys., 27, 989–1004, 2009 www.ann-geophys.net/27/989/2009/



J. Kleimann et al.: A novel MHD code for CME expansion 993

Fig. 3. Normalized divergence errorκ:=(∇·B)/‖∇
√

B·B‖ in the (poloidal)(x, z) plane for a standard solar wind run at timet=1.5 without
correction (left) and using GLM (right). The improvement is substantial but still insufficient due to massive divergence values introduced at
the inner boundary (unit circle around the origin). The projection scheme achievesκ∼10−6 (not shown). Note the different color scales.

inner boundary, we may conclude that a suitable divergence
cleaning procedure must kill the divergence immediately af-
terwards in one step (as the projection scheme does), rather
than only damping/ transporting it away on somewhat longer
timescales (GLM).

We must therefore conclude that for investigations of this
kind, the presence of an inner inflow boundary is, at least,
difficult and may, in some cases, even preclude the use of the
GLM scheme for divergence cleaning. (Note however, that
the applicability of GLM to other settings lacking such an
internal boundary remains unimpeded by this finding.)

3.4.2 The projection scheme

The so-called ’projection method’ was originally developed
by Chorin (1967) for simulations of inviscid flow, and later
applied in the context of MHD simulations byBrackbill and
Barnes(1980). It solves the Poisson equation

∇
28 = ∇ · B (16)

for 8 and then subtracts∇8 from B to ensure∇·B=0.
While numerically expensive, it is able to reduce divergence
errors down to machine accuracy, and will therefore be used
in all simulations presented here.

4 Boundary and initial conditions

4.1 Types of boundaries

The computational volume consists of a brick-shaped re-
gion of space covering 100×70×50 cells in thex, y, and

z directions, respectively. Each cell is a cube with a side
length of typically1x=1y=1z=0.1, implying a coverage
of [10, 7, 5] R� of real space. (We note that this relatively
coarse resolution was chosen deliberately do demonstrate the
excellent symmetry-maintaining properties of the employed
scheme, see also Fig.5. Higher spatial resolution, however
desirable for the study of fine-scale structures, would tend
to diminish the magnitude of numerical artifacts by which
the scheme’s performance could be judged, thereby hamper-
ing the usefulness of this demonstration.) The Sun’s cen-
ter is located at the origin, with the dipolar axis pointing
into the positivez direction. The computational domain is
surrounded by two layers of ’ghost cells’, whose values are
updated after each time step either from symmetry consid-
erations (for ’mirror’ boundaries intersecting the origin), or
use of outflowing boundary conditions (at the actual “outer”
boundaries).

The solar surface, which is represented by a sphere of unit
radius located inside the computational volume, obviously
does not coincide with any of the Cartesian coordinate sur-
faces, and therefore requires special treatment, which is dis-
cussed in detail in Sects.5.1 and5.2. This inner boundary
is particularly delicate since it constitutes the surface from
which the solar wind emanates, such that numerical artifacts
imposed by an imperfect treatment of this boundary will be
quickly advected through the entire domain.

4.2 Initial conditions

The generic setup for quiet-Sun solar wind simulations is as
follows: At t=0, the simulation is initialized with a radially
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symmetric wind flowu(r)=u(r) er with

u(r) =
um

2rm− 3
×


0 : r < 1

(r − 1)2
: 1≤ r ≤ 2

2r − 3 : r > 2
(17)

such that a super-sonic valueum is reached at the innermost
boundary point,rm. This is done to ensure that the initial
velocity at the outer boundary is as small as possible to al-
low large time steps1t , while at the same time being large
enough to prevent numerical boundary artifacts from being
transported inwards.

The density scales asρ(r)∝1/r3, and the temperature is
equal to a constantTc. The initial magnetic field is imple-
mented using

B|t=0 = ∇ ×

(
F(r)

r
sinϑ eϕ

)
(18)

where F(r)=P0/r yields a dipole of strengthP0 that is
aligned with the z-axis.

Since the projection scheme described in Sect.3.4.2will
operate on the entire grid, the singularity of Eq. (18) at
r=0 must be avoided. This is achieved by choosing a suit-
ably matched polynomial forF(r) inside some small sphere
around the origin. (Note that the radius of this sphere
must be chosen at least several grid cell sizes smaller than
unity to prevent the non-zero current density associated with
F(r)6=P0/r from causing unphysical Lorentz force acceler-
ations just outside ther=1 boundary.)

5 Numerical treatment of the solar surface boundary

5.1 The interpolation method

The inner (solar surface) boundary, which is just the sphere
S:={r| ‖r‖=1}, obviously does not coincide with any of the
Cartesian coordinate planes, which brings up the question of
how these boundary conditions are best represented on the
grid. Simple-minded attempts, such as keeping cell values
inside the Sun fixed and integrating only those outside, have
been tried but were shown to result in block-like artifacts
at small radii (essentially tracing the envelope of the set of
grid cells considered ’inside’) where the problem’s symme-
try would stipulate spherical contours. While these artifacts
would of course diminish as spatial resolution is increased,
it seems vital to obtain a high degree of symmetry-keeping
already at this relatively coarse resolution, especially in view
of the high numerical costs associated with increasing the
number of grid cells in a 3-D simulation.

After several possibilities have been tried, the following
procedure was adopted:

1. At initialization, all grid points which are located out-
sideS but have at least one of their 33

−1=26 neighbors
insideS are stored in a listI of ’interface points’. (The

set neighbors of a cellr ijk is defined as the set of cells
r i′j ′k′ with |i−i′|, |j−j ′|, |k−k′|∈{0, 1} excludingr ijk

itself.)

2. After each time step (which only advances grid points
outsideS in time), a weighted average for each vari-
ablew∈{ρ, ρux, ρuy, ρuz, Bx, By, Bz, e} is computed
for eachrI ∈ I via

w̄I =

(∑
α

(LIα)−1 w(r ′α)

)/(∑
α

(LIα)−1

)
(19)

with

r ′α =

{
rα : rα outside ofS

rI rα ∩ S : rα inside ofS (20)

and LIα:=‖rI−r ′α‖, where the sums in Eq. (19) are
taken over all neighbors ofrI . The choice of weights
∝(LIα)−1 ensures that for‖r I‖→1, w̄I smoothly tends
to the appropriate boundary value. Figure4 serves to
illustrate the situation.

When the above procedure is applied to the Cartesian
components of vectors such asu andB, it will usually
destroy any possibly existing symmetry of these vector
fields (e.g., ifu is purely radial, the averaged̄u vectors
will slightly deviate from the radial direction). In order
to preserve such symmetries, all Cartesian vector com-
ponents entering the averaging process of Eq. (19) are
first rotated until they are parallel torI before the av-
eraging takes place, thus ensuring that the symmetry is
preserved.

3. In order to guarantee that the newly computed grid val-
ues forI are independent of the ordering within that list,
all computed averages are first stored in a separate field.
Only when all thew̄I are known will they be copied
onto the actual grid.

Note that step 1 is executed only once, while steps 2 and 3
are called after each integration time step.

The above procedure gives the best results when applied to
a scalar field that varies approximately linear in space. Near
the solar surface, however, strong radial gradients of density
are present. For this reason, it has been found to be advan-
tageous to artificially reduce the density gradient in Eq. (19)
by multiplying ρ(r ′α) with ‖r ′α‖

3...4 before averaging, and
consequently dividinḡρI by ‖rI‖

3...4 afterwards.

5.2 Velocity extrapolation versus fixed boundary

The averaging procedure of Sect.5.1 keeps all quantities
fixed onS. However, if solar wind configurations such as the
Parker wind solution (Parker, 1958) are to be reproduced,
it seems questionable to apply this procedure to the veloc-
ity, since the requirement thatr 7→‖u(r)‖ must pass through
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a critical (sonic) point completely determines the solution
topology, and thus eliminates the freedom to prescribe a fixed
(Dirichlet) boundary value atr=1.

Different possibilities are conceivable to handle this prob-
lem:

1. Allow the velocity nearS to adjust freely by radial in-
ward extrapolation of the time-advanced solution (Kep-
pens and Goedbloed, 2000), or

2. enforce a fixed value foru on S in spite of the above
problem, and accepting that (hopefully small) inaccura-
cies will be introduced at small radii (Manchester et al.,
2004).

While the second alternative is just what the above averaging
procedure does, the first option, while being straightforward
in spherical coordinates, is clearly non-trivial to implement
on the present Cartesian grid.

In analogy to the averaging scheme used for the other vari-
ables, the adopted procedure (which replaces the procedure
of Sect.5.1for u) is as follows:

1. Prior to initialization, a listA of all grid pointsrA with
0.5≤‖rA‖≤1.0 is set up and sorted by decreasing‖rA‖

(such that the outermost points will be processed first).

2. For eachrA∈A, a sub-list of grid pointsrA,i is created,
such that

(i) ‖rA‖<‖rA,i‖ and

(ii) ‖rA−rA,i‖<r0 (with r0 ≈ (2...3) 1x).

In other words, the sub-list forrA contains grid points
close torA which are located at larger radii thanrA

itself. (Note again that steps 1 and 2 are executed only
once.)

3. After each time step, the radial mass flux

fA,i := (ρu)A,i · rA,i ‖rA,i‖ (21)

is computed from the sub-list at eachrA, and a least-
squares fit of the linear functiongA : r 7→c0,A+c1,A r is
used to find the mass flux atrA (which is then given by
gA(‖rA‖)=c0,A+c1,A‖rA‖). Finally, the correspond-
ing radial momentum is immediately afterwards written
to the grid, such that its value is available to the extrap-
olation at the next point in the list.

Figure5 shows a comparison of both methods for the (un-
magnetized) Parker wind case. The interpolation method’s
superior performance is in the range of a few percent only
and has to be gauged against its increased computational ef-
fort. Consequently, all of the simulations presented here use
the Dirichlet method. (We note, however, that this may not
always be appropriate when different parameter ranges are
used. For instance, a higher base temperatureTc will move

Fig. 4. 2-D analog of the averaging procedure. At each grid point
rI∈I (shaded central box), a weighted average is computed from
time-advanced values taken at neighbors outsideS (crosses), and
boundary values taken in the direction of neighbors insideS (cir-
cles). The factorsLIα entering into Eq. (19) are equivalent to the
length of arrows in the diagram.

the sonic point sunwards, leading to a higher flow velocity at
the solar surface, and a presumably larger discrepancy to the
zero-velocity condition.)

6 Solar wind and CME simulations

6.1 Creating equilibrium wind solutions

For the initialization of our CME expansion studies, we first
seek a well-defined MHD equilibrium resembling a “quiet”
(i.e. stationary) setting during solar minimum. While this is
of course not strictly required for such studies, it is neverthe-
less vital for the interpretation of the obtained results, since
only then can structures like CMEs be clearly disentangled
from the dynamics of the background flow.

For magnetized, isothermal (γ=1) winds, the system starts
from the initial conditions of Sect.4.2 and then quickly
(within a few sound crossing times) settles into a stable equi-
librium similar to the one depicted in the first frame of Fig.6.
At a distance of 5R� from the origin, the outflow velocity in
x direction differs from that at the polar field line by a factor
of about

‖u(5, 0, 0)‖

‖u(0, 0, 5)‖
=

1.26 cs

3.13 cs
≈

160 km/s

400 km/s
= 0.4 ,

which is due to the retaining force of the closed magnetic
field lines in the equatorial region, and reminiscent of the
speed difference between the fast and slow solar wind. Ex-
amples of non-isothermal hydrodynamical runs integrating

www.ann-geophys.net/27/989/2009/ Ann. Geophys., 27, 989–1004, 2009
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Fig. 5. Comparison of two possible methods to impose a boundary condition foru at the inner boundaryr=1: Dirichlet boundary condition
(left) enforcingu|r=1=0 versus inward extrapolation (right). Both diagrams show scatter plots of absolute velocity‖u‖ versus heliocentric
radius for all 403 grid points as the system converges towards the isothermal Parker wind solution (black solid curve). Colors are used to
denote the moment of initialization (t=0, blue), an intermediate step (t=1, green), and the situation after the stationary equilibrium has
been reached (t=8, red). Since all grid points are shown, the scatter at a given radius can be seen as a measure of the simulation’s spurious
departure from radial symmetry.

the full energy equation (4) with the heating source term (8)
can be found in (Kleimann, 2005).

It is noteworthy that essential features of the quiet inner
heliosphere, such as a latitudinal dependence of outflow ve-
locities resembling the fast and slow solar wind and the pole-
ward transition from closed magnetic field lines (which span
a static “dead zone”) below about 40◦ of latitude to an open,
more radial field, are self-consistently reproduced by our
model. In particular, it was found to be unnecessary to in-
voke the method of latitude-dependent inner boundary condi-
tions used by other authors (Keppens and Goedbloed, 2000;
Manchester et al., 2004) to reproduce this dichotomy: The
magnetic dipole strengthP0 proved fully sufficient to control
the latitudinal extent of the closed-field helmet zone. As can
be intuitively expected, a stronger B field at the surface will
tend to conserve its arch-shaped closed structure, while in
the limit P0→0, all field lines will be stretched out radially
by the flow, and spherical symmetry is recovered. The choice
of P0=4 results in the intermediate case with an open/closed
transition near±40◦ of solar latitude.

6.2 Initialization of CME onset

The present investigation focuses on the aspect of CME prop-
agation, rather than on their actual nascency. Therefore, a
simplifying approach similar to the one already employed

by Groth et al.(2000) andKeppens and Goedbloed(2000)
will be used. This approach is based on a time-dependent
boundary condition at the solar surface, generating a tran-
sient, isothermal increase in density (and thus in pressure). If
chosen sufficiently strong, this density excess is able to tear
open the equatorial helmet streamer, causing the detachment
of the excess matter as a rapidly expanding bubble.

In order to initiate an eruption in the time interval

T := [tcme, tcme+ τcme] (22)

an additional, localized mass fluxρadduadd with

ρadd(r, t)|r=1 = ρcme(r, t)

uadd(r, t)|r=1 = ucmeer
(23)

is released at a pre-defined location on the solar surface (im-
plying ‖r‖=1 for the remainder of this section). Without
loss of generality, let the center of the eruption region be in
the planeϕ = 0, such that its location is just

rcme :=

xcme
ycme
zcme

 =
 sinϑcme

0
cosϑcme

 . (24)

For fixed timet , the value ofρcme(r, t) should only depend
on the angular distance

α(r, rcme) = arccos(r · rcme) (25)

Ann. Geophys., 27, 989–1004, 2009 www.ann-geophys.net/27/989/2009/
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Fig. 6. Time sequence of simulated CME expansion from pre-eruption (t=10.0) to expansion and return to equilibrium (att=20.0),
showing contours of‖u‖ (top) and log10n (bottom) in the poloidal plane (y=0), with magnetic field lines superimposed. The CME speed
at onset was chosen to beucme=2. An MPEG movie of this simulation, which covers the entire simulation from initialization (t=0)
to convergence into steady-state (neart=10), CME expansion and back to near-equilibrium (t≈20), is available from the supplementary
material athttp://www.ann-geophys.net/27/989/2009/angeo-27-989-2009-supplement.zip.

betweenr andrcme, such thatρcme(r, t) possesses axial
symmetry with respect to thercme axis. FollowingKeppens
and Goedbloed(2000), we employ the function

ρcme(r, t) :=

f0 E(r, t) : t ∈ T ∧ α ≤ δcme

0 : else
(26)

www.ann-geophys.net/27/989/2009/ Ann. Geophys., 27, 989–1004, 2009
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Fig. 7. Contour plot showing the value ofBz in the (x, y) plane, normalized to the corresponding values at the pre-eruptive equilibrium
(t=10.0). The unit circle marks the position of the solar surface. Note the field reversals occurring within the encircled regions (dotted),
most notably in the CME’s wake.

with

E(r, t) := sin2
(

π
t − tcme

τcme

)
cos2

(
π

2

α(r, rcme)

δcme

)
(27)

which connects smoothly to the undisturbed state in both
space and time. Here 2δcme denotes the angular diameter of
the circular eruption region�cme, which is defined as the re-
gion whereρcme(r, t) gives a non-zero contribution accord-
ing to Eq. (26), and which thus covers a total solid angle

ωcme :=

δcme∫
0

2π sinα dα = 2π [1− cos(δcme)] (28)

on the Sun’s surface. The total mass released by the CME’s
eruption can be estimated as

Mcme :=

∫
T

∫
�cme

ρcme(r, t) ucme dω dt (29)

= f0 ucme τcme
π

2

2(δcme)
2
− π2(1− cosδcme)

(δcme)2− π2
,

with ω being the solid angle. Forδcme=30◦=π/6, this trans-
lates to physical units as

Mcme,phys. ≈
f0 ucme τcme

16
× 1014 kg , (30)

a typical value for a strong CME.

6.3 CME expansion runs

CME expansion runs have been carried out at various combi-
nations of CME strength, heliographic latitude, dipolar field
strength, etc. We first describe typical runs involving only a
single CME, while the case of multiple events is deferred to
the ensuing section. Unless indicated otherwise, the launch
parametersf0=16 andτcme=1 were used.

6.3.1 Single-event runs

The panel of Fig.6 shows selected snapshots of a typical
simulation run involving an isolated CME event. The first
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frame depicts the equilibrium situation of the pre-eruptive
state. Following its initiation at the solar equator, the CME
rapidly expands outwards, thereby quickly gaining both in
size and speed. Note in particular the structures indicated by
the kinked magnetic field lines that could lead to shocks in
the non-isothermal case. In the third frame, while still con-
tinuing to accelerate, the CME reaches the volume bound-
ary, thereby dragging the field lines outwards and deforming
them almost radially. In the final frame, the CME has com-
pletely left the simulation volume and the system has relaxed
into a state similar to the quiet initial situation.

Taking advantage of the fully 3-D nature of our simula-
tions, we can also access the dynamics in the perpendicular
planes. Figure7 shows time frames from the same run, this
time viewed as a contour of the sharp, wall-shapedBz sig-
nature which arises when the CME runs into the background
magnetic field and forces it to pile up ahead of it. As can be
expected, the magnetic front moves fastest in the x-direction,
thus forming an elongated shell around the CME’s core. On
the opposite side, the CME’s wake shows a marked reduction
in field strength, which even includes an expanding region of
reversed field direction trailing the CME. The region’s grow-
ing extent is particularly evident from the dotted wedge dis-
cernible in Fig.8. Note that the steep outward slope of‖B‖
(∝ r−3 for a dipole) makes it necessary to normalize the val-
ues appropriately.

To analyse the dynamics of the CME as a whole, a reliable
tracer of its position is required. While the CME’s density
shows relatively large and irregular fluctuations which make
it difficult to use it to monitor its location, we found the mag-
netic field signature of Fig.7 to be more suitable for this
purpose. Figure8 may serve to illustrate this idea. From
the resulting[t, x(t)] curves, we derive terminal velocities of
3.5 cs≈450 km/s and 4.5 cs≈580 km/s for CMEs launched
with an initial velocity ofucme=0 and 2, respectively.

6.3.2 Interacting CMEs

With the rate of CME occurrence reaching several events per
day during solar maximum, it is not unusual to find more
than one CME to be present in a given section of interplan-
etary space, a fact which motivates the numerical study of
the interaction of CMEs. Simulations of this kind have been
carried out by various authors (Vandas et al., 1997; Odstřcil
et al., 2003; Schmidt and Cargill, 2004; Wang et al., 2005).
Interacting CMEs have also been linked to the modulation of
type II radio bursts (Nunes, 2007), and their importance for
the generation of solar energetic particles has been investi-
gated byGopalswamy et al.(2005) andVandas and Odstrčil
(2004) using 2.5-D flux rope simulations. More recently,
Lugaz(2008) has connected earlier simulations (Lugaz et al.,
2005, 2007) employing the BATS-R-US code (Manchester
et al., 2004) to actual LASCO data by means of synthetic ob-
servations. While it is clear that at this initial stage, our simu-
lations cannot be expected to rival the existing work in either

Fig. 8. Height-time plot tracing the position of the normalized
maximum ofBz, which moves slightly ahead of the actual CME.
Each vertical strip can be thought of as a cut along the x-axis of
Fig.7with identical color scale (including the dotted inversion line).
The thick dashed line connects the respective maxima, thus forming
ant 7→ x(t) position curve for the magnetic peak leading the CME.
The solid line shows the correspondingx(t) plot for the faster CME
(ucme=2 rather than 0). The corresponding contour stripes for this
second CME are not shown.

detail or scientific content, we can nevertheless demonstrate
our code’s general applicability to this important sub-class of
CME phenomenae.

Figure 9 shows selected snapshots of a corresponding
simulation run: Att=10, a slow (ucme,1=0) CME is ini-
tiated along thex axis, to be quickly followed by a faster
one (ucme,2=2) launched att=11.0 into the same direction.
(Note that this terminology is merely used to distinguish both
entities from each other. We do not intend to relate these to
the slow/ fast dichotomy known from actual CME observa-
tions. As was shown at the end of the preceding section, both
simulated CMEs would qualify as ’slow’ in this sense.)

Both CMEs not only exhibit the individual effects of ac-
celeration, expansion, and field line kinking already found
and discussed in the previous case of an isolated CME, but
there is apparently also a noticeable interaction between the
two as the second CME gains speed and eventually collides
with its predecessor. Note again the kinked magnetic field
lines along with a corresponding density gradient, both re-
lated to discontinuities that would develop into shocks in the
non-isothermal case. It is also interesting to observe that
the prescribed density excess is sufficient to trigger a sponta-
neous, self-consistent outward acceleration, without the need
to artificially “push” the CME forward by enforcing a non-
zero initial velocity at the instant of its launch.

www.ann-geophys.net/27/989/2009/ Ann. Geophys., 27, 989–1004, 2009
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Fig. 9. Selected snapshots from a simulation of two interacting CMEs showing velocity (top) and decadic logarithm of density (bottom), as
well as magnetic field lines (white) in the (y=0) plane. The initial and final states are practically identical with the corresponding situation
shown in the first and last frame of Fig.6, and are therefore not repeated here.
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Fig. 10. Simulated profiles of magnetic field, density, and fluid ve-
locity as seen by static observers situated along the CME expansion
direction at radiir/R�∈{2, 4, 6, 8, 10} for the sequence of Fig.6.
The minus sign atBz compensates for the magnetic field’s north-
south polarity (which hasBz<0 at z=0). Time is given in hours
after CME onset. Temperature profiles are not shown due toγ=1.

6.4 Connecting to observations

Due to lack of in-situ data at small distances from the Sun, a
direct comparison between simulation and actual CME data
is currently not feasible. In order to at least qualitatively
connect the simulations presented here to observations, five
fixed locations at radiirb∈{2, 4, 6, 8, 10} were chosen along
the CME’s trajectory (i.e. thex axis). At every time step,
the values of the non-vanishing variables[Bz, n, ux] at these
locations were extracted from the simulation data and then
combined in the panel of Fig.10. Thus, a time profile of
these quantities is generated, as it would be seen by a sta-
tionary observer while the CME moves past his location. (It
should be noted that the profiles for particle densityn and
magnetic fieldBz at radiusrb have been multiplied with(rb)3

and−(rb)
2, respectively, since otherwise the effect of radial

dilution would not have allowed curves of various radii to be
presented compactly in a single viewgraph. This obviously
only changes the relative size of two profiles against one an-
other but leaves the shapes of individual profiles unchanged.)

Using Fig.11, these plots can be contrasted with a com-
pilation of the temporal evolution of the solar wind’s MHD
properties, as measured by the Advanced Composition Ex-
plorer (ACE) for a magnetic cloud passing the probe’s lo-

Fig. 11. Actual in situ measurements of a magnetic cloud near
1 AU, adopted fromBurlaga et al.(2001). The general shape of
these profiles is to be compared with the simulation results depicted
in Fig. 10.

cation, the inner Lagrange point at a heliocentric radius of
0.99 AU. A number of qualitative similarities between obser-
vation and our simulation can indeed be identified; especially
the sharp rise and slow decay of the velocity’s maxima is
clearly discernible in both cases. The sharp, almost needle-
shaped peaks of the magnetic field profiles also exhibit a
striking similarity. These pronounced field enhancements are
induced by the CME’s compression wave, and even seem to
increase further as the driving CME accelerates outward.

The notable differences in the total duration of passage
(about one day for the magnetic cloud opposed to about one
hour in the simulations) can easily be accounted for by the
very different sites of observation. The cloud had much more
time to extend from a presumably rather compact object to
its full length of up to 1 AU. Also, the transit time cannot be
expected to be totally independent of the duration of CME
initiation (which in our case amounts to just 1.5 h real time).
However, since observation and simulation stem from very
different heliocentric radii, a direct, quantitative comparison
between the respective profiles of Figs.10and11is of course
not feasible. Our attempts to identify common features be-
tween them can therefore merely serve as a “reality check”
on the general usefulness of these first simulation runs. Be-
sides, they may serve to illustrate the type of comparison that
are intended for future simulations covering the whole radial
range up to Earth orbit.

www.ann-geophys.net/27/989/2009/ Ann. Geophys., 27, 989–1004, 2009



1002 J. Kleimann et al.: A novel MHD code for CME expansion

7 Conclusions

We have reported on the creation of a 3-D MHD model of
the near-Sun heliosphere, its numerical implementation and
subsequent application to the propagation of CMEs.

In order to adequately implement the Sun’s spherical sur-
face as an inner boundary on the Cartesian grid, a weighted
averaging procedure was devised which is able to handle the
huge gradients (most notably of mass density) present at this
boundary. The use of this procedure also contributed to a re-
duction of spurious departures from the problem’s underly-
ing symmetry, which result from the fact that the Sun’s spher-
ical (boundary) surface cannot be mapped to a Cartesian grid
of finite cell spacing. Comparing a Dirichlet boundary con-
dition for the velocity against free inward extrapolation, the
latter was found to yield slightly more accurate results, albeit
requiring a more complex numerical implementation. To en-
sure a solenoidal magnetic field, the GLM scheme was found
to be inappropriate due to the presence of internal bound-
aries, and was thus abandoned in favor of a classical projec-
tion method.

After the model’s CWENO-based numerical realization
had satisfactorily passed various test cases, it was success-
fully employed to generate stable, self-consistent MHD equi-
libria of the quiet, magnetized solar wind. These were then
themselves used as initial configurations to simulate the ex-
pansion of CME-like plasma bubbles. Since the modelling
is fully three-dimensional, the CME’s direction of expansion
can be chosen independently of the system’s axis of symme-
try; in particular, it is possible to study expansion within the
ecliptic plane.

The extracted time profiles of density, flow velocity, and
magnetic field strength show qualitative similarities to ac-
tual in-situ data obtained from satellites at much larger helio-
spheric distances. The fact that such similarities can be found
lends support to the notion that the main physical processes
which shape the structure of a CME occur shortly after on-
set, whereas the ensuing phase of interplanetary propagation
is merely characterized by dilution and (almost) self-similar
expansion, although a direct simulation covering the entire
range up to Earth orbit will be needed to make unambigu-
ous statements about the CME’s interplanetary evolution and
its persistent self-similarity (or lack thereof). In a future ex-
tension of this work, we intend to merge heated (i.e. non-
isothermal) scenarios with magnetized wind models, a step
which, however desirable, could not yet be carried out due to
remaining numerical difficulties. This direction seems even
more promising since both aspects have been proven to yield
satisfactory solutions individually.

On the model side, we plan to include additional aspects
(such as localized heating and changes in magnetic topology)
into the CME’s initialization to trigger its eruption. Since
this will require a much higher grid resolution near the solar
surface, a recourse to adaptive mesh refinement and/or paral-
lelization becomes mandatory.
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