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Abstract. The eigenmodes of low frequency perturbations of
thin anisotropic current sheets with a finite value of the nor-
mal magnetic field, are investigated in this paper. It is shown
that two possible polarizations of symmetric and asymmet-
ric modes (sausage and kink) exist where the growth rate of
instabilities is positive. In addition, we demonstrate that a
tearing instability might have a positive growth rate in thin
anisotropic current sheets. The class of relatively fast wavy
flapping oscillations observed by Cluster is described. The
main direction of wave motion coincides with the direction of
the current and the typical velocity of this motion is compa-
rable with the plasma drift velocity in the current sheet. The
comparison of these characteristics with theoretical predic-
tions of the model of anisotropic thin current sheets, demon-
strates that, in principle, the theory adequately describes the
observations.

Keywords. Magnetospheric physics (Magnetotail) – Space
plasma physics (Numerical simulation)

1 Introduction

The numerous attempts to describe current sheets (CSs) in
the Earth’s magnetosphere and to investigate their stability
led to the development of a variety of models of CS. The
simplest CS models are the one of Harris (1962) and its 2-D
generalization by Kan (1973). These models are usually used
to describe thick isotropic CS equilibrium. Another group of
models, taking into account the anisotropy of ion distribu-
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tions and/or quasi-adiabaticity of ion motion in thin current
sheets (where ion gyroradii are about CS thickess), was re-
cently developed (Zelenyi et al., 2004; Sitnov et al., 2006).
Earlier, the theory of stability was applied to study eigen-
modes of the Harris CS, therefore the tearing (Coppi et al.,
1966; Schindler, 1974; Galeev and Zelenyi, 1976; Pellat et
al., 1991; Sitnov et al., 1997), kink (Daughton, 1999) and
sausage modes (Lapenta and Brackbill, 1997; Buechner and
Kuska, 1999) were investigated in detail. It was shown that
the Harris CS is completely stable under tearing perturba-
tions in the presence of a finite value of a normal magnetic
component (Pellat et al., 1991) because of a strong stabiliz-
ing effect of the magnetized electrons. This situation is dif-
ferent if one takes into account some additional effects, for
example, the presence of transient electrons in the plasma
population (Sitnov et al., 1997).

It was shown, in newly obtained spacecraft observations,
that the properties of relatively thin CSs are completely dif-
ferent from Harris ones (Nakamura et al., 2006; Runov et al.,
2006) and a more adequate approximation might be achieved
in a frame of recent CS models (Sitnov et al., 2006; Baumjo-
hann et al., 2007; Artemyev et al., 2008).

Contrary to well-known isotropic models, the general the-
ory of anisotropic thin CS (TCS) instabilities, which might
be useful to compare the typical temporal and spatial charac-
teristics of observed CSs, has not been developed yet. Very
few successful attempts to compare the experimental data
of CS dynamics with theoretical results have been made in
the last years (Volwerk et al., 2003; Golovchanskaya et al.,
2005; Erkaev et al., 2008; Saito et al., 2008). In this article,
we present our first results devoted to the further develop-
ment of the general theory of oblique instabilities (of tearing,
kink, sausage and oblique eigenmodes) in anisotropic TCSs
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(Zelenyi et al., 2004). Theoretical predictions are compared
with experimental Cluster data. We demonstrate here that,
contrary to Harris-like CSs, which are always stable under
tearing perturbation in the presence of a finite magnetic com-
ponentBz (Pellat et al., 1991), the tearing mode in TCSs
might be unstable (Zelenyi et al., 2008), and its growth de-
pends sensitively on the propagation angle (we use here the
Geocentric Solar Magnetospheric coordinate system). Other
TCS modes (e.g. kink and sausage), which propagate per-
pendicularly to the magnetic field, might also develop in
anisotropic CSs withBz 6=0. The values of their growth rates
are comparable.

2 TCS model and essential parameters

To investigate the CS instabilities, we have used the model
of anisotropic TCS equilibrium (Zelenyi et al., 2004, 2006,
and references therein). In this model, the ion component
is described by a bi-Maxwellian distribution function (at the
edges of the CS) that can be rewritten as a function of two
integrals of motion: the particle energy and the adiabatic
invariant of motionIz=(m

/
2π)

∮
vzdz (the last one is ap-

proximately conserved during particle motion). The key free
parameter of the model isε, the ratio of the ion thermal ve-
locity to the bulk plasma velocity along the field lines at the
edges of the CS. This parameter determines the anisotropy
of ion velocity distribution in the CS and controls the thick-
ness of the CSLCS itself (Zelenyi et al., 2004). The electron
component is defined in a flow approximation by the param-
eter τ=Ti

/
Te (ratio of ion to electron temperatures). The

parameter that controls the magnetic topology of the system
is bn=Bz

/
B0 (Bz is the normal component of the magnetic

field; B0 is the magnetic field at the edges of the CS). The
important characteristics of TCSs, principally different from
isotropic CS models, are the shear of bulk velocity in the
central region of the CSjy (z)

/
(en (z)) 6=const and the em-

bedding of the CS inside a much thicker plasma sheet (at
the edges of the CS wherejy=0, the plasma densityn6=0).
Therefore, the excess of a free energy in TCS could be larger
in comparison with isotropic CSs and, as a result, the growth
rate of CS instabilities might be substantially higher (Zelenyi
et al., 2008).

3 Stability of TCSs and the energy principle

In this paper, the stability of perturbations of vec-
tor potential in the form of oblique plane waves
A1=

3
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}
in the reversed magnetic

field Bx with Bz 6=0 is investigated. The electrons are as-
sumed to be totally magnetized (Schindler, 1974). In this
case, a strong stabilizing effect of the electron compress-
ibility should be taken into account (Galeev and Zelenyi,
1976; Pellat et al., 1991; Schindler, 2006). On the tem-
poral scale of the growth of instability, the ion motion is

faintly perturbed by their oscillations in theBz magnetic field
(Schindler, 1974) and the main ion contribution is due to
Landau resonance with the waves.

To obtain the energy balance of these perturbations, the en-
ergy principle is used in its general form (Pellat et al., 1991;
Schindler, 2006; Zelenyi et al., 2008). One can present the
energy balance of a perturbed quasi-neutral system as:

W =

∫
B2

8π
d3r +

∑
j

∫
mjv

2

2
fjd

3rd3v (1)

The first order of the perturbation of velocity distribution
function f1j might be found on the base of the linearized
Vlasov equation:

f1j −
qj

mj c
f0jSjA1 = −

qj

mj c
f0j

t∫
0

{
A1S̄j + (−c∇ϕ1 + ∇ (vA1))Sj

}
dt ′ = f res

1j (2)

where Sj=f
−1
0j

(
∂f0j

/
∂v

)
and S̄jeα=v

(
∂

(
Sjeα

)/
∂r

)
+

(
qj

/
cmj

)
(E0c+ [v×B0])

(
∂

(
Sjeα

)/
∂v

)
.

One can write the second order of perturbed energyW (2)

as a function ofA1: f̃1j=f1j−
(
∂f1j

/
∂A0

)
A1−f

res
1j :

W (2)
=

∫
B2

1

8π
dr −

1

2

∑
j

∫
f̃ 2

1j

∂f0j
/
∂H0j

drdp

−

∑
j

1

mj

∫ (
p −

qj

c
A0

) qj
c

A1f1jdrdp

+

∑
j

1

2mj

q2
j

c2

∫
A2

1f0jdrdp (3)

Now, one should take into account that the zero order of the
ion velocity distributionf0i=f0i (H0i, Iz) depends on two
integrals of motion: the exact oneH0i and the approximate
oneIz, which allows us to rewrite the expression for the adi-
abatic invariantIz using the ion generalized momentumPyi
of particle motion (Zelenyi et al., 2004) as:

Iz =
2mj
π

z1∫
z0

(
v2
z + v2

y + 2qjm
−1
j

{
ϕ (z)− ϕ

(
z′

)}
(4)

−

{
vy −

qj

mj c

(
A0y

(
z′

)
− A0y (z)

)}2 )1/2
dz′

Taking into account the approximate conservation ofIz along
the particle trajectory in the CS, Eq. (3) can be rewritten in a
new form:

W (2)
=

∫
B2

1

8π
dr −

1

2

∑
j

∫
f̃ 2

1j

∂f0j
/
∂H0j

drdp

−
1

2c

∫
∂j0

∂A0
A2

1dr −
1

2c

∫
j resA1dr (5)
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Here,j res
=e

∫
vf res

1i dv is the density of the perturbed cur-
rent due to resonance ion–wave interaction. The minimiza-
tion of the functionalW (2) (A1) in Eq. (5) allows us to find
and investigate different CS perturbations. To achieve this
aim, one should present̃f1j as a function of the perturbation
of vector potentialA1, taking into account two properties:
first, the quasi-neutrality of plasma

∑
j

qj
∫
f1jd

3v=0; sec-

ond, the electron magnetization in theBzmagnetic field, i.e.
n1e≈n0

(
B1z

/
Bz

)
. Using Schwartz inequality (see Zelenyi

et al., 2008), one can rewrite Eq. (5) in the following form:

8πW (2)
=

∫ {
B2

1 + 8πp0
(
kxA1ey

/
Bz

)2

−4πc−1 (
∂j0

/
∂A0

)
A2

1 − 4πc−1j resA1

}
dr (6)

wherep0 is the total unperturbed kinetic pressure. The value
of a free energy∼∂j0

/
∂A0 in Eq. (6) is substantially dif-

ferent from the one in a Harris-like CS, where the derivative
∂j0

/
∂A0 ∼ j0 is due to the constancy of the drift plasma

velocity everywhere in the CS. In our case, this derivative
has another form, i.e.∂j0

/
∂A0∼j0F (z), whereF (z) has

a very strong maximum in the very centre of the CS. Also,
one can see that the functionalW (2) is dependent only on the
perturbation of a vector potential. The corresponding dis-
persion ratio could easily be obtained if one accomplished a
minimization of a functionalW (2) (A1) under the condition
δW (2)

/
δA1=0.

4 Numerical results

We used the following parameters to investigate instabil-

ities: k=
√
k2
x+k

2
y (the magnitude of the wave vector);

θ= arctan
(
ky

/
kx

)
(the angle of wave propagation). Also,

we have taken into account the Coulomb gauge condition
for the perturbed vector potential, i.e.divA1=0. Now, one
should consider two different polarizations of the perturbed
vector potentialA1. First, polarization might be presented
in the formA1=A1xex+A1yey (Galeev and Zelenyi, 1976;
Silin et al., 2002). The Coulomb gauge imposes the follow-
ing condition related to the components of the perturbed vec-
tor potential:A1x cosθ+A1y sinθ=0. This perturbation is
suppressed atθ→π

/
2. Perturbation with another polariza-

tion A1=A1yey+A1zez (Lapenta and Brackbill, 1997) might
grow atθ=π

/
2. In this paper, we consider the characteris-

tics of both kinds of polarization.
According to the paper by Dobrowolny (1968), the width

of the region of ion resonance interaction with growing
wavesUi (z) (i=1,2,3, ...) could be found from the condi-
tionsUi (z)=1, if ρi (z)<z andUi=0, if ρi (z)>z (where
ρi (z)=vT i

/
ωibx (z), ωi=eBx (∞)

/
mic, bx (z)=Bx

/
B0).

We have taken into account only ion resonant currents be-
cause, in the presence of the normal component of the mag-
netic fieldBz, the electron population becomes magnetized;

consequently, it could not contribute to the resonant interac-
tion (Schindler, 1974).

For the polarization of a vector potentialA1 in the form
A1=A1xex+A1yey , it is more convenient to consider the

simplified equation for its valueA1=

√
A2

1x+A
2
1y instead of

the system of two equations for each of these components.
This is possible becauseA1x andA1y are linearly coupled
(i.e. A1x=−A1y tanθ) by the Coulomb gauge. Therefore,
one can rewrite the equationδW (2)

/
δA1=0 in the following

form:

d2A1

/
dz2

−

{
k2

(
1 + 4πp0B

−2
z cos4 θ

)
−4πc−1 (

∂jy
/
∂A0

)
cos2 θ

}
A1

= −j res(z, θ, A1, t) (7)

The current of resonant interactionj res(z, θ, A1, t) can be
obtained as the integral

∫
vyf

res
1i d

3v. For another kind of
polarizationA1=A1yey+A1zez, one should solve the single
equation forA1y as it was done by Lapenta and Brackbill
(1997) for the sausage mode (θ=π

/
2). Contrary to previ-

ous works, we considered the perturbations propagating at
arbitrary angles in the CS plane (θ ∈ [0, π

/
2]):

d2A1y

/
dz2

−

{
k2

(
1 + 4πp0B

−2
z cos2 θ

)
−4πc−1 (

∂jy
/
∂A0

) }
A1y

= −j res(z, θ, A1y, t
)

(8)

Because the resonant current densityj res
∼

t∫
0
K

(
t−t ′

)
A1

(
t ′
)
dt ′ depends on time, Eqs. (7) and (8) could be

considered as the evolutionary ones

(D̄A1 (z, t)=S (z)
t∫

0
K

(
t−t ′

)
A1

(
z, t ′

)
dt ′,

D̄=d2
/
dz2

−D0 (z) is the differential operator) and
could be solved by the method of finite elements (Lapenta
and Brackbill, 1997; Daughton, 1999). For this purpose, one
could use the basis of Hermite polynomials’ spatial func-
tions Hn (z) (n=0,1,2, ...) and then obtain the following
form of perturbed vector potential:A1=

∑
n

Hn (z) ψn (t).

The corresponding system of integral equations is the

following: Tnmψn (t)=Snm

t∫
0
K

(
t−t ′

)
ψn

(
t ′
)
dt ′ (here

Tnm=

∞∫
−∞

HmD̄Hndz, Snm=

∞∫
−∞

HmS (z)Hndz). Finally,

from this system of equations, we obtained the correspond-
ing eigenfrequencies and growth rates of wave perturbations
as functions of TCS parameters, wavenumbersk and
propagation anglesθ (Fig. 1).

The resulting growth rates for both kinds of polarization
depending on the anglesθ are shown in Fig. 2. As one can
see, both symmetric polarization modes have equal positive
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Fig. 1. Sketch of eigenmodes in the CS.

Fig. 2. Growth rate as a function of angleθ for two polariza-
tions. The parameters have the following values:τ=3,LCS=0.8ρi ,
kLCS=0.3, bn=0.1.

values of growth rate in the case of tearing instability (θ=0),
but asymmetric modes are suppressed whenθ→0. When the
propagation angleθ increases, the perturbation with polar-
izationA1=A1xex+A1yey is suppressed. However, with an-
other polarization,A1=A1yey+A1zez becomes correspond-
ingly sausage or kink instabilities atθ=π

/
2. In the range

θ∼π
/

2, the growth rate of perturbation becomes larger than
the one of the tearing mode (θ∼0). Thus, the development
of perturbations propagating along the current (“Y” direc-
tion) are more probable than the development of a tearing
mode (i.e. waves moving along the “X” direction). Also,
the asymmetric mode perturbations atθ=π

/
2 have larger

growth rates than the symmetric one; this is similar to the
behaviour obtained in Harris CSs (Daughton, 1999).

Fig. 3. Growth rate as a function of the magnitude of wavenum-
ber k for polarizationsA=Ayey+Azez. The parameters have the
following values:τ=3,LCS=0.6ρi , bn=0.1.

Figure 3 demonstrates the growth rate of the symmetric
mode with polarizationA1=A1yey+A1zez as a function of
wavenumberk. As one can see, the range of wavenum-
bers with positive values of growth rate is wider than the
one in the classical Harris CS (Daughton, 1999). The max-
imum value of the growth rate for different values of prop-
agation angles belongs to segmentkLCS∈ [0.8, 1.8]. The
real part of the frequency in this region of wavenumbers be-
longs to the value rangeω∈ [0.01, 0.035] ωi (which is com-
mon to both symmetric and asymmetric modes). These val-
ues are much smaller than in the “classical” case of thin
Harris CSs (Lapenta and Brackbill, 1997; Daughton, 1999)
because the real part of the frequency is proportional to
the velocity of diamagnetic driftsω≈kyvDM=kvDM sinθ ,
wherevDM is the velocity of the diamagnetic drift (Baumjo-
hann and Treumann, 1996). In the Harris CS, where most
of the current is supported by diamagnetic particle drifts
vDM∼dn

/
dz, the plasma density gradients are much larger

than in the anisotropic CS with few embedded layers, if the
thicknesses of the Harris CS and the anisotropic one are
close.

5 Experimental data

Oscillations of the magnetotail current sheet (flappings) were
regularly observed by the multispacecraft Cluster mission
(Sergeev et al., 2004; Runov et al., 2006; Petrukovich et al.,
2006). To compare with the predictions of our theory a vast
variety of such flapping motions, we select a group of fast
quasi-periodic oscillations (with periods of not longer than
3 min). The set of fourteen events from the years 2001, 2003
and 2004 contains 160 fast crossings (Table 1). The mag-
netic field and the plasma density (measured by CODIF at
C4) data were taken from the CAA database.

Such oscillations form a specific subclass of flapping mo-
tions. They have a relatively high frequency (about 0.01 Hz)
and often a rather high degree of monochromaticity. The
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Fig. 4. Component of magnetic fieldBx observed by four spacecraft and comparison of the current density profile with that of our TCS
model (in the insert). Individual crossings are marked by numbers.

Fig. 5. Two other examples of wavy events (see the text for details).

plasma sheet has values ofBz and By within 5 nT and
most often around 1–2 nT. This subclass is distinctly dif-
ferent from, for example, the slower and steeper (up to 80-
degree tilts) oscillations typical of situations with a largeBz
(Petrukovich et al., 2006). In this sense, the statistics of
Sergeev et al. (2004) and Runov et al. (2006), including all
the fast crossings during 2001, are more general and con-
tain some of our examples. On the other hand, our selection
includes the data from the years 2003 and 2004 and some
additional events from 2001 missed by Runov et al. (2006)
due to formal reasons (for example, due to the absence of the
neutral plane crossings).

As a first example, we choose one event previously anal-
ysed thoroughly by Nakamura et al. (2006). Figure 4 demon-
strates a magnetic fieldBx , typical of our statistics. The
twelve individual crossings forming a quasi-periodic se-
quence are marked by number. The two main frequencies
areν1≈0.06 Hz andν2≈0.0125 Hz (found with the help of
Fourier analysis). The current density profile of a sam-
ple crossing (#1) is quite consistent with the prediction of
our anisotropic TCS model (insert in Fig. 4). The detailed
comparison of the profiles was performed by Artemyev et
al. (2008).

For a better illustration of the selected events, two addi-
tional examples are shown in Fig. 5. The event of 22 Septem-
ber 2004 helps us to understand the vertical spatial scale of
oscillations, which is of the order of a Cluster tetrahedron
size∼1000 km. The spacecraft outside the embedded sheet
at the level ofBx∼15 nT practically does not observe any
oscillation, but Cluster 3 located near the neutral plane ob-
serves waves with a magnitude of about 10 nT and a period
of about one minute. Oscillations occur in a quiet thin sheet
after the period of thinning and stretching (Petrukovich et al.,
2007) and immediately before the start of the dipolarization.
This interesting coincidence between the appearance of such
oscillations and sheet disruption will be studied in following
publications.

The event from 6 October 2001 exhibits oscillations with
rather small amplitudes, observed at a distance by Cluster
from the neutral plane. This event therefore was not included
in Runov et al.’s statistics (2006), but otherwise the properties
of such oscillations are quite typical.

Events similar to our statistics have also been found in the
2005–2007 Cluster data. However, for this period, it was
impossible to determine wave directions and spatial scales
because of the large spacecraft separation (∼1.5RE).

www.ann-geophys.net/27/861/2009/ Ann. Geophys., 27, 861–868, 2009
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Fig. 6. Statistics of 160 fast crossings. Left: directions of normal vector projections to theXY plane for each CS crossing. Centre: the
histogram of valuesvD

/
vφ . Right: the histogram of valuesλ

/
L for two frequencies. The blue color denotes the higher frequency and the

red color – the smaller one (see text for details). Dashed boxes denote regions roughly corresponding to the theory.

Table 1. Fourteen events with fast monochromatic flapping mo-
tions.

n date
<X> <Ygsm> <Zgsm>

(1000 km)

1 17 Aug 2001: 16:29–16:51 −117 −30 1.8
2 26 Sep 2001: 22:19–22:49 −114 46 −3
3 1 Oct 2001: 09:30–10:00 −104 51 4.5
4 6 Oct 2001: 06:45–07:30 −104 60 −9.5
5 8 Oct 2001: 13:00–13:32 −99 62 −0.1
6 8 Oct 2001: 13:30–13:45 −99 62 −0.8
7 11 Oct 2001: 03:25–03:45 −100 70 −12.2
8 24 Aug 2003: 18:37–18:47 −107 −24 20.5
9 1 Oct 2003: 20:00–20:15 −103 44 −0.4
10 1 Nov 2003: 13:45–13:55 −63 77 −9
11 22 Sep 2004: 02:15–02:30 113 27 −11
12 15 Oct 2004: 12:35–12:45 −78 52 2.2
13 15 Oct 2004: 12:45–13:00 −80 52 1.8
14 15 Oct 2004: 14:30–14:50 −84 56 −3.8

We obtain the values of sheet velocity along the normal
vn and the normal direction for each crossing as well as the
magnitude of drift velocityvD=

(
j
/
enp

)
Bx=0 averaged over

the time of the given crossing (j is the current density de-
fined with the curlometer technique andvn can be obtained
as

∣∣1r
/
1t

∣∣ where1t is the time shift between the space-
craft observations and1r is the distance between the space-
craft). We assume that the phase velocity of wavevφ is of
the order ofvn. The estimation of the wavelength of these
oscillations isλ=

∣∣vϕ∣∣/ν (whereν – frequency of oscilla-
tion). Another spatial scale – sheet thickness – was estimated
asL=Bext

/
|j |Bx=0. Here,B2

ext

/
8π=1.17Tpnp (the factor

1.17 is used to account for the electron contribution to the
total pressure).

Finally, the values of sheet velocityvϕ and drift velocity
vD, the estimates of wavelength and sheet thickness and the
directions of propagation normal in theXY plane for all 160
crossings are summarized in Fig. 6. In order to access the
spread in our estimates, we work out the wavelengths for the
two frequencies corresponding to the two main maxima of
the spectral power. The dominant direction of wave propa-
gation in theXY plans is almost along the current (Y ). The
wave phase velocities are of the order of drift velocity. The
wavelengths of the oscillations are of the order of thickness
of CS. Theoretical values obtained in our linear analysis of
drift instabilities are shown by boxes (Fig. 6) and are quite
consistent with the observations.

6 Discussion and conclusions

The linear stability analysis of low frequency wave modes
propagating in the thin current sheet shows that unsta-
ble modes can have two different polarizations (with
the perturbed vector potentialsA1=A1yey+A1zez and
A1=A1yey+A1xex). These modes can also be symmetrical
and asymmetrical. Perturbation modes such as the classi-
cal sausage and kink modes might exist in the counter-phase
regime, i.e. if one of them is suppressed atθ∼π

/
2, the sec-

ond one reaches a maximum growth rate at this angle. The
growth rate of wave modes is obtained as a function of both
the amplitude of the wave vector and its direction. Contrary
to the tearing stability of the Harris CS withBz 6=0 (Pellat
et al., 1991), in the anisotropic TCS, tearing has a positive
growth rate (see the detailed discussion by Zelenyi et al.,
2008).

Both the tearing and kink/sausage modes are the limiting
cases of a more general class of oblique CS eigenmodes,
which might propagate in a CS at arbitrary angles and might
become unstable in a large area of parameters. Conceptually,
we would like to stress that even for eigenmode class per-
turbations observed within a CS (non-eigenmode transient
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events could also exist in magnetotail), their configuration
could actually be a mix of differing polarizations and sym-
metry.

A special class of fast quasi-periodic flapping motions of
CSs, observed by Cluster during 2001 to 2004, has properties
quite consistent with these theory predictions: the directions
of the observed flapping motions generally correspond to the
current direction, while the typical velocity of the motion is
comparable to the drift velocity of the CS. The frequencies
and scales of the oscillations are also in agreement with the
theory.

Since the direction of plasma drift velocity in any CS co-
incides with the direction of the current, these low frequency
eigenmodes should possess properties of drift waves. This
feature is very similar both in the Harris CS model (Lapenta
and Brackbill, 1997; Buechner and Kuska, 1999; Daughton,
1999) and in the model of anisotropic TCS, but the latter
predicts the value of a wave frequency at least a factor of
4–5 smaller than in Harris-like models. The broad variety of
Cluster flapping events was interpreted by a number of mod-
els, including ones with a non-drift nature (Golovchanskaya
et al., 2005; Erkaev et al., 2008; Saito et al., 2008). However,
we show that at least this subclass of wavy flapping can be
described by drift eigenmodes.

Acknowledgements.This work was supported in part by the RF
Presidential Program for State Support of Leading Scientific
Schools (project no. NSh-472.2008.2) and the Russian Foundation
for Basic Research (project nos. 08-02-00407, 06-05-90631 and 07-
02-00319).

Editor in Chief W. Kofman thanks C. Cully and another anony-
mous referee for their help in evaluating this paper.

References

Artemyev, A. V., Petrukovich, A. A., Zelenyi, L. M., Malova, H. V.,
Popov, V. Y., Nakamura, R., Runov, A., and Apatenkov, S.: Com-
parison of multi-point measurements of current sheet structure
and analytical models, Ann. Geophys., 26, 2749–2758, 2008,
http://www.ann-geophys.net/26/2749/2008/.

Baumjohann, W. and Treumann, R. A.: Basic space plasma physics,
Imperial College Press, London, 1996.

Baumjohann, W., Roux, A., Le Contel, O., Nakamura, R., Birn, J.,
Hoshino, M., Lui, A. T. Y., Owen, C. J., Sauvaud, J.-A., Vaivads,
A., Fontaine, D., and Runov, A.: Dynamics of thin current sheets:
Cluster observations, Ann. Geophys., 25, 1365–1389, 2007,
http://www.ann-geophys.net/25/1365/2007/.

Büchner, J. and Kuska, J.-P.: Sausage mode instability of thin cur-
rent sheets as a cause of magnetospheric substorms, Ann. Geo-
phys., 17, 604–612, 1999,
http://www.ann-geophys.net/17/604/1999/.

Coppi, B., Laval, G., and Pellat, R.: Dynamics of the geomagnetic
tail, Phys. Rev. Letters, 16(26), 1207–1210, 1966.

Daughton, W.: The unstable eigenmodes of a neutral sheet, Phys.
Plasmas, 6(4), 1329–1343, 1999.

Dobrowolny, M.: Instability of a neutral sheet, Nuovo Cimento, LV
B(2), 427–441, 1968.

Erkaev, N. V., Semenov, V. S., and Biernat, H. K.: Mag-
netic double gradient mechanism for flapping oscillations
of a current sheet, Geophys. Res. Lett., 35(2), L02111,
doi:10.1029/2007GL032277, 2008.

Galeev, A. A. and Zelenyi, L. M.: Tearing instability in plasma con-
figurations, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki,
70(6), 2133–2151, 1976 (in Russian).

Golovchanskaya, I. V. and Maltsev, Y. P.: On the identification of
plasma sheet flapping waves observed by Cluster, Geophys. Res.
Lett., 32, L02102, doi:10.1029/2004GL021552, 2005.

Harris, E. G.: On a plasma sheet separating regions of oppositely
directed magnetic field, Nuovo Cimento, 23, 115, 1962.

Kan, J. R.: On the structure of the magnetotail current sheet, J.
Geophys. Res., 78, 3773–3781, 1973.

Lapenta, G. and Brackbill, J. U.: A kinetic theory for the drift-kink
instability, J. Geophys. Res., 102(A12), 27099–27108, 1997.

Nakamura, R., Baumjohann, W., Runov, A., and Asano, Y.: Thin
current sheets in the magnetotail observed by Cluster, Space Sci.
Rev., 122, 29–38, 2006.

Pellat, R., Coroniti, F. V., and Pritchett, P. L.: Does ion tearing
exist? Geophys. Res. Lett., 18, 143–146, 1991.

Petrukovich, A. A., Zhang, T. l., Baumjohann, W., Nakamura, R.,
Runov, A., Balogh, A., and Carr, C.: Oscillatory magnetic flux
tube slippage in the plasma sheet, Ann. Geophys., 24, 1695–
1704, 2006,
http://www.ann-geophys.net/24/1695/2006/.

Petrukovich, A. A., Baumjohann, W., Nakamura, R., Runov, A.,
Balogh, A., and R̀eme, H.: Thinning and stretching of
the plasma sheet, J. Geophys. Res., 112(A10), A10213,
doi:10.1029/2007JA012349, 2007.

Runov, A., Sergeev, V. A., Nakamura, R., Baumjohann, W., Ap-
atenkov, S., Asano, Y., Takada, T., Volwerk, M., Vörös, Z.,
Zhang, T. L., Sauvaud, J.-A., Rème, H., and Balogh, A.: Local
structure of the magnetotail current sheet: 2001 Cluster observa-
tions, Ann. Geophys., 24, 247–262, 2006,
http://www.ann-geophys.net/24/247/2006/.

Saito, M. H., Miyashita, Y., Fujimoto, M., Shinohara, I., Saito, Y.,
Liou, K., and Mukai, T.: Ballooning mode waves prior to
substorm-associated dipolarizations: Geotail observations, Geo-
phys. Res. Lett., 35(7), L07103, doi:10.1029/2008GL033269,
2008.

Schindler, K.: A theory of the substorm mechanism, J. Geophys.
Res., 79(19), 2803–2810, 1974.

Schindler, K.: Physics of space plasma activity, Cambridge Uni-
versity Press, ISBN: 9780521858977, doi:10.2277/0521858976,
November 2006.

Sergeev, V., Runov, A., Baumjohann, W., Nakamura, R., Zhang, T.
L., Balogh, A., Louarnd, P., Sauvaud, J.-A., and Reme, H.: Ori-
entation and propagation of current sheet oscillations, Geophys.
Res. Lett., 31(5), L05807, doi:10.1029/2003GL019346, 2004.
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