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Abstract. Magnetic reconnection is believed to be respon-
sible for various explosive processes in the space plasma in-
cluding magnetospheric substorms. The Hall effect is proved
to play a key role in the reconnection process. An analytical
model of steady-state magnetic reconnection in a collision-
less incompressible plasma is developed using the electron
Hall MHD approximation. It is shown that the initial compli-
cated system of equations may split into a system of indepen-
dent equations, and the solution of the problem is based on
the Grad-Shafranov equation for the magnetic potential. The
results of the analytical study are further compared with a
two-dimensional particle-in-cell simulation of reconnection.
It is shown that both methods demonstrate a close agreement
in the electron current and the magnetic and electric field
structures obtained. The spatial scales of the acceleration
region in the simulation and the analytical study are of the
same order. Such features like particles trajectories and the
in-plane electric field structure appear essentially similar in
both models.

Keywords. Space plasma physics (Kinetic and MHD the-
ory; Magnetic reconnection)

1 Fast reconnection

In 1964, Petschek presented a model of fast magnetic re-
connection (Petschek, 1964), in which standing slow shock
waves supply the conversion of magnetic energy. This mech-
anism, being much faster than the Sweet-Parker scheme
(Sweet, 1958; Parker, 1957), explained the observed energy
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release rate. It was shown later that spatial non-uniform re-
sistivity is required to support the Petschek type scenario
(e.g.Sato and Hayashi, 1979; Biskamp, 1986; Erkaev et al.,
2000; Biskamp and Schwarz, 2001; Erkaev et al., 2002). This
anomalous resistivity in collisionless plasmas may be caused
by microinstabilities, such as the lower hybrid drift instabil-
ity (Huba et al., 1977), the Buneman instability (Drake et
al., 2003), the ion-acoustic instability (Kan, 1971; Coroniti,
1985), or others (Büchner and Daughton, 2007).

However, another mechanism is developed using MHD
with the Hall effect invoking (Sonnerup, 1979; Terasawa,
1983; Hassam, 1984), which causes a Petschek-like config-
uration due to the generation of dispersive waves (Mandt et
al., 1994; Rogers et al., 2001) and does not require anoma-
lous resistivity. It turns out that the contribution of the Hall
effect appears close to theX-line, at length scales in order
of the proton inertial length (skin depth), which is defined as

lp=c/ωp, wherec is the speed of light,ωp=

√
4πne2/mp

is the proton plasma frequency, andmp is the proton mass.
Inside this region, the Hall effect decouples the proton(ion)
and electron motions, tears protons off from the magnetic
field lines, while the magnetic field remains frozen into the
electron fluid.

Electrons demagnetize much closer to theX-line, inside
the so-called electron diffusion region (EDR), because of in-
ertia or non-gyrotropic pressure (Vasyliunas, 1975). A scal-
ing analysis estimatesδ∼le, whereδ is the thickness of the
EDR,le=c/ωe is the electron inertial length (skin depth), and
ωe=

√
4πne2/me is the electron plasma frequency. Stud-

ies within the frame of the Geospace Environment Model-
ing (GEM) Magnetic Reconnection Challenge project (Birn
et al., 2001) have shown that the Hall reconnection rate is in-
sensitive to the dissipation mechanism activated in the EDR.
The rate of magnetic reconnection is nearly independent of
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the strength of dissipation in hybrid simulations with resis-
tivity (Mandt et al., 1994), two-fluid simulations (Ma and
Bhattacharjee, 1996; Biskamp et al., 1997), and particle-in-
cell (PIC) simulations (Shay and Drake, 1998; Hesse et al.,
1999). In addition, the Hall reconnection rate is indepen-
dent of the magnitude of the electron mass (Shay and Drake,
1998; Hesse et al., 1999; Pritchett, 2001; Ricci et al., 2002)
and the system size (Shay et al., 1999; Huba and Rudakov,
2004). The dependence on the electron dissipation and the
system size seems to be found in studies of forced recon-
nection and double tearing mode reconnection (Grasso et al.,
1999; Wang et al., 2001; Porcelli et al., 2002; Bhattacharjee
et al., 2005). Summarizing, the results obtained by all types
of numerical simulations, the essential feature of fast recon-
nection is the presence of the Hall effect, which provides the
rate of the steady-state reconnection to be approximately a
constant of the order of 0.1.

2 Analytical study

Analytical studies of magnetic reconnection in the frame of
Hall MHD (HMHD) meet difficulties that arise due to the
EDR physics. However, as far as the reconnection rate does
not depend on the mechanism of dissipation, one can re-
strict EDR contribution studies to the size of the EDR rather
than its internal structure. Numerical simulations (Shay et
al., 1998) confirmed the thickness of the EDR to be of the
order of le for anti-parallel Hall reconnection. The length
of the EDR was thought to be∼10le (Shay et al., 1999;
Huba and Rudakov, 2004), but later results suggested that
it expands to the edge of the proton dissipation region, i.e.,
∼10lp (Daughton et al., 2006). This contradiction seems to
be resolved in recent PIC simulations which indicate that the
EDR develops into a two-scale structure along the outflow
direction. The length of the electron current layer is found
to be sensitive to the proton/electron mass ratio, approach-
ing 0.6 lp for a realistic electron mass value. In addition, an
elongated outflow electron jet is formed in the outflow re-
gion, and its length extends to 10′s of the proton skin depth
(Shay et al., 2007).

Analytical studies of the problem may be simplified by
using the electron Hall MHD (EHMHD) approximation. In
the nearest vicinity of the stagnation point, at a length scale
of the order oflp, the proton velocities are small compared to
the electron velocities. Hence, one may consider the electric
current in this region as the electron current only (Biskamp,
2000),

j ≈ −neVe, (1)

where Ve is the electron bulk velocity. For a detailed
EHMHD-analysis of the problem, see Uzdensky and Kulsrud
(2006). These authors have shown that for quasistationarity
and translational symmetry assumed, the magnetic field and
electron velocity can be expressed in terms of just a single

one-dimensional function. This function is a magnetic po-
tential of the in-plane magnetic field (poloidal flux function).
In addition, the authors have found out that, neglecting the
ion current, one gets the Grad-Shafranov equation for this
potential.

In the work of Korovinskiy et al. (2008) an analytical
model of self-consistent steady-state collisionless magnetic
reconnection in an incompressible plasma was developed
based on the Grad-Shafranov equation for the magnetic po-
tential. We outline this model in next paragraphs and review
the main results derived; in-depth study is provided in cited
paper.

Firstly, we chose a coordinate system as follows: The X-
axis coincides with the magnetic field direction at infinity (in
the upper semiplane), the Y-axis is directed along theX-line,
and the Z-axis is perpendicular to both of them. We assume
homogeneity in theY direction, so all quantities are assumed
to be independent ofY . We avoid the description of the EDR
internal processes and consider only its size, which we sup-
pose to be of the order ofle in its cross section (Z direction)
andηlp along it (X direction), whereη is a coefficient of the
order of 1. Outside the EDR the plasma is supposed to be
nonresistive; furthermore, it is assumed to be quasi–neutral
and incompressible.

The two-fluid description of our problem is determined by
the following equations,

ρ(Vp · ∇)Vp = −∇Pp + ne(E +
1

c
Vp × B), (2)

E +
1

c
Ve × B = −

1

ne
∇Pe, (3)

∇ × B =
4πne

c
(Vp − Ve), (4)

∇ × E = 0, (5)

∇ · B = 0, (6)

∇ · Vp,e = 0. (7)

Here, Eq. (2) is the equation of the proton motion, where
Pp is the scalar proton gas pressure, andVp is the proton
bulk velocity; Eq. (3) is the Ohm law, wherePe is the scalar
electron gas pressure; Eq. (4) is the Amp̀ere law; Eq. (5) is
the Faraday law; Eq. (6) is the Gauss law; and Eq. (7) is the
mass conservation law for each particle species.

In our steady-state 2.5 D case, the electric fieldEy must be
a constant, according to Faraday’s law (Eq.5). So, we define

Ey = εEA, (8)

where ε is the reconnection rate which we assume to be
small, ε�1, andEA=

1
c
B0VA is the Alfvén electric field.

Here,B0 is the magnetic field value above theX-line at the
upper boundary of the examined region andVA is the corre-
sponding proton Alfv́en velocity.

To resolve the system (2–7), we introduce dimensionless
quantities: The magnetic field strengthB̃=B/B0, the proton
and electron bulk velocities̃Vp,e=Vp,e/VA, the electric field
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strengthẼ=E/EA, the gas pressurẽPp,e=Pp,e/P0, and the
length scales̃r=r/lp. HereP0=B2

0/4π , andr=(x, y, z).
Secondly, we introduce an electric potential8̃ via

Ẽ=−∇̃8̃. Omitting the tildes, we rewrite Eqs. (2–7) for nor-
malized quantities, bearing in mind the EHMHD approxima-
tion (1),

(Vp · ∇)Vp = −∇Pp − ∇8, (9)

Ve × B = ∇8 − ∇Pe, (10)

∇ × B = −Ve, (11)

∇ · B = 0, (12)

∇ · Vp,e = 0. (13)

Note that8 has a linear dependence onY coordinate, so that
∂8/∂y=−ε. Under this point of view, we can present8 as
a sum of two terms, namely8(x, y, z)=φ(x, z)−εy. Using
an effective potentialφeff≡φ−Pe, we eliminate quantityPe

from the Ohm law (10).
We also introduce a magnetic potentialA(x, z),

B⊥ ≡ (Bx, Bz) = ∇ × (Aey), (14)

whereey is the unit vector and⊥ denotes theXZ plane.
At last, we note that accordingly to the Ampère law

(Eq.11), the magnetic fieldBy is the stream function for the
electron in-plane velocity (Biskamp, 2000),

Ve⊥ ≡ (Vex, Vez) = −∇ × (Byey). (15)

Bearing in mind the EHMHD approximation (1), we note
that Eq. (10) looks very similar to the condition of magneto-
hydrostatic equilibrium,

∇P = j × B = 1Aey × B. (16)

In 2.5 D models, expression (16) yields the famous Grad-
Shafranov equation (Schindler, 2007),

− 1⊥A =
d

dA

(
P(A) +

1

2
B2

y (A)

)
, (17)

where1⊥ is the 2 D Laplace operator.
Analogously, we obtain

Vey ≡ 1⊥A =
dG(A)

dA
, (18)

whereG(A) is an unknown modelling function. The other
equations of the system (9–13) take the following form

By(r) = (−1)k+1ε

∫ r

r0

dsf l

|∇⊥A|
+ By(r0), (19)

φeff =
1

2
B2

y + G(A), (20)

1

2
V 2

p⊥
+ 5 −

1

2
|∇⊥A|

2
+ G(A) = Ctr , (21)

∇⊥ · Vp⊥ = 0, (22)

Vpy(r) = ε

∫ r

r0

dstr

Vp⊥

+ Vpy(r0). (23)

Here, Eq. (19) is the equation for the out-of-plane magnetic
field By , wherek is the quadrant number anddsf l is an
elementary displacement along the projection of the mag-
netic field line onto theXZ plane; Eq. (20) is the equa-
tion for the effective electric potentialφeff; Eq. (21) is the
Bernoulli equation for the in-plane motion of protons, where
5≡Pp+(1/2)B2 is a total pressure andCtr is a constant
along the trajectory; Eq. (22) is the continuity equation,
whereVp⊥ is the proton in-plane velocity; and Eq. (23) is
the equation for the out-of-plane proton velocityVpy , where
dstr is an elementary displacement along the projection of
the proton trajectory onto theXZ plane.

Thus, the initial complicated system splits, and the so-
lution of the problem bases on the solution of the Grad-
Shafranov equation for the magnetic potential (18). A scaling
of the problem allows us to make use of the boundary layer
approximation∂/∂x�∂/∂z. Under this approximation, the
Laplace Eq. (18) has a following solution

z(A) = ±
1

√
2

∫ A

A0

dA′

√
|G(A′) − G(A0)|

, (24)

A0 ≡ A(x, 0) =

∫ x

0
Bz(x

′, 0)dx′, (25)

with the boundary conditionBz(x, 0).
The unknown functionG(A) has a simple physical mean-

ing, namely it is the main part of the electric potential, while
its derivative is the out-of-plane electron velocity. This al-
lows us to preset functionG(A) manually in order to obtain
the solution of the problem (Korovinskiy et al., 2008), or get
it from some other source, e.g., from PIC simulations.

Note that Eqs. (18–23) do not contain any dissipation so
solution obtained is, strictly speaking, nonapplicable inside
the EDR. Indeed, accordingly to Eq. (19) the magnetic field
By tends to infinity at the origin, where the in-plane magnetic
field goes to zero. Therefore, we must interrupt the calcula-
tion of By at the EDR boundary and have to consider this
region separately. Advantageously, the EDR is very thin and
comparatively short, the functionBy(x, z) is smooth, and
By(0, 0)=0 due to the symmetry condition. Therefore, it is
justified to neglect EDR contribution inBy .

Equation (19) claims also that the extreme values ofBy are
located at the separatrices of the in-plane magnetic field, as
well as extreme values of|∇G(A)| and|Vey | are. Using the
condition for solvability of Eq. (24), we obtain estimation
of the extremum electric field, max|E|∼10EA. Note that
outside the EDR, the contribution of∇Pe is negligible small,
soφ≈φeff. As for the electron velocityVey , the Amp̀ere law
yields

max|Vey | =
1

δ
VAe, (26)

whereδ is the EDR width measured in electron skin depths
le andVAe=

√
mp/meVA is the electron Alfv́en velocity. At

last, the proton in-plane motion obeys the Bernoulli Eq. (21).
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Fig. 1. PIC simulation data: Quantitiesjey(0, z) thick andjpy(0, z)

thin (on the left); quantities|Vey(x, 0)| thick andVpy(x, 0) thin (on
the right).

Under the simple assumption5=const, the drop of the elec-
tric potential accelerates protons up toVA. More realisti-
cally, the total pressure is fixed by its distribution at the upper
boundary of the EHMHD domain, so that5=5(x). Thus,
the system of Eqs. (18–25) expresses a self-consistent solu-
tion of our problem based on the modelling functionG(A)

with the boundary conditionsBz(x, 0) and5(x, zmax). To
check the effectiveness of the model we take these functions
from the PIC simulation of reconnection and then compare
our analytical solution and the numerical model.

3 PIC simulation

The explicit particle-in-cell code P3D (Zeiler et al., 2002) is
used for a simulation of 2.5D reconnection. In brief, the P3D
is an electromagnetic full particle code; the Boris algorithm
(Birdsall and Langdon, 1991) is used for the numerical so-
lution of the equation of motion. The electromagnetic field
solver uses leapfrog scheme to advance fields in time. For
the initial condition, we take conventional a Harris neutral
current sheet (Harris, 1962), where

Bx = B0 tanh
z

λ
, (27)

n(z) = n0 cosh−2
( z

λ

)
+ nb, (28)

with a background plasma densitynb=0.2 and a half-width
of the initial current sheetλ=0.4 lp.

The magnetic field is normalized to its maximum value in
the lobes and the density is normalized to its current sheet
maximum. A moderate initial GEM-type perturbation (Birn
et al., 2001) is added to ignite reconnection

9(x, z) = 90 cos
2πx

Lx

cos
πz

Lz

, (29)

whereLx=Lz=38.4 lp are the sizes of the computational
box and the intensity of perturbation is90=0.3.
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Fig. 2. PIC simulation data: FunctiondG/dA≡Vey(A) (on the
left); magnetic fieldBz(x, 0) (on the right). The pointA=0 on the
left picture corresponds to the magnetic field separatrices. Simula-
tion data are shown by the thin line, approximation is shown by the
thick curve.

A quasistationary state is achieved att=15�−1
p , where

�−1
p is the inverse proton gyrofrequency (see Fig.7), and

the simulation parameters att=20 are further taken as a ref-
erence to be compared with the analytical study. The mass
ratio ismp/me=64 and the temperature ratio isTp/Te=3/2.

Open boundary conditions for the fields

∂Bx,y

∂x
= 0,

∂Ey

∂x
= 0, Ex,z = 0, Bz = 0 (30)

and particles

∂ne,p

∂x
= 0,

∂Ve,p

∂x
= 0,

∂Te,p

∂t
= 0 (31)

are implemented at the exhaust boundaries to allow a free
outflow of the plasma (Divin et al., 2007; Pritchett, 2001).

A perfect electric conductor (PEC) boundary closes the
simulation box atz=±19.2. Under the boundary conditions
adopted, not more than 15% of magnetic flux and particles
escape through the outflow boundary byt=20. In the fol-
lowing section, the results of our simulations are presented.

4 Comparison of the results

A plot of the electric currentjey atx=0 is presented in Fig.1
at the left, where the EDR is a well-recognizable region
where the electron current dominates over the proton one.
The EDR half-widthδ comes up to 3/4 lp, i.e.,δ≈6 le under
the used mass ratio. According to our estimation (26), the an-
alytical model gives max|Vey |≈7VA, and the value obtained
in the PIC simulation is 6VA (see Fig.1, right). The elec-
tron/proton current ratio isje/jp≈11 in the origin and it de-
creases moving away from theX-line. As far as the EHMHD
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Fig. 3. Electron trajectories inXZ plane: analytical model (on the
left) and PIC simulation (on the right).

assumption isje�jp, we restricted the region of the analyt-
ical model by the valuex=4, whereje/jp≈5. Analogously,
the upper boundary of the modelling region is restricted by
the valuezmax=30le. This value corresponds tozmax=4 in
the PIC simulation (mp/me=64) andzmax=0.7 in the analyt-
ical modelling (mp/me≈1840). At last, the EDR half-length
reaches 2lp.

The PIC simulation provides usdG/dA≡Vey(A) and
Bz(x, 0) (see Fig.2).

As for the total pressure5(x, zmax), it turns out to
be a linearly increasing but weakly varying quantity,
5(0, zmax)=0.61 and5(4, zmax)=0.66. The last parameter
of the analytical model is the reconnection rateε≡Ey . Its
value obtained in the simulation is 0.2.

The electron trajectories obtained from the analytical
study and the PIC simulation are compared in Fig.3. The
magnetic field separatrix mapped by the electric current is
clearly visible in both cases. In fact, this picture shows a
classical Hall current structure (Sonnerup, 1979), observed
in the magnetosphere (e.g.Alexeev et al., 2005) and in lab-
oratory experiments (e.g.Cothran et al., 2005). The electron
jet in X direction is visible as well, in agreement with results
of other authors (Daughton et al., 2006; Shay et al., 2007).
The dependence of the velocity of this jet ofX is plotted in
Fig. 4. The analytical model underestimates the electron ve-
locity (approximately 50%) as compared to that of the PIC
simulation.

The proton velocities demonstrate a better agreement, with
acceleration up to 1.5±0.1VA in both models. The proton
trajectories and the magnetic field structure are presented in
Fig. 5.
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EDR, 0<x<80.
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Fig. 5. Proton trajectories inXZ plane (thick) and magnetic field
lines (thin): analytical model (on the left) and PIC simulation (on
the right).

At last, the electric fieldsEz shown in Fig.6, are in good
qualitative agreement as well. The localization of the ex-
tremum ofEz corresponds to the jump of the electric poten-
tial across the separatrices as predicted.

5 Conclusions

One can see that the plasma characteristics obtained in both
models are qualitatively equal. As for numeric values, the
analytical model is not precise everywhere. While some val-
ues predicted are quite accurate (e.g., max|Vey |, max|Vp|),
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Fig. 7. PIC simulation: reconnected magnetic flux and reconnection
electric fieldER=Ey histories.

others differ noticeably (e.g.,Vex , Ez). We attribute this dif-
ference to the simplifications adopted. Namely, while out-
side the EDRPe is a weakly varying quantity, indeed, the
situation is completely different inside the EDR. The elec-
tron pressure turns there to be an anisotropic tensor and∇P̂e

becomes the dominant term in the Ohm law. This term is re-
sponsible for the freezing-out of electrons in a thin and very
stretched (∼10lp) layer mapping theX axis, called external
EDR, where electron jets develop (see Fig.6). Though this
effect is completely out of the scope of our analytical study.
Nevertheless, the analytical solution obtained demonstrates
all essential Hall reconnection features and a close qualita-
tive agreement with results of the PIC simulation.

Besides, this solution claims that a powerful mechanism
of electron acceleration in theX-line direction is required.
Accordingly to the estimation (26), it must accelerate elec-
trons up to the electron Alfv́en velocity inside the EDR and
on the separatrices. At the downstream edge of the EDR,
these accelerated electrons are deflected by the Lorentz force
in X-direction and then get decelerated in the outflow region,
pulling protons there.
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